首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initial denitration of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Rhodococcus sp. strain DN22 produces CO2 and the dead-end product 4-nitro-2,4-diazabutanal (NDAB), OHCNHCH2NHNO2, in high yield. Here we describe experiments to determine the biodegradability of NDAB in liquid culture and soils containing Phanerochaete chrysosporium. A soil sample taken from an ammunition plant contained RDX (342 μmol kg−1), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 3,057 μmol kg−1), MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine; 155 μmol kg−1), and traces of NDAB (3.8 μmol kg−1). The detection of the last in real soil provided the first experimental evidence for the occurrence of natural attenuation that involved ring cleavage of RDX. When we incubated the soil with strain DN22, both RDX and MNX (but not HMX) degraded and produced NDAB (388 ± 22 μmol kg−1) in 5 days. Subsequent incubation of the soil with the fungus led to the removal of NDAB, with the liberation of nitrous oxide (N2O). In cultures with the fungus alone NDAB degraded to give a stoichiometric amount of N2O. To determine C stoichiometry, we first generated [14C]NDAB in situ by incubating [14C]RDX with strain DN22, followed by incubation with the fungus. The production of 14CO2 increased from 30 (DN22 only) to 76% (fungus). Experiments with pure enzymes revealed that manganese-dependent peroxidase rather than lignin peroxidase was responsible for NDAB degradation. The detection of NDAB in contaminated soil and its effective mineralization by the fungus P. chrysosporium may constitute the basis for the development of bioremediation technologies.  相似文献   

2.
The biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in liquid cultures with municipal anaerobic sludge showed that at least two degradation routes were involved in the disappearance of the cyclic nitramine. In one route, RDX was reduced to give the familiar nitroso derivatives hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX). In the second route, two novel metabolites, methylenedinitramine [(O2NNH)2CH2] and bis(hydroxymethyl)nitramine [(HOCH2)2NNO2], formed and were presumed to be ring cleavage products produced by enzymatic hydrolysis of the inner C—N bonds of RDX. None of the above metabolites accumulated in the system, and they disappeared to produce nitrous oxide (N2O) as a nitrogen-containing end product and formaldehyde (HCHO), methanol (MeOH), and formic acid (HCOOH) that in turn disappeared to produce CH4 and CO2 as carbon-containing end products.  相似文献   

3.
In previous work, we found that an anaerobic sludge efficiently degraded hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), but the role of isolates in the degradation process was unknown. Recently, we isolated a facultatively anaerobic bacterium, identified as Klebsiella pneumoniae strain SCZ-1, using MIDI and the 16S rRNA method from this sludge and employed it to degrade RDX. Strain SCZ-1 degraded RDX to formaldehyde (HCHO), methanol (CH3OH) (12% of total C), carbon dioxide (CO2) (72% of total C), and nitrous oxide (N2O) (60% of total N) through intermediary formation of methylenedinitramine (O2NNHCH2NHNO2). Likewise, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) was degraded to HCHO, CH3OH, and N2O (16.5%) with a removal rate (0.39 μmol·h−1·g [dry weight] of cells−1) similar to that of RDX (0.41 μmol·h−1·g [dry weight] of cells−1) (biomass, 0.91 g [dry weight] of cells·liter−1). These findings suggested the possible involvement of a common initial reaction, possibly denitration, followed by ring cleavage and decomposition in water. The trace amounts of MNX detected during RDX degradation and the trace amounts of hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine detected during MNX degradation suggested that another minor degradation pathway was also present that reduced —NO2 groups to the corresponding —NO groups.  相似文献   

