首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A Winoto  D Baltimore 《Cell》1989,59(4):649-655
T cells expressing either the alpha beta or gamma delta antigen receptor (TCR) are distinct cell lineages. The single locus encoding the TCR alpha and delta genes requires special regulation to avoid alpha gene expression in gamma delta T cells. We show here that the minimal alpha enhancer is active in the gamma delta T cell lineage but gains alpha beta lineage specificity through negative cis-acting elements 3' of the C alpha gene that silence the enhancer in gamma delta T cells. The negative elements at the C alpha locus consist of several silencers that work in an orientation- and distance-independent fashion. These silencers also act on a retroviral enhancer that is normally ubiquitously expressed, restricting its activity to alpha beta cells. The alpha silencers are active in non-T cell lines, suggesting that the decision of a cell to differentiate into the alpha beta T cell lineage may involve specific relief from these silencers. Silencers are likely to be as important as enhancers in establishing lineage-specific gene expression in many systems.  相似文献   

4.
5.
Temporal control of rearrangement at the TCR alpha/delta locus is crucial for development of the gamma delta and alpha beta T cell lineages. Because the TCR delta locus is embedded within the alpha locus, rearrangement of any V alpha-J alpha excises the delta locus, precluding expression of a functional gamma delta TCR. Approximately 100 kb spanning the C delta-C alpha region has been sequenced from both human and mouse, and comparison has revealed an unexpectedly high degree of conservation between the two. Of interest in terms of regulation, several highly conserved sequence blocks (> 90% over > 50 bp) were identified that did not correspond to known regulatory elements such as the TCR alpha and delta enhancers or to coding regions. One of these blocks lying between J alpha 4 and J alpha 3, which appears to be conserved in other vertebrates, has been shown to augment TCR alpha enhancer function in vitro and differentially bind factors from nuclear extracts. To further assess a plausible regulatory role for this element, we have created mice in which this conserved sequence block is either deleted or replaced with a neomycin resistance gene driven by the phosphoglycerate kinase promoter (pgk-neor). Deletion of this conserved sequence block in vivo did have a local effect on J alpha usage, echoing the in vitro data. However, its replacement with pgk-neor had a much more dramatic, long range effect, perhaps underscoring the importance of maintaining overall structure at this locus.  相似文献   

6.
The T cell rearrangement of the T cell receptor (TCR) genes TCRalpha and delta is specifically regulated by a complex interplay between enhancer elements and chromatin structure. The alpha enhancer is active in T cells and drives TCRalpha recombination in collaboration with a locus control region-like element located downstream of the Calpha gene on mouse chromosome 14. Twelve kb further down-stream lies another gene, Dad1, with a program of expression different from that of TCRalpha. The approximately 6-kb locus control region element lying between them contains multiple regulatory sites with a variety of roles in regulating the two genes. Previous evidence has indicated that among these there are widely distributed regions with enhancer blocking (insulating) activity. We have shown in this report that one of these sites, not previously examined, strongly binds the insulator protein CCTC-binding factor (CTCF) in vitro and in vivo and can function in an enhancer blocking assay. However, other regions within the 6-kb element that also can block enhancers clearly do not harbor CTCF sites and thus must reflect the presence of a previously undetected and distinct vertebrate insulator activity.  相似文献   

7.
8.
9.
10.
In the process of analyzing the contribution of nonproductive alpha- and beta-chain gene rearrangements to the allelic exclusion of TCR gene expression, we have found a novel type of aberrant alpha-gene rearrangement. In one alpha-allele of the mouse KB5-C20 T cell clone, a J alpha gene segment has been abutted precisely to a sequence that does not display any homology to known V and D gene segment. The appended sequence originates from within the V alpha locus and is located, in the germ-line, 1 kb upstream of a member of the V alpha 2-gene segment subfamily. No recombination signal sequences have been found contiguous to the recombination point. These observations indicate that in normal T lymphocytes, TCR alpha-genes may be affected by aberrant rearrangements similar to those that predominate in human T cell tumors containing chromosome 14 inversion or translocation. Furthermore, compilation of published data and cloning and sequencing of three additional alpha-alleles has allowed us to examine the status of alpha-loci in nine mouse T cell clones expressing functional alpha beta-heterodimers. Interestingly, in contrast to the situation observed at the beta-locus, only 1 of 18 analyzed alpha-alleles has retained a germ-line unrearranged configuration. In addition, in each T cell clone, alpha-rearrangements on homologous chromosomes were unevenly distributed over the J alpha region and shown to generally involve neighboring J alpha gene segments.  相似文献   

