首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arylisocyanates are important intermediates in the chemical industry. Amongst the main damage after low levels of isocyanate exposure are lung sensitization and asthma. Protein adducts of isocyanates might be involved in the aetiology of sensitization reactions. Blood protein adducts are used as dosimeters for modifications of macromolecules in the target organs where the disease develops. To develop methods for the quantitation of protein adducts we reacted 4 methylphenyl isocyanate 4MPI with the tripeptide valyl glycyl glycine and with single amino acids yielding N 4 methylphenyl carbamoyl L valyl glycyl glycine 4MPI Val Gly Gly , N 4 methylphenyl carbamoyl L valine 4MPI Val , N 4 methylphenyl carbamoyl L aspartic acid 4MPI Asp , N acetyl S 4 methylphenyl carbamoyl L cysteine 4MPI AcCys , N acetyl N 4 methylphenyl carbamoyl lysine 4MPI AcLys , N acetyl O 4 methylphenyl carbamoyl tyrosine 4MPI AcTyr and N acetyl O 4 methylphenyl carbamoyl D,L serine 4MPI AcSer . The hydrolysis of the adducts was tested under acidic and basic conditions, to obtain the maximum yield of 4 methylaniline 4MA . The isocyanates were hydrolysed for 1 h, 3h and 24h at 100 C with 6 M HCl in and or 0.1 M NaOH at room temperature, following methods applied for the analyses of biological samples of arylisocyanate exposed workers. In addition, we applied a new protocol: the adducts were hydrolyzed for 1-24 h in 0.3 M NaOH at 100 C. The hydrolysates were analysed using HPLC with UV detection and quantified against the internal standard, 4 fluoroaniline or 4 chloroaniline. 4MA was obtained with the best yields using 0.3M NaOH; after 24 h all amino acid adducts were cleaved under these conditions. Acid hydrolysis of 4MPI Val and 4MPI Asp yielded the respective hydantoins 3 4 methylphenyl 5 isopropyl 1,3 imidazoline 2,4 dione and 2 1 4 methylphenyl 2,5 dioxoperhydro 4 imidazolyl acetic acid. For future studies, we propose to hydrolyse biological samples with 0.3 M NaOH at 100 C to release the maximum amount of 4MA from the adducts. However, in biological samples from workers, hydrolysable adducts can also result from arylamine exposure. Therefore, we propose to analyse the N terminal adducts of isocyanates with blood protein to distinguish between arylamine and arylisocyanate exposure.  相似文献   

2.
Arylisocyanates are important intermediates in the chemical industry. Amongst the main damage after low levels of isocyanate exposure are lung sensitization and asthma. Protein adducts of isocyanates might be involved in the aetiology of sensitization reactions. Blood protein adducts are used as dosimeters for modifications of macromolecules in the target organs where the disease develops. To develop methods for the quantitation of protein adducts we reacted 4 methylphenyl isocyanate 4MPI with the tripeptide valyl glycyl glycine and with single amino acids yielding N 4 methylphenyl carbamoyl L valyl glycyl glycine 4MPI Val Gly Gly, N 4 methylphenyl carbamoyl L valine 4MPI Val, N 4 methylphenyl carbamoyl L aspartic acid 4MPI Asp, N acetyl S 4 methylphenyl carbamoyl L cysteine 4MPI AcCys, N acetyl N 4 methylphenyl carbamoyl lysine 4MPI AcLys, N acetyl O 4 methylphenyl carbamoyl tyrosine 4MPI AcTyr and N acetyl O 4 methylphenyl carbamoyl D,L serine 4MPI AcSer. The hydrolysis of the adducts was tested under acidic and basic conditions, to obtain the maximum yield of 4 methylaniline 4MA. The isocyanates were hydrolysed for 1 h, 3h and 24h at 100 C with 6 M HCl in and or 0.1 M NaOH at room temperature, following methods applied for the analyses of biological samples of arylisocyanate exposed workers. In addition, we applied a new protocol: the adducts were hydrolyzed for 1-24 h in 0.3 M NaOH at 100 C. The hydrolysates were analysed using HPLC with UV detection and quantified against the internal standard, 4 fluoroaniline or 4 chloroaniline. 4MA was obtained with the best yields using 0.3M NaOH; after 24 h all amino acid adducts were cleaved under these conditions. Acid hydrolysis of 4MPI Val and 4MPI Asp yielded the respective hydantoins 3 4 methylphenyl 5 isopropyl 1,3 imidazoline 2,4 dione and 2 1 4 methylphenyl 2,5 dioxoperhydro 4 imidazolyl acetic acid. For future studies, we propose to hydrolyse biological samples with 0.3 M NaOH at 100 C to release the maximum amount of 4MA from the adducts. However, in biological samples from workers, hydrolysable adducts can also result from arylamine exposure. Therefore, we propose to analyse the N terminal adducts of isocyanates with blood protein to distinguish between arylamine and arylisocyanate exposure.  相似文献   