4.
Rhodococcus sp. strain DN22 can convert hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to nitrite, but information on degradation products or the fate of carbon is not known. The present study describes aerobic biodegradation of RDX (175 μM) when used as an N source for strain DN22. RDX was converted to nitrite (NO2) (30%), nitrous oxide (N2O) (3.2%), ammonia (10%), and formaldehyde (HCHO) (27%), which later converted to carbon dioxide. In experiments with ring-labeled [15N]-RDX, gas chromatographic/mass spectrophotometric (GC/MS) analysis revealed N2O with two molecular mass ions: one at 44 Da, corresponding to 14N14NO, and the second at 45 Da, corresponding to 15N14NO. The nonlabeled N2O could be formed only from -NO2, whereas the 15N-labeled one was presumed to originate from a nitramine group (15N-14NO2) in RDX. Liquid chromatographic (LC)-MS electrospray analyses indicated the formation of a dead end product with a deprotonated molecular mass ion [M-H] at 118 Da. High-resolution MS indicated a molecular formula of C2H5N3O3. When the experiment was repeated with ring-labeled [15N]-RDX, the [M-H] appeared at 120 Da, indicating that two of the three N atoms in the metabolite originated from the ring in RDX. When [U-14C]-RDX was used in the experiment, 64% of the original radioactivity in RDX incorporated into the metabolite with a molecular weight (MW) of 119 (high-pressure LC/radioactivity) and 30% in 14CO2 (mineralization) after 4 days of incubation, suggesting that one of the carbon atoms in RDX was converted to CO2 and the other two were incorporated in the ring cleavage product with an MW of 119. Based on the above stoichiometry, we propose a degradation pathway for RDX based on initial denitration followed by ring cleavage to formaldehyde and the dead end product with an MW of 119.  相似文献   

5.
Recent studies demonstrated that degradation of the military explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by species of Rhodococcus, Gordonia, and Williamsia is mediated by a novel cytochrome P450 with a fused flavodoxin reductase domain (XplA) in conjunction with a flavodoxin reductase (XplB). Pulse field gel analysis was used to localize xplA to extrachromosomal elements in a Rhodococcus sp. and distantly related Microbacterium sp. strain MA1. Comparison of Rhodococcus rhodochrous 11Y and Microbacterium plasmid sequences in the vicinity of xplB and xplA showed near identity (6,710 of 6,721 bp). Sequencing of the associated 52.2-kb region of the Microbacterium plasmid pMA1 revealed flanking insertion sequence elements and additional genes implicated in RDX uptake and degradation.Past practices of production, application, and disposal of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) have resulted in widespread contamination. Environmental contamination is aggravated by its high mobility, contributing to more-widespread contamination of groundwater than by other commonly used explosives (27). Ingestion or inhalation of RDX is associated with neurological disorders and organ failure (38), and exposed wildlife show behavioral changes and suffer liver and reproductive damage (38). The U.S. Environmental Protection Agency (EPA) has classified RDX as a possible human carcinogen (37). These adverse effects have provided motivation to better understand the microbiology and biochemistry of RDX degradation.As yet there is relatively limited information concerning natural rates of microbial RDX degradation or degradation mechanisms; such information is needed to predict or control rates of degradation in the environment. Of the three general pathways for RDX degradation or transformation based on metabolite analysis outlined in the review by Crocker and associates (6), aerobic degradation initiated by XplA is among the better-characterized systems. This enzyme, a novel cytochrome P450 with a fused flavodoxin reductive domain (18, 33), was first identified by Seth-Smith et al. in Rhodococcus rhodochrous 11Y as being encoded by xplA (33). This gene has been identified in 24 bacterial isolates of the Corynebacterineae capable of utilizing RDX as a sole nitrogen source (4, 25, 32-34). While mammalian nitric oxide synthase family enzymes are known to be P450-like enzymes with fused flavodoxin domains, there are very few identified examples of this type of protein fusion among characterized microbial species (2, 15, 18, 24). Subsequent studies by Jackson and associates (18) demonstrated that XplA, in association with an electron-transferring flavodoxin reductase (XplB), functions to efficiently denitrate RDX aerobically to the aliphatic nitramine 4-nitro-2,4-diazabutanal (NDAB) (18). NDAB has been shown to serve as a viable nitrogen source for Methylobacterium sp. strain JS178 (13) and to be degraded by Phanerochaete chrysosporium (11). Thus, complete mineralization often appears to be mediated by multiple microbial populations.The capacity for microbial degradation of recalcitrant organics, many of which are apparently new to the biosphere as a result of chemical manufacture, is often determined by plasmids and associated mobile genetic elements (36, 39). Plasmids both serve as a reservoir of genetic information and promote metabolic innovation, since their replication is independent of the chromosome and they do not generally encode essential functions. Although it was earlier suggested that genes in Rhodococcus sp. strain DN22 associated with initial steps of RDX degradation are carried by plasmids (5), no direct evidence for an extrachromosomal location was provided. We now show that nearly identical genes for XplA and XplB are carried on plasmids in two phylogenetically and geographically distinct bacterial isolates: Microbacterium sp. strain MA1, isolated from North America (Milan, TN), and Rhodococcus rhodochrous 11Y, isolated from England (33). Thus, these genes are more broadly distributed within the Actinomycetales than previously recognized, and the near identity of gene sequence (6,710 of 6,721 bp) in these divergent genera is indicative of recent plasmid-mediated transfer. Analysis of approximately 52 kbp of sequence near xplA and xplB in strain MA1 revealed closely linked genes for transport and degradation that are flanked by transposable elements, suggesting that plasmid-carried xplA and xplB are part of a larger class I transposable element encoding both transport and degradation of RDX.  相似文献   

