首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The uptake of soluble phosphate by the green sulfur bacterium Chlorobium limicola UdG6040 was studied in batch culture and in continuous cultures operating at dilution rates of 0.042 or 0.064 h–1. At higher dilution rates, washout occurred at phosphate concentrations below 7.1 μM. This concentration was reduced to 5.1 μM when lower dilution rates were used. The saturation constant for growth on phosphate (K μ) was between 2.8 and 3.7 μM. The specific rates of phosphate uptake in continuous culture were fitted to a hyperbolic saturation model and yielded a maximum rate (Va max) of 66 nmol P (mg protein)–1 h–1 and a saturation constant for transport (K t) of 1.6 μM. In batch cultures specific rates of phosphate uptake up to 144 nmol P (mg protein)–1 h–1 were measured. This indicates a difference between the potential transport of cells and the utilization of soluble phosphate for growth, which results in a significant change in the specific phosphorus content. The phosphorus accumulated within the cells ranged from 0.4 to 1.1 μmol P (mg protein)–1 depending on the growth conditions and the availability of external phosphate. Transport rates of phosphate increased in response to sudden increases in soluble phosphate, even in exponentially growing cultures. This is interpreted as an advantage that enables Chl. limicola to thrive in changing environments. Received: 9 February 1998 / Accepted: June 1998  相似文献   

2.
Streptomyces rimosus CN08 isolated from Tunisian soil produced 8.6 mg l−1 of oxytetracycline (OTC) under submerged fermentation (SmF). Attempts were made for enhancing OTC production after irradiation-induced mutagenesis of Streptomyces rimosus CN08 with Co60-γ rays. 125 OTC-producing colonies were obtained after screening on kanamycin containing medium. One mutant called Streptomyces rimosus γ-45 whose OTC production increased 19-fold (165 mg l−1) versus wild-type strain was selected. γ-45 mutant was used for OTC production under solid-state fermentation (SSF). Wheat bran (WB) was used as solid substrate and process parameters influencing OTC production were optimized. Solid-state fermentation increased the yield of antibiotic production (257 mg g−1) when compared with submerged fermentation. Ammonium sulphate as additional nitrogen source enhanced OTC level to 298 mg g−1. Interestingly, OTC production by γ-45 mutant was insensitive to phosphate which opens the way to high OTC production even in medium containing phosphate necessary for optimal mycelia growth.  相似文献   

3.
Cyanobacteria blooms caused by species such as Microcystis have become commonplace in many freshwater ecosystems. Although phosphorus (P) typically limits the growth of freshwater phytoplankton populations, little is known regarding the molecular response of Microcystis to variation in P concentrations and sources. For this study, we examined genes involved in P acquisition in Microcystis including two high-affinity phosphate-binding proteins (pstS and sphX) and a putative alkaline phosphatase (phoX). Sequence analyses among ten clones of Microcystis aeruginosa and one clone of Microcystis wesenbergii indicates that these genes are present and conserved within the species, but perhaps not the genus, as phoX was not identified in M. wesenbergii. Experiments with clones of M. aeruginosa indicated that expression of these three genes was strongly upregulated (50- to 400-fold) under low inorganic P conditions and that the expression of phoX was correlated with alkaline phosphatase activity (p < 0.005). In contrast, cultures grown exclusively on high levels of organic phosphorus sources (adenosine 5′-monophosphate, β-glycerol phosphate, and d-glucose-6-phosphate) or under nitrogen-limited conditions displayed neither high levels of gene expression nor alkaline phosphatase activity. Since Microcystis dominates phytoplankton assemblages in summer when levels of inorganic P (Pi) are often low and/or dominate lakes with low Pi and high organic P, our findings suggest this cyanobacterium may rely on pstS, sphX, and phoX to efficiently transport Pi and exploit organic sources of P to form blooms.  相似文献   