3.
The dithiasuccinoyl (Dts)-protecting group for amino acids is revoved by thiols (2 equivalents) through the intermediacy of an open-chain carbamoyl disulfide. Starting materials, intermediates, and products can be separated from one another on the standard amino acid analyzer 0.9 × 54-cm column of sulfonated polystyrene resin with 0.2 n sodium citrate buffers. Compounds are detected with the standard ninhydrin-hydrindantin reagent because the hydrindantin acts as a reducing agent and the released amino acid reacts in situ with the ninhydrin to give a purple color. Elution times, integration constants, and the ratios of absorbances at 570 and 440 nm are tabulated. Quantitative conversion of dithiasuccinoyl amino acids to the parent amino acids can be achieved with 0.1 n sodium hydroxide, 0.01 m alcoholic sodium borohydride, 0.1 m triphenylphosphine or 2 m m tri-n-butylphosphine in dioxane-H2O (9:1) or water, and with a variety of thiols under various conditions. The chromatographic methodology is applicable to the determination of rate constants of the pseudo-first-order reductive deprotection of dithiasuccinoyl amino acids.  相似文献   

4.
Dimethylaminoazobenzene-thiohydantoins of amino acid can be quantitatively analyzed by high-pressure liquid chromatography at picomole level. As little as 5 to 10 pmol of dimethylaminoazobenzene-thiohydantoins of amino acid can easily be detected in the visible region (436 nm) against a stable baseline. Three amino acid pairs, namely glutamine and threonine, methionine and proline, and leucine and isoleucine, have not yet been separated. This new technique provides a sensitive and efficient tool for measuring the recovery of amino terminal amino acids using the dimethylaminoazobenzene-isothiocyanate method and the repetitive yield of sequence determination using the dimethylaminoazobenzene-isothiocyanate phenylisothiocyanate double-coupling method.  相似文献   

5.
A method which uses 1-naphthylisocyanate as an HPLC precolumn derivatization reagent for amino acid analysis is described. Derivatization is carried out by adding the isocyanate dissolved in dry acetone to a buffered amino acid solution followed by extraction of the excess reagent with cyclohexane. The resulting naphthylcarbamoyl amino acids are stable and highly fluorescent, with excitation maxima at 238 and 305 nm and an emission maximum at 385 nm, for most amino acids. Ultraviolet detection near 222 nm, the absorption maximum, can also be employed. HPLC procedures permitting the analysis of protein hydrolysates, brain extract, cerebrospinal fluid, and blood plasma are presented. The method is particularly suitable for auto-sampler procedures since samples can be derivatized and diluted in advance and stored at room temperature in the sampler while awaiting injection. Other advantages include high sensitivity, the possibility of recovering the derivatives from the column effluent, and the absence of a reagent peak in the chromatograms.  相似文献   