6.
Bioremediation is of great interest in the detoxification of soil contaminated with residues from explosives such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Although there are numerous forms of in situ and ex situ bioremediation, ruminants would provide the option of an in situ bioreactor that could be transported to the site of contamination. Bovine rumen fluid has been previously shown to transform 2,4,6-trinitrotoluene (TNT), a similar compound, in 4 h. In this study, RDX incubated in whole ovine rumen fluid was nearly eliminated within 4 h. Whole ovine rumen fluid was then inoculated into five different types of media to select for archaeal and bacterial organisms capable of RDX biotransformation. Cultures containing 30 μg mL−1 RDX were transferred each time the RDX concentration decreased to 5 μg mL−1 or less. Time point samples were analyzed for RDX biotransformation by HPLC. The two fastest transforming enrichments were in methanogenic and low nitrogen basal media. After 21 days, DNA was extracted from all enrichments able to partially or completely transform RDX in 7 days or less. To understand microbial diversity, 16S rRNA-gene-targeted denaturing gradient gel electrophoresis (DGGE) fingerprinting was conducted. Cloning and sequencing of partial 16S rRNA fragments were performed on both low nitrogen basal and methanogenic media enrichments. Phylogenetic analysis revealed similar homologies to eight different bacterial and one archaeal genera classified under the phyla Firmicutes, Actinobacteria, and Euryarchaeota. After continuing enrichment for RDX degraders for 1 year, two consortia remained: one that transformed RDX in 4 days and one which had slowed after 2 months of transfers without RDX. DGGE comparison of the slower transforming consortium to the faster one showed identical banding patterns except one band. Homology matches to clones from the two consortia identified the same uncultured Clostridia genus in both; Sporanaerobacter acetigenes was identified only in the consortia able to completely transform RDX. This is the first study to examine the rumen as a potential bioremediation tool for soils contaminated with RDX, as well as to discover S. acetigenes in the rumen and its potential ability to metabolize this energetic compound.  相似文献   

7.
8.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitroamine explosive that is a major component in many military high-explosive formulations. In this study, two aerobic bacteria that are capable of using RDX as the sole source of carbon and nitrogen to support their growth were isolated from surface soil. These bacterial strains were identified by their fatty acid profiles and 16S ribosomal gene sequences as Williamsia sp. KTR4 and Gordonia sp. KTR9. The physiology of each strain was characterized with respect to the rates of RDX degradation and [U-14C]RDX mineralization when RDX was supplied as a sole carbon and nitrogen source in the presence and absence of competing carbon and nitrogen sources. Strains KTR4 and KTR9 degraded 180 μM RDX within 72 h when RDX served as the only added carbon and nitrogen source while growing to total protein concentrations of 18.6 and 16.5 μg/ml, respectively. Mineralization of [U-14C]RDX to 14CO2 was 30% by strain KTR4 and 27% by KTR9 when RDX was the only added source of carbon and nitrogen. The addition of (NH4)2SO4 greatly inhibited KTR9's degradation of RDX but had little effect on that of KTR4. These are the first two pure bacterial cultures isolated that are able to use RDX as a sole carbon and nitrogen source. These two genera possess different physiologies with respect to RDX mineralization, and each can serve as a useful microbiological model for the study of RDX biodegradation with regard to physiology, biochemistry, and genetics.  相似文献   