4.
Metabolic flux analysis based on 13C-labeling experiments followed by the measurement of intracellular isotope distribution using both 2D NMR and GC-MS was carried out to investigate the effect of pyruvate kinase (pyk) gene knockout on the metabolism of Escherichia coli in continuous culture. In addition, the activities of 16 enzymes, and the concentrations of 5 intracellular metabolites, were measured as a function of time in batch culture as well as continuous culture. It was found that flux through phosphoenol pyruvate carboxylase and malic enzyme were up-regulated in the pykF mutant as compared with the wild type, and acetate formation was significantly reduced in the mutant. In addition, flux through the phosphofructose kinase pathway was reduced and that through the oxidative pentose phosphate (PP) pathway increased in the mutant. This was evidenced by the corresponding enzyme activities, and the increase in the concentrations of phosphoenol pyruvate, glucose-6-phosphate and 6-phosphogluconate, etc. It was also found for continuous cultivation that the enzyme activities of the oxidative PP and Entner-Doudoroff pathways increased as the dilution rate increased for the pykF mutant. To clarify the metabolism quantitatively, it was found to be quite important to integrate the information on intracellular metabolic flux distribution, enzyme activities and intracellular metabolite concentrations.  相似文献   

5.
The screening of 20,000 Saccharomyces cerevisiae random mutants to identify genes involved in the osmotic stress response yielded 14 mutants whose growth was poor in the presence of elevated concentrations of NaCl and glucose. Most of the mutant strains were more sensitive to NaCl than to glucose at the equivalent water activity (aw) and were classified as salt-sensitive rather than osmosensitive. These mutants fell into 11 genetic complementation groups and were designated osr1–osr11 (osmotic stress response). All mutations were recessive and showed a clear 2+ : 2 segregation of the salt-stress phenotype upon tetrad analysis when crossed to a wild-type strain. The complementation groups osr1, osr5 and osr11 were allelic to the genes PBS2, GPD1 and KAR3, respectively. Whereas intracellular and extracellular levels of glycerol increased in the wild-type strains when exposed to NaCl, all mutants demonstrated some increase in extracellular glycerol production upon salt stress, but a number of the mutants showed little or no increase in intracellular glycerol concentrations. The mutants had levels of glycerol-3-phosphate dehydrogenase, an enzyme induced by osmotic stress, either lower than or similar to those of the parent wild-type strain in the absence of osmotic stress. In the presence of NaCl, the increase in glycerol-3-phosphate dehydrogenase activity in the mutants did not match that of the parent wild-type strain. None of the mutants had defective ATPases or were sensitive to heat stress. It is evident from this study and from others that a wide spectrum of genes is involved in the osmotic stress response in S. cerevisiae. Received: 5 January 1998 / Accepted: 24 March 1998  相似文献   

6.
Spontaneous bleeding of sugar-rich sap from cambial-deep incisions in the bark of trunks was demonstrated for Eucalyptus globulus and other eucalypts across a range of localities and seasonal conditions in south-west Australia. High levels of sucrose and raffinose (up to 31% w/v total sugars) were present in the exudates, and upward and downward gradients in exudate sugar concentrations were recorded between samples obtained at different heights up trunks of E. globulus. The data indicated a phloem origin for the exudates, with source:sink pressure gradients driving translocation. Concentration ratios of sugars to amino acids were consistently lower in exudate from upper (distal) than basal regions of trunks, suggesting preferential partitioning of nitrogen upwards towards the trunk apex. A comparison of phloem and xylem sap composition from one plantation over a season showed nitrate in xylem but not phloem and substantial amounts of sodium, and high concentrations of chloride and sulphate relative to phosphate in xylem and phloem. Phloem sap sampled across a range of 29 contrasting plantations of E. globulus at peak stress (autumn) showed great inter-site variability in concentrations of amino acids, sulphur, sodium and certain trace elements and in C:N and Na:K ratios of sap. Carbon isotope ratios (δ13C) were strongly correlated with sugar concentrations of the sap samples from these and other plantations. Use of sap compositional attributes of phloem and δ13C values of translocated carbon is suggested for assessing the current nutritional condition and water status of E. globulus plantings. Received: 9 April 1998 / Accepted: 20 August 1998  相似文献   