6.
Ligand-induced ultraviolet difference spectra have been determined for Escherichia coli ornithine transcarbamoylase. The most prominent feature of the spectra is an absorbance difference which resembles a single period of a sine wave spanning the 245-320 nm region with a maximum at approximately 270 nm and a minimum at around 295-300 nm. This broad absorbance difference is typical of a blue-shift 1La band of tryptophan. Superimposed on the broad band in the 275-310 nm region is a series of smaller, narrow peaks resulted from red-shifted 1Lb bands of tryptophan and tyrosine residues. At pH 8.5, only carbamoyl phosphate and its analog phosphonacetamide yield a large ultraviolet difference absorbance (approximately 1800 M-1 cm-1) when bound to the enzyme. The spectra obtained are essentially the same in lineshape to and 80% in intensity of that produced by the bisubstrate analogy, N-(phosphonacetyl)-L-ornithine. In contrast, inorganic phosphate, a product of the reaction, induces small protein absorbance changes (approximately 300 M-1 cm-1) mainly in the 275-310 nm range. When complexed to the free enzyme, L-ornithine yields a marginally discernible ultraviolet difference spectrum in the 275-310 nm region, and its analogs L-norvaline and L-citrulline provide no absorbance change. However, inorganic phosphate in combination with any of the L-amino acids produces a difference spectrum similar to that given by carbamoyl phosphate alone. Collectively, these spectra suggest that carbamoyl phosphate elicits an isomerization required for the formation of the ternary complex and are consistent with the compulsory ordered mechanism of the enzyme at pH 8.5 with carbamoyl phosphate being the first substrate bound. Below pH 8, there is a kinetically discernible amount of random binding, but ordered addition is still the preferred pathway (Wargnies B., Legrain, C., and Stalon, V. (1978) Eur J. Biochem. 89, 203-212). Reflecting this change, the difference absorbance of the enzyme bound with carbamoyl phosphate is also pH dependent. The 1La band in the carbamoyl phosphate difference spectrum diminishes by approximately 20% at low pH. The PALO-induced changes, however, are pH invariant suggesting that full extent of the induced-fit isomerization is always reached in the ternary complex.  相似文献   

7.
The characteristic absorption spectra of aromatic amino acids between 240 and 310 nm were used to identify tryptophan, tyrosine, and phenylalanine-containing peptides. In acidic solution, the absorption spectra of these amino acids exhibit minima or maxima at 255, 270, and 286 nm. Based on these characteristics, the content of the aromatic amino acid in peptide can be estimated. For this study, 2 nmol of tryptic peptides from human apolipoprotein A-1 was separated by high-performance liquid chromatography using a reverse-phase column. The peptide fragments were monitored by a photodiode-array spectrophotometer. This new approach offers a rapid, simple, sensitive, and direct identification of peptides containing aromatic amino acids. Those containing Trp, which may be of interest for DNA sequencing and important in sequence analysis of proteins, can be selectively purified using this technique.  相似文献   

8.
9.
D-Amino acids in food and biological samples labeled with R(-)- and S(+)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N, N-dimethylaminosulfonyl)-2,1,3-benzoxadiazoles (DBD-PyNCS) were separated by reversed-phase chromatography and detected fluorometrically at 550 nm (excitation at 460 nm). DL-Amino acids were efficiently labeled at 55 degrees C for 20 min in basic medium. The resulting thiocarbamoyl-amino acids were resolved by an isocratic elution using water:30% methanol in acetonitrile (72:28) containing 0.1% trifluoracetic acid as mobile phase for hydrophilic amino acids and gradient elutions using sodium acetate buffer (pH 5. 2)/acetonitrile as gradient solvent mixture for hydrophobic amino acids, respectively. The detection limits (S/N = 3) of DL-amino acids tested were in the range of 0.16-0.75 pmol. The proposed method was applied to determine the D-amino acid(s) in milk, cream, fermented dairy products (yogurt and yakult), tomato products (juice, puree, and catchup), fermented beverages (beer and red wine), and human urine. The existence of D-amino acid(s) was demonstrated in all the samples tested. Furthermore, the identification of the D-amino acid(s) was performed using both isomers of DBD-PyNCS and by on-line HPLC-electrospray ionization-MS.  相似文献   

10.
Calmodulin activates the skeletal muscle Ca(2+) release channel RYR1 at nm Ca(2+) concentrations and inhibits the channel at microm Ca(2+) concentrations. Using a deletion mutant of calmodulin, we demonstrate that amino acids 2-8 are required for high affinity binding of calmodulin to RYR1 at both nm and microm Ca(2+) concentrations and are required for maximum inhibition of the channel at microm Ca(2+) concentrations. In contrast, the addition of three amino acids to the N terminus of calmodulin increased the affinity for RYR1 at both nm and microm Ca(2+) concentrations, but destroyed its functional effects on RYR1 at nm Ca(2+). Using both full-length RYR1 and synthetic peptides, we demonstrate that the calmodulin-binding site on RYR1 is likely to be noncontiguous, with the C-terminal lobe of both apocalmodulin and Ca(2+)-calmodulin binding to amino acids between positions 3614 and 3643 and the N-terminal lobe binding at sites that are not proximal in the primary sequence. Ca(2+) binding to the C-terminal lobe of calmodulin converted it from an activator to an inhibitor, but an interaction with the N-terminal lobe was required for a maximum effect on RYR1. This interaction apparently depends on the native sequence or structure of the first few amino acids at the N terminus of calmodulin.  相似文献   