9.
The potential for humic substances to stimulate the reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was investigated. This study describes a novel approach for the remediation of RDX-contaminated environments using microbially mediated electron shuttling. Incubations without cells demonstrated that reduced AQDS transfers electrons directly to RDX, which was reduced without significant accumulation of the nitroso intermediates. Three times as much reduced AQDS (molar basis) was needed to completely reduce RDX. The rate and extent of RDX reduction differed greatly among electron shuttle/acceptor amendments for resting cell suspensions of Geobacter metallireducens and G. sulfurreducens with acetate as the sole electron donor. AQDS and purified humic substances stimulated the fastest rate of RDX reduction. The nitroso metabolites did not significantly accumulate in the presence of AQDS or humic substances. RDX reduction in the presence of poorly crystalline Fe(III) was relatively slow and metabolites transiently accumulated. However, adding humic substances or AQDS to Fe(III)-containing incubations increased the reduction rates. Cells of G. metallireducens alone reduced RDX; however, the rate of RDX reduction was slow relative to AQDS-amended incubations. These data suggest that extracellular electron shuttle-mediated RDX transformation is not organism specific but rather is catalyzed by multiple Fe(III)- and humic-reducing species. Electron shuttle-mediated RDX reduction may eventually become a rapid and effective cleanup strategy in both Fe(III)-rich and Fe(III)-poor environments.  相似文献   

10.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive which presents an environmental hazard as a major land and groundwater contaminant. Rhodococcus rhodochrous strain 11Y was isolated from explosive contaminated land and is capable of degrading RDX when provided as the sole source of nitrogen for growth. Products of RDX degradation in resting-cell incubations were analyzed and found to include nitrite, formaldehyde, and formate. No ammonium was excreted into the medium, and no dead-end metabolites were observed. The gene responsible for the degradation of RDX in strain 11Y is a constitutively expressed cytochrome P450-like gene, xplA, which is found in a gene cluster with an adrenodoxin reductase homologue, xplB. The cytochrome P450 also has a flavodoxin domain at the N terminus. This study is the first to present a gene which has been identified as being responsible for RDX biodegradation. The mechanism of action of XplA on RDX is thought to involve initial denitration followed by spontaneous ring cleavage and mineralization.  相似文献   

11.
Repeated use of the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on military land has resulted in significant soil and groundwater pollution. Rates of degradation of RDX in the environment are low, and accumulated RDX, which the U.S. Environmental Protection Agency has determined is a possible human carcinogen, is now threatening drinking water supplies. RDX-degrading microorganisms have been isolated from RDX-contaminated land; however, despite the presence of these species in contaminated soils, RDX pollution persists. To further understand this problem, we studied RDX-degrading species belonging to four different genera (Rhodococcus, Microbacterium, Gordonia, and Williamsia) isolated from geographically distinct locations and established that the xplA and xplB (xplAB) genes, which encode a cytochrome P450 and a flavodoxin redox partner, respectively, are nearly identical in all these species. Together, the xplAB system catalyzes the reductive denitration of RDX and subsequent ring cleavage under aerobic and anaerobic conditions. In addition to xplAB, the Rhodococcus species studied here share a 14-kb region flanking xplAB; thus, it appears likely that the RDX-metabolizing ability was transferred as a genomic island within a transposable element. The conservation and transfer of xplAB-flanking genes suggest a role in RDX metabolism. We therefore independently knocked out genes within this cluster in the RDX-degrading species Rhodococcus rhodochrous 11Y. Analysis of the resulting mutants revealed that XplA is essential for RDX degradation and that XplB is not the sole contributor of reducing equivalents to XplA. While XplA expression is induced under nitrogen-limiting conditions and further enhanced by the presence of RDX, MarR is not regulated by RDX.  相似文献   