7.
Prunella vulgaris was inoculated with different arbuscular mycorrhizal fungi (AMF) and grown at two concentrations of CO2 (ambient, 350 μl l−1, and elevated, 600 μl l−1) to test whether a plants response to elevated CO2 is dependent on the species of AMF colonizing the roots. Using compartments accessible only to AMF hyphae but not to roots, we also tested whether elevated CO2 affects the growth of external AMF hyphae. Plant biomass was significantly greater at elevated than at ambient CO2; the biomass of the root system, for example, increased by a factor of 2. The colonization of AMF inside the root remained constant, indicating that the total AMF inside the root system also increased by a factor of 2. The length of external AMF hyphae at elevated CO2 was up to 5 times that at ambient CO2, indicating that elevated CO2 promoted allocation of AMF biomass to the external hyphae. The concentration and content of phosphorus in the stolons differed significantly between ambient and elevated CO2 but this resulted in either an increase or a decrease, according to which AMF isolate occupied the roots. We hypothesized that an increase in external hyphal growth at elevated CO2 would result in increased P acquistion by the plant. To test this we supplied phosphorus, in a compartment only accessible to AMF hyphae. Plants did not acquire more phosphorus at elevated CO2 when phosphorus was added to this compartment. Large increases in AMF hyphal growth could, however, play a significant role in the movement of fixed carbon to the soil and increase soil aggregation. Received: 28 March 1998 / Accepted: 27 August 1998  相似文献   

8.
Changes in the phosphorus-containing metabolites were monitored by 31P nuclear magnetic resonance in the developing embryos of Clarias batrachus. Phosphomonoester, yolk phosphoprotein, phosphocreatine, ATP, and inorganic phosphate (Pi) were consistently observed in all the developmental stages of C. batrachus. None of these phosphometabolites exhibited any significant change in their concentration up to the blastula stage, whereas distinct decrease in all except inorganic phosphate was observed in the fry stage. Concomitantly an increase in the concentration of inorganic phosphate was observed. Further, from the resonance positions of α, β, and γ phosphate groups of ATP, it was evident that the ATP molecules in vivo were liganded either to Ca2+ or Mg2+. This study also revealed that the intracellular pH of the developing embryos was approximately 7.05 up to the gastrula stage, after which it decreased in the fry stage to 6.98 units. Received August 10, 1998; accepted November 3, 1998.  相似文献   

9.
Chlorophyll a and nutrient concentrations along with temperature and salinity values were measured at 22 CTD stations along a 735-km transect running to the northwest of the island of South Georgia, Southern Ocean. Measurements were repeated during five summer surveys (January and February 1994, January 1996, December 1996, January 1998) and one spring survey (October 1997). The transect sampled Sub-Antarctic Zone water in the north, Polar Frontal Zone water and Antarctic Zone water in the south. Chlorophyll a concentrations were lowest to the north of the transect and frequently high (up to 17 mg m−3) in the deep open ocean of the Antarctic Zone. Sub-surface peaks were measured in all zones and chlorophyll a was detectable to a depth of 150 m. There was a clear latitudinal temperature gradient in the near-surface waters (0–50 m), the warmest water occurring in the north (∼12 °C), and the coolest in the Antarctic Zone (∼2 °C). There was also a well-defined latitudinal gradient in summer near-surface silicate concentrations (∼2, 4, and 10 mmol m−3 in the Sub-Antarctic Zone, the Polar Frontal Zone and the Antarctic Zone, respectively), increasing to >20 mmol m−3 near South Georgia. Distinct differences in silicate concentrations were also evident in all three zones to a depth of 500 m. Near-surface nitrate and phosphate concentrations were relatively low to the north of the transect (∼14 and 1 mmol m−3, respectively) and higher in the Polar Frontal Zone and Antarctic Zone (∼18 and 1.4 mmol m−3, respectively). Ammonium and nitrite were restricted to the upper 200 m of the water column, and exhibited sub-surface concentration peaks, the lowest being in the Sub-Antarctic Zone (0.68 and 0.25 mmol m−3, respectively) and the highest in the Antarctic Zone (1.72 and 0.29 mmol m−3, respectively). Surface (∼6 m) spring nutrient measurements provided an indication of pre-bloom conditions; ammonium and nitrite concentrations were low (∼0.27 and 0.28 mmol m−3, respectively), while silicate, nitrate and phosphate concentrations were high and similar to previously measured winter values (e.g. ∼26, 23, 2 mmol m−3, respectively in the Antarctic Zone). Although the values measured were very variable, and there was some evidence of a seasonal growth progression, the chlorophyll a and nutrient distribution patterns were dominated by intercruise (interannual) factors. Approximate nutrient depletions (spring minus summer) appeared similar in the Polar Frontal Zone and Antarctic Zone for nitrate and phosphate, while silicate showed a marked latitudinal increase from north to south throughout the transect. Highest chlorophyll a concentrations coincided with the highest apparent silicate depletions over the deep ocean of the Antarctic Zone. In this area, relatively warm, easterly flowing Antarctic Circumpolar Current water meets cooler, westerly flowing water that is influenced by the Weddell-Scotia Confluence and is rich in nutrients, especially silicate. Accepted: 27 November 1999  相似文献   