11.
4-Aminobutyrate: 2-oxoglutarate aminotransferase of Streptomyces griseus was purified to homogeneity on disc electrophoresis. The relative molecular mass of the enzyme was found to be 100 000 +/- 10 000 by a gel filtration method. The enzyme consists of two subunits identical in molecular mass (Mr 50 000 +/- 1000). The transaminase is composed of 486 amino acids/subunit containing 10 and 12 residues of half-cystine and methionine respectively. The NH2-terminal amino acid sequence of the enzyme was determined to be Thr-Ala-Phe-Pro-Gln. The enzyme exhibits absorption maxima at 278 nm, 340 nm and 415 nm with a molar absorption coefficient of 104 000, 11 400 and 7280 M-1 cm-1 respectively. The pyridoxal 5'-phosphate content was calculated to be 2 mol/mol enzyme. The enzyme has a maximum activity in the pH range of 7.5-8.5 and at 50 degrees C. The enzyme is stable at pH 6.0-10.0 and at temperatures up to 50 degrees C. Pyridoxal 5'-phosphate protects the enzyme from thermal inactivation. The enzyme catalyzes the transamination of omega-amino acids with 2-oxoglutarate; 4-aminobutyrate is the best amino donor. The Michaelis constants are 3.3 mM for 4-aminobutyrate and 8.3 mM for 2-oxoglutarate. Low activity was observed with beta-alanine. In addition to omega-amino acids the enzyme catalyzes transamination with ornithine and lysine; in both cases the D isomer is preferred. Carbonyl reagents and sulfhydryl reagents inhibit the enzyme activity. Chelating agents, non-substrate L and D-2-amino acids, and metal ions except cupric ion showed no effect on the enzyme activity.  相似文献   

12.
N‐carbamoyl‐amino‐acid amidohydrolase (also known as N‐carbamoylase) is the stereospecific enzyme responsible for the chirality of the D ‐ or L ‐amino acid obtained in the “Hydantoinase Process.” This process is based on the dynamic kinetic resolution of D ,L ‐5‐monosubstituted hydantoins. In this work, we have demonstrated the capability of a recombinant L ‐N‐carbamoylase from the thermophilic bacterium Geobacillus stearothermophilus CECT43 (BsLcar) to hydrolyze N‐acetyl and N‐formyl‐L ‐amino acids as well as the known N‐carbamoyl‐L ‐amino acids, thus proving its substrate promiscuity. BsLcar showed faster hydrolysis for N‐formyl‐L ‐amino acids than for N‐carbamoyl and N‐acetyl‐L ‐derivatives, with a catalytic efficiency (kcat/Km) of 8.58 × 105, 1.83 × 104, and 1.78 × 103 (s?1 M?1), respectively, for the three precursors of L ‐methionine. Optimum reaction conditions for BsLcar, using the three N‐substituted‐L ‐methionine substrates, were 65°C and pH 7.5. In all three cases, the metal ions Co2+, Mn2+, and Ni2+ greatly enhanced BsLcar activity, whereas metal‐chelating agents inhibited it, showing that BsLcar is a metalloenzyme. The Co2+‐dependent activity profile of the enzyme showed no detectable inhibition at high metal ion concentrations. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