12.
Native soil microbial populations and unadapted municipal anaerobic sludges were compared for nitramine explosive degradation in microcosm assays under various conditions. Microbial populations from an explosive-contaminated soil were only able to mineralize 12% hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) (at a concentration of 800 mg/kg slurry) or 4% octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) (at a concentration of 267 mg/kg slurry). In contrast, municipal anaerobic sludges were able to mineralize them to carbon dioxide, with efficiencies of up to 65%. Reduction of RDX and HMX into their corresponding nitroso-derivatives was notably faster than their mineralization. The biodegradation of HMX was typically delayed by the presence of RDX in the microcosm, confirming RDX is used as an electron acceptor preferentially to HMX. The laboratory-scale bioslurry reactor reproduced the results of the microcosm assays, yet with much higher RDX and HMX degradation rates. A radiolabel-based mass balance in the soil slurry indicated that, besides a significant mineralization to carbon dioxide, 25% and 31% of RDX and HMX, respectively, appeared as acetonitrile-extractable metabolites, while the remaining part was incorporated into biomass and irreversibly bound to the soil matrix. About 10% of the HMX derivatives were estimated to be chemically bound to the soil matrix, while for RDX the estimation was nil.  相似文献   

13.
14.
We studied the anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a mineral medium by a mixed culture. RDX degradation activity was maintained for more than a year with only the addition of RDX. We observed a steady increase in the protein concentration of the culture from 4.8 μg mL−1 to more than 24.4 μg mL−1, a >400% increase. There was only a slight increase in protein in the RDX unamended control bottles containing live culture, increasing from 4.8 μg mL−1 to 7.8 μg mL−1. Radiolabeled 14C-RDX confirmed mineralization of the cyclic nitramine to 14CO2. After 164 days, 35% of the radiolabel was recovered as 14CO2. This is the first report demonstrating the mineralization of RDX when it serves as a growth substrate for a mixed culture.  相似文献   

15.
A unique metabolite with a molecular mass of 119 Da (C2H5N3O3) accumulated during biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Rhodococcus sp. strain DN22 (D. Fournier, A. Halasz, J. C. Spain, P. Fiurasek, and J. Hawari, Appl. Environ. Microbiol. 68:166-172, 2002). The structure of the molecule and the reactions that led to its synthesis were not known. In the present study, we produced and purified the unknown metabolite by biotransformation of RDX with Rhodococcus sp. strain DN22 and identified the molecule as 4-nitro-2,4-diazabutanal using nuclear magnetic resonance and elemental analyses. Furthermore, we tested the hypothesis that a cytochrome P450 enzyme was responsible for RDX biotransformation by strain DN22. A cytochrome P450 2B4 from rabbit liver catalyzed a very similar biotransformation of RDX to 4-nitro-2,4-diazabutanal. Both the cytochrome P450 2B4 and intact cells of Rhodococcus sp. strain DN22 catalyzed the release of two nitrite ions from each reacted RDX molecule. A comparative study of cytochrome P450 2B4 and Rhodococcus sp. strain DN22 revealed substantial similarities in the product distribution and inhibition by cytochrome P450 inhibitors. The experimental evidence led us to propose that cytochrome P450 2B4 can catalyze two single electron transfers to RDX, thereby causing double denitration, which leads to spontaneous hydrolytic ring cleavage and decomposition to produce 4-nitro-2,4-diazabutanal. Our results provide strong evidence that a cytochrome P450 enzyme is the key enzyme responsible for RDX biotransformation by Rhodococcus sp. strain DN22.  相似文献   