10.
Changes of vacuolar pH in hair cells of young rice (Oryza sativa L.) and maize (Zea mays L.) roots were measured after ammonia application at various levels of external pH. After loading the pH-sensitive, fluorescent dye Oregon green 488 carboxylic acid 6-isomer into the vacuoles of root hairs, ratiometric pH data of high statistical significance were obtained from root hair populations comprising hundreds of cells. The pH of the vacuole at external pH 5.0 was 5.32 ± 0.08 (±SD, n= 15) and 5.41 ± 0.13 (±SD, n= 15) in rice and maize, respectively. A moderate external ammonia concentration of 2 mM led to vacuolar alkalisation at both, low (pH 5.0) and high (pH 7.0–9.0) external pH, presumably due to NH3 permeation into the vacuole. With increasing external pH, ammonia application did not cumulatively increase vacuolar pH. In rice, the increase in vacuolar pH ranged from 0.1–0.8 pH units; in maize a more constant increase of 0.5 pH units was observed. The vacuolar pH increase was efficiently depressed in rice (especially at high external pH), but not in maize. Inhibition of the tonoplast H+-ATPase by concanamycin A raised vacuolar pH and increased the ammonia-elicited vacuolar alkalisation in both species, proving that vacuolar H+-ATPase activity counters the ammonia-elicited alkalisation effect. However, even under conditions of vacuolar H+-ATPase inhibition, rice was still able to restore an ammonia-elicited pH increase. High vacuolar pH levels as found in maize under conditions of high NH3 influx may derive from inefficient cytosolic ammonia assimilation and tonoplast proton pumping. Thus, in maize, prolonged reduction of the proton gradient between the cytosol and the vacuole may play an important role in NH3 toxicity. Received: 12 September 1997 / Accepted: 19 January 1998  相似文献   

11.
The anaerobic performance of gpd1Δ and gpd2Δ mutants of Saccharomyces cerevisiae was characterized and compared to that of a wild-type strain under well-controlled conditions by using a high-performance bioreactor. There was a 40% reduction in glycerol level in the gpd2Δ mutant compared to the wild-type. Also the gpd1Δ mutant showed a slight decrease in glycerol formation but to a much lesser degree. As a consequence, ethanol formation in the gpd2Δ mutant was elevated by 13%. In terms of growth, the gpd1Δ mutant and the wild-type were indistinguishable. The gpd2Δ mutant, on the other hand, displayed an extended lag phase as well as a reduced growth rate under the exponential phase. Even though glycerol-3-phosphate dehydrogenase 2 (GPD2) is the important enzyme under anaerobic conditions it can, at least in part, be substituted by GPD1. This was indicated by the higher expression level of GPD1 in the gpd2Δ mutant compared to the wild type. These results also show that the cells are able to cope and maintain redox balance under anaerobic conditions even if glycerol formation is substantially reduced, as observed in the gpd2Δ mutant. One obvious way of solving the redox problem would be to make a biomass containing less protein, since most of the excess NADH originates from amino acid biosynthesis. However, the gpd2Δ mutant did not show any decrease in the protein content of the biomass. Received: 16 February 1998 / Received revision: 16 March 1998 / Accepted: 1 June 1998  相似文献   