11.
12.
The three CD3 genes on human chromosome 11q23 encode proteins (gamma, delta and epsilon) which form part of the antigen receptor on T lymphocytes. All three genes are clustered within 50 kb and are activated approximately contemporaneously during the early stages of T cell ontogeny. In order to pinpoint potential regulatory sequences important for locus activation and tissue-specific gene expression, the chromatin structure of almost 90 kb of this region has been probed in five cell lines using the endonuclease pancreatic DNase I. A set of DNase I hypersensitive (HS) sites has been defined in T cell chromatin, five of which were strong and not found in non-T cells, with the exception of the erythroleukaemia cell line K562, in which three sites were weakly expressed, correlating with a low level of delta mRNA. The subset of five HS sites map close to the CD3 genes and lie in regions which contain elements of defined function: the gamma promoter; the delta promoter and its 3' enhancer; and the epsilon promoter and its 3' enhancer. Since no further major T cell-restricted HS sites lie within the 90kb of the CD3 locus analysed, these five regions may contain all the sequences important for CD3 gene expression.  相似文献   

13.
The gene encoding the CD3-epsilon chain of the T cell receptor (TCR/CD3) complex is uniquely transcribed in all T lymphocyte lineage cells. The human CD3-epsilon gene, when introduced into the mouse germ line, was expressed in correct tissue-specific fashion. The gene was then screened for T lymphocyte-specific cis-acting elements in transient chloramphenicol transferase assays. The promoter (-228 to +100) functioned irrespective of cell type. A 1225 bp enhancer with strict T cell-specificity was found in a DNase I hypersensitive site downstream of the last exon, 12 kb from the promoter. This site was present in T cells only. The CD3-epsilon enhancer did not display sequence similarity with the T cell-specific enhancer of CD3-delta, a related gene co-regulated with CD3-epsilon during intrathymic differentiation. The CD3-epsilon enhancer was unusual in that it constituted a CpG island, and was hypomethylated independent of tissue type. Two HTLV I-transformed T cell lines were identified in which the CD3-epsilon gene was not expressed, and in which the enhancer was inactive.  相似文献   

14.
R Lieberson  J Ong  X Shi    L A Eckhardt 《The EMBO journal》1995,14(24):6229-6238
  相似文献   

15.
TCR J alpha genes span a distance of approximately 65 kb on mouse chromosome 14. Due to the existence of 50 to 100 discrete J genes, a potential for great diversity exists within the V-J-C alpha gene products and within the ultimate repertoire of alpha beta TCR. We have prepared hybridomas from an in vitro system that supports T cell differentiation among bone marrow cells. We have examined the J alpha genes among these cells and categorized rearrangements according to their location within the J alpha locus. It was found that alpha rearrangements were always present among the hybridomas bearing beta gene rearrangements. When two bone marrow-derived alpha-bearing chromosomes could be demonstrated in these hybridomas, both were always rearranged and rearrangements on homologous chromosomes were shown to reside in similar regions of the J alpha locus. Most surprisingly, when hybridomas were categorized by the culture from which they derived, cells from the same culture (designated as a set) demonstrated a skewing of alpha rearrangements to restricted segments of J alpha genes. In one hybridoma, rearrangements on homologous chromosomes involved J alpha genes that were either identical or situated within a 1-kb segment of DNA. The skewing within sets could not be due to clonal identity between hybridomas as the beta and gamma rearrangements in all hybridomas were different. Results suggested that skewing of J alpha gene rearrangements occurred during the course of T cell development in vitro. Should the same situation occur in vivo, the number of distinct TCR J alpha sequences available for expression in early development may be far less than that predicted by gene number alone.  相似文献   

16.
The unfolding story of T cell receptor gamma   总被引:3,自引:0,他引:3  
Antigen-specific, major histocompatibility complex-restricted recognition by classical T cells is mediated by a T cell receptor (TCR) consisting of a disulfide-linked alpha beta heterodimer. During the search for the genes encoding the alpha and beta proteins, a third immunoglobulin-like gene, termed gamma, was uncovered. Like the TCR alpha and beta genes, the TCR gamma gene consists of variable and constant segments that rearrange during T cell development in the thymus. Although the physiological role of TCR gamma remains an enigma, much has been learned with the recent identification of the protein products of this gene family in both mice and humans. The gamma chain is associated with a partner chain, termed delta. The gamma delta heterodimer is associated with an invariant T3 complex, very similar to that associated with the alpha beta heterodimer, and appears predominantly, if not exclusively, on cells with a CD4-, CD8- phenotype both in the thymus and in the periphery. TCR gamma delta is the first T3-associated receptor to appear during thymocyte development and defines a separate T cell lineage distinct from alpha beta-bearing cells. Although TCR alpha beta-bearing cells and TCR gamma delta-bearing cells follow parallel developmental pathways, the diversity of expressed gamma delta receptors is extremely limited relative to that of alpha beta receptors.  相似文献   

17.
Elf-1 binds to a critical element in a second CD4 enhancer.   总被引:11,自引:6,他引:11       下载免费PDF全文
  相似文献   

18.
19.
20.
The mechanism of chromosome 14 inversion in a human T cell lymphoma   总被引:16,自引:0,他引:16  
R Baer  A Forster  T H Rabbitts 《Cell》1987,50(1):97-105
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号