16.
17.
A pink-pigmented symbiotic bacterium was isolated from hybrid poplar tissues (Populus deltoides × nigra DN34). The bacterium was identified by 16S and 16S-23S intergenic spacer ribosomal DNA analysis as a Methylobacterium sp. (strain BJ001). The isolated bacterium was able to use methanol as the sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. The bacterium in pure culture was shown to degrade the toxic explosives 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazene (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine (HMX). [U-ring-14C]TNT (25 mg liter−1) was fully transformed in less than 10 days. Metabolites included the reduction derivatives amino-dinitrotoluenes and diamino-nitrotoluenes. No significant release of 14CO2 was recorded from [14C]TNT. In addition, the isolated methylotroph was shown to transform [U-14C]RDX (20 mg liter−1) and [U-14C]HMX (2.5 mg liter−1) in less than 40 days. After 55 days of incubation, 58.0% of initial [14C]RDX and 61.4% of initial [14C]HMX were mineralized into 14CO2. The radioactivity remaining in solution accounted for 12.8 and 12.7% of initial [14C]RDX and [14C]HMX, respectively. Metabolites detected from RDX transformation included a mononitroso RDX derivative and a polar compound tentatively identified as methylenedinitramine. Since members of the genus Methylobacterium are distributed in a wide diversity of natural environments and are very often associated with plants, Methylobacterium sp. strain BJ001 may be involved in natural attenuation or in situ biodegradation (including phytoremediation) of explosive-contaminated sites.  相似文献   

18.
A fermentative, non-spore forming, motile, rod-shaped bacterium, designated strain MJ1T, was isolated from an RDX contaminated aquifer at a live-fire training site in Northwest NJ, United States. On the basis of 16S rRNA gene sequencing and DNA base composition, strain MJ1T was assigned to the Firmicutes. The DNA G+C content was 42.8 mol%. Fermentative growth was supported by glucose and citrate in a defined basal medium. The bacterium is a strict anaerobe that grows between at pH 6.0 and pH 8.0 and 18 and 37 °C. The culture did not grow with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as the electron acceptor or mineralize RDX under these conditions. However, MJ1T transformed RDX into MNX, methylenedinitramine, formaldehyde, formate, ammonium, nitrous oxide, and nitrate. The nearest phylogenetic relative with a validly published name was Desulfotomaculum guttoideum (95 % similarity). However, MJ1T was also related to Clostridium celerecrescens DSM 5628 (95 %), Clostridium indolis DSM 755 (94 %), and Clostridium sphenoides DSM 632 (94 %). DNA:DNA hybridization with these strains was between 6.7 and 58.7 percent. The dominant cellular fatty acids (greater than 5 % of the total, which was 99.0 % recovery) were 16:0 fatty acid methyl ester (FAME) (32.12 %), 18:1cis 11 dimethyl acetal (DMA) (16.47 %), 16:1cis 9 DMA (10.28 %), 16:1cis 9 FAME (8.10 %), and 18:1cis 9 DMA (5.36 %). On the basis of morphological, physiological, and phylogenetic data, Clostridium geopurificans is proposed as a new species in genus Clostridium, with strain MJ1T as the type strain.  相似文献   

19.
A shallow, RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)-contaminated aquifer at Naval Submarine Base Bangor has been characterized as predominantly manganese-reducing, anoxic with local pockets of oxic conditions. The potential contribution of microbial RDX degradation to localized decreases observed in aquifer RDX concentrations was assessed in sediment microcosms amended with [U-14C] RDX. Greater than 85% mineralization of 14C-RDX to 14CO2 was observed in aquifer sediment microcosms under native, manganese-reducing, anoxic conditions. Significant increases in the mineralization of 14C-RDX to 14CO2 were observed in anoxic microcosms under NO3-amended or Mn(IV)-amended conditions. No evidence of 14C-RDX biodegradation was observed under oxic conditions. These results indicate that microbial degradation of RDX may contribute to natural attenuation of RDX in manganese-reducing aquifer systems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号