12.
In a search for components involved in Mn2+ homeostasis in the budding yeast Saccharomyces cerevisiae, we isolated a mutant with modifications in Mn2+ transport. The mutation was found to be located in HIP1, a gene known to encode a high-affinity permease for histidine. The mutation, designated hip1–272, caused a frameshift that resulted in a stop codon at position 816 of the 1812-bp ORF. This mutation led to Mn2+ resistance, whereas the corresponding null mutation did not. Both hip1–272 cells and the null mutant exhibited low tolerance to divalent cations such as Co2+, Ni2+, Zn2+, and Cu2+. The Mn2+ phenotype was not influenced by supplementary histidine in either mutant, whereas the sensitivity to other divalent cations was alleviated by the addition of histidine. The cellular Mn2+ content of the hip1–272 mutant was lower than that of wild type or null mutant, due to increased rates of Mn2+ efflux. We propose that Hip1p is involved in Mn2+ transport, carrying out a function related to Mn2+ export. Received: 9 January 1998 / Accepted: 4 May 1998  相似文献   

13.
In this work, a BHK21 clone producing a recombinant antibody/cytokine fusion protein was used to study the dependence of cell metabolism on the glucose and glutamine levels in the culture medium. Results obtained indicate that both glucose and glutamine consumptions show a Michaelis-Menten dependence on glucose and glutamine concentrations respectively. A similar dependence is also observed for lactate and ammonia productions. The estimated value of the Michaelis constant for the dependence of lactate production on glucose (K Glc Lac) was 1.4 ± 0.1 mM and for the dependence of ammonia production on glutamine (K Gln Amm) was 0.25 ± 0.11 mM and 0.10 ± 0.03 mM, at glucose concentrations of 0.28 mM and 5.6 mM respectively. At very low glucose concentrations, the glucose to lactate yield decreased markedly, showing a metabolic shift towards lower lactate production. This␣metabolic shift was also confirmed by the significant increase in the specific oxygen consumption rate also observed at low glucose concentrations. Although it was␣highly dependent on glucose concentration, the oxygen consumption also increased with the increase in␣glutamine concentration. At very low glutamine concentrations, the glutamine to ammonia yield increased, showing a more efficient glutamine metabolism. Received: 21 August 1998 / Received revision: 11 November 1998 / Accepted: 17 January 1999  相似文献   

14.
Escherichia coli is able to grow at increased NaCl concentrations that provides an increase in medium osmolarity and cellular Na+ content. The addition of 0.5 M NaCl to the growth medium led to a substantial decrease in growth rate during anaerobic fermentation on glucose at pH of 7.3 or 9.0. This inhibitory effect of 0.5 M NaCl was at least threefold stronger than that seen under aerobic conditions, and stronger than equivalent concentrations of sucrose, KCl, or potassium glutamate under anaerobic conditions. Further, proline was found to stimulate the growth rate at high NaCl concentration under anaerobic and to a lesser extent, under aerobic conditions. Wild-type cells and mutants having a functional NhaA or ChaA alone grown under anaerobic conditions at pH 9.0 and subsequently loaded with Na+ were shown to extrude Na+ at a rate that were lower than the extrusion rate reported for appropriate aerobically grown bacteria (Sakuma et al. [1998] Biochim Biophys Acta 1363:231–237). The growth rate and Na+ extrusion activity of a mutant having a functional NhaA were similar to that of the wild type and higher than that of a mutant with an active ChaA. A mutant defective for both NhaA and ChaA was unable to grow under anaerobic conditions at pH 9.0 in the presence of 0.15 M Na+. It is suggested that the observed strong inhibition in the growth of E. coli during fermentation under anaerobic conditions in the presence of increased NaCl concentration could be due to a decrease in Na+ extrusion activity. Received: 18 September 1998 / Accepted: 2 April 1999  相似文献   

15.
The mechanisms for acquisition of dissolved inorganic carbon (DIC) in the red macroalga Gracilaria gaditana nom. prov. have been investigated. The capacity for HCO3 use by an extracellular carbonic anhydrase (CA; EC 4.2.1.1), and by an anion exchanger with similar properties to that of red blood cells (AE1), has been quantified. It was illustrated by comparing O2 evolution rates with those theoretically supported by CO2, as well as by photosynthesis-pH curves. Both external and internal CA, and a direct uptake were involved in HCO3 use, since photosynthesis and pH evolution were affected by acetazolamide, 6-ethoxyzolamide (inhibitors of external and total CA, respectively) and 4,4′-diisothiocyanatostilbene-2,2′-disulfonate, (DIDS; an inhibitor of HCO3 exchanger protein). The activity of the external CA was detected by a potentiometric method and by an alternative method based on the study of O2 evolution after addition of CO2 and acetazolamide. The latter method showed a residual photosynthetic rate due to direct HCO3 use. Inhibitors caused a reduction in the pH compensation points in pH-drift experiments. The CO2 compensation points for photosynthesis increased when the inhibitors were applied, indicating a suppresion of the pathways involved in the carbon-concentrating mechanism. The net photosynthesis rates as a function of DIC concentration displayed a biphasic pattern that could be supported by the occurrence of the two mechanisms of HCO3 use. The potential contribution to HCO3 acquisition by the DIDS-sensitive mechanism was higher after culturing at a high pH. Our results suggest that the HCO3 use by Gracilaria gaditana is carried out by the two DIC uptake mechanisms. These operate simultaneously with different affinities for DIC, the indirect HCO3 use by an external CA activity being the main pathway. The presence of a carbon-concentrating mechanism confers eco-physiological advantages in a fluctuating ecosystem subjected daily to high pHs and low DIC concentrations. Received: 3 July 1998 / Accepted: 30 November 1998  相似文献   

16.
The N-succinyl-ll-diaminopimelate desuccinylase gene (dapE) in the four-step succinylase branch of the l-lysine biosynthetic pathway of Corynebacterium glutamicum was disrupted via marker-exchange mutagenesis to create a mutant strain that uses only the one-step meso-diaminopimelate dehydrogenase branch to overproduce lysine. This mutant strain grew and utilized glucose from minimal medium at the same rate as the parental strain. In addition, the dapE  strain produced lysine at the same rate as its parent strain. Transformation of the parental and dapE  strains with the amplified meso-diaminopimelate dehydrogenase gene (ddh) on a plasmid did not affect lysine production in either strain, despite an eightfold amplification of the activity of the enzyme. These results indicate that the four-step succinylase pathway is dispensable for lysine overproduction in shake-flask culture. In addition, the one-step meso-diaminopimelate dehydrogenase pathway does not limit lysine flux in Corynebacterium under these conditions. Received: 20 May 1998 / Received revision: 12 August 1998 / Accepted: 3 September 1998  相似文献   

17.
In an experiment with native maize roots depending on different phosphorus concentration in the external solution (0.001 … 50 mM P), the multiphasic character of the kinetics of phosphate uptake has been stated. The single phases are characterized by the different values of Km and Vmax. In the wide range of concentrations the isotherm of the phosphate uptake has five evident phases. The character of kinetics for the uptake of phosphate is analogical to the kinetics of the enzymatic reactions described by the Michaelis-Menten equation. On the other hand the linear dependence for the inactivated root was determined,i.e. the uptake of phosphate versus different phosphorus concentration in the external solution. The graphic representation of the logarithmic values for the phosphorus taken up versus the different phosphorus concentration in the external solution gives the biphasic course including concentration less than 1.0 mM P and more than 1.0 mM P. Within the framework of the concentration range the following values of Vmax, Km and ϕin were calculated under the conditions if the concentration of phosphorus is less than 1.0mMP: Vmax = 1.705 μmol P × g-1h-1, Km = 0.057 mM P and ϕin = 0.83,i.e. if the concentration of phosphorus is more than 1.0mM P: Vmax = 40 μmol P × g-1 h-1, Km = 16.66 mM and ϕin = 20. According to these results, the phosphate concentration in the external solution influences the activity of the transport mechanisms concerning their conformative changes which discretely change their working regime of membrane transport. This is also demonstrated in the change of values Vmax, Km and ϕin.  相似文献   

18.
Corynebacterium ammoniagenes N424 was metabolically modified to isolate overproducers of deoxycytidine. Inosine auxotrophy (ino) was initially introduced to prevent the flow of PRPP (phosphoribosyl pyrophosphate) into the purine biosynthetic pathway by random mutagenesis using N-methyl-N′-nitro-N-nitrosoguanidine. Following that, mutants possessing hydroxyurea resistance (HUr) were isolated to increase the activity of ribonucleoside diphosphate reductase, which catalyzes the reduction of ribonucleoside diphosphate to deoxyribonucleoside diphosphate. Then, in order to block the flow of dCTP into the TMP biosynthetic pathway via dUTP, thymine auxotrophy (thy) was introduced into the mutant IH30 with ino and Hlf. The resulting mutant IM7, possessing the characteristics of ino, HUr, and thy, was deficient in dCTP deaminase and produced significantly higher amounts of deoxycytidine (81.3 mg/L) compared to its mother strain IH30 (6.2 mg/L). Deoxycytidine productivity was further enhanced by isolating the mutant IU19, which was resistant to 5-fluorouracil, an inhibitor of carbamoyl phosphate synthase. This enzyme catalyzed the synthesis of carbamoyl phosphate from glutamine, HCO3, and ATP. 5-Fluorouracil also inhibited aspartate trans-carbamoylase, catalyzeing the condensation of carbamoyl phosphate and aspartate. Finally, 5-fluorocytosine resistance (FCr) was introduced into the mutant strain IU19 to relieve the repression caused by accumulation of pyrimidine nucleosides. The mutant strain IC14-C6 possessing all the five characteristics described above produced 226.3 mg/L of deoxycytidine, which was at least 2,000 fold higher compared to the wild type, and accumulated only a negligible amount of other pyrimidines under shake flask fermentation.  相似文献   

19.
Recombinant Escherichia coli strain GCSC 6576, harboring a high-copy-number plasmid containing the Ralstonia eutropha genes for polyhydroxyalkanoate (PHA) synthesis and the E. coli ftsZ gene, was employed to produce poly-(3-hydroxybutyrate) (PHB) from whey. pH-stat fed-batch fermentation, using whey powder as the nutrient feed, produced cellular dry weight and PHB concentrations of 109 g l−1 and 50 g l−1 respectively in 47 h. When concentrated whey solution containing 210 g l−1 lactose was used as the nutrient feed, cellular dry weight and PHB concentrations of 87 g l−1 and 69 g l−1 respectively could be obtained in 49 h by pH-stat fed-batch culture. The PHB content was as high as 80% of the cellular dry weight. These results suggest that cost-effective production of PHB is possible by fed-batch culture of recombinant E. coli using concentrated whey solution as a substrate. Received: 19 December 1997 / Received revision: 17 March 1998 / Accepted: 20 March 1998  相似文献   

20.
A protocol for the isolation of intact plastids from two marine centric diatoms, Odontella sinensis (Greville) Grunow and Coscinodiscus granii Gough, has been worked out. The cells were broken in a Yeda Press, and the intact plastids were purified by centrifugation in Percoll gradients. Electron microscopy indicates that at least one of the four envelope membranes is present in the isolated plastids. The plastids are photosynthetically active as proven by CO2 fixation which was measured by light-dependent oxygen evolution. Rates up to 50 μmol O2 · (mg Chl)−1 · h−1, i.e. about 40% of the in vivo rate of photosynthesis were obtained. The inhibition of CO2 fixation by external phosphate and the ability of the plastids to reduce added 3-phosphoglycerate photosynthetically indicate the presence of a phosphate translocator in the envelope of the diatom plastids. Light-dependent O2 evolution upon addition of nitrite indicates the presence of nitrite reductase in these plastids. Purified envelope membranes of Odontella plastids analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis contain polypeptides similar to those of the envelope of higher-plant chloroplasts. However, there are additional bands present, which in part may be constituents of the two additional envelope membranes (“chloroplast endoplasmic reticulum”) and in part may represent additional components of the inner membranes. Received: 1 August 1997 / Accepted: 2 February 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号