13.
A rabbit cytochrome P450 which catalyzes the epoxidation of arachidonic acid to two of the four possible regioisomeric epoxyeicosatrienoic acid metabolites was purified from renal cortex. A small amount of the unresolved omega/omega-1 hydroxylated eicosatetraenoic acid products were also produced. The enzyme had a specific content of 8.4 nmol of P450/mg of protein and exhibited a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis after silver staining. Sequencing revealed a single NH2-terminal amino acid sequence with the first 20 residues identical to rabbit cytochrome P450 2C2. We suggest this enzyme be termed P450 2CAA (for arachidonic acid) until the complete sequence and substrate selectivity are established. Purified P450 2CAA was in the low spin state as evidenced by an absorption maximum at 415 nm; the reduced-carbonyl complex exhibited a maximum at 451 nm. The specific activity for metabolism of 7 microM arachidonic acid was 1.1 nmol of product formed/min/nmol of P450. About 75% of the metabolites were two of the four possible epoxyeicosatrienoic acids identified as the 11,12- and 14,15-epoxyeicosatrienoic acids by coelution with synthetic and commercial standards on reversed and normal-phase high pressure liquid chromatographic separations. The ratio of the 11,12- to 14,15-epoxyeicosatrienoic acids was 1.5:1. The purified enzyme exhibited no significant activity toward 7-ethoxyresorufin or progesterone, but demethylated aminopyrine and benzphetamine. Other fatty acids were also substrates for the enzyme. Oleic, linoleic, and lauric acids, all at about 10 microM, were metabolized at rates of 0.32, 0.72, and 0.73 nmol/min/nmol of P450, respectively. Monoclonal antibody that cross-reacts with P450 2C2 inhibited 63% of the microsomal epoxidation activity from renal cortex microsomes from phenobarbital-treated rabbits. The production of the epoxide metabolites of arachidonic acid suggests that P450 2CAA may have a significant role in arachidonic acid-mediated intra- and intercellular signalling pathways.  相似文献   

14.
15.
The interactions with DNA of tetrapeptide amides containing lysine at the N-terminal position and aromatic amino acids at the second and fourth positions (Ala at position three), 1-6, have been investigated by nmr, CD, and viscometric methods. Tetrapeptides with N-terminal lysine and a single aromatic amino acid, 7-10, were investigated as controls. Significant decreases in DNA viscosity occurred on addition of 7, with the aromatic group at the second position, but not with any of the other single aromatic amino acid peptides. All of the tetrapeptides with two aromatic groups caused DNA viscosity decreases which were two to three times larger than with 7. Peptides with p-nitrophenylalanine (p-NO2Phe) as the aromatic group were synthesized for nmr studies because of its simpler aromatic nmr spectrum relative to Phe. Large upfield shifts of the aromatic proton signals were obtained when the amino acid in the second position was L-p-NO2Phe, and the fourth position contained either p-NO2Phe or Phe. Such peptides also caused the largest DNA viscosity decreases on complex formation. Smaller upfield shifts of the aromatic signals were obtained when the amino acid in the second position was L-Phe or a D isomer of Phe or p-NO2Phe. With all peptides, larger upfield nmr shifts were obtained with heat-denatured, recooled DNA than with native DNA under the same conditions. As with nmr, CD results are quite different for the peptides with L and D amino acids at the second position. All of the results can be interpreted in terms of a model in which lysine interacts stereospecifically with the backbone in a DNA double helix and the aromatic group at the second position stacks strongly with the base pairs when the amino acid is an L isomer. The aromatic group at the fourth position can also interact with the base pairs, but primarily through a sideways stacking of the aromatic group with base pairs for either L or D isomers. Because of covalent constraints on the separation distance for the two aromatic groups in the tetrapeptides, they must stack on opposite sides of the same base pair in violation of the neighbor exclusion principle observed with classical intercalators. This stacking at the same base pair no doubt accounts for the larger viscosity decreases in DNA with the peptides containing two aromatic groups relative to those with a single aromatic group.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Summary Ornithine carbamoyl transferase and leucine aminotransferase of Neurospora crassa represent two of many amino acid synthetic enzymes which are regulated through cross-pathway (or general) amino acid control. In the wild-type strain both enzymes display derepressed activities if the growth medium is supplemented with high (mM range) concentrations of l-amino acids derived from branched pathways, i.e. the aspartate, pyruvate, glycerophosphate and aromatic families of amino acids. A cpc-1 mutant strain, impaired in cross-pathway regulation i.e. lacking the ability to derepress, shows delayed growth under such conditions. In the presence of glycine, homoserine and isoleucine various cpc-1 isolates do not grow at all. Derepression of the wild-type enzymes and the retarded growth of the mutant strain can be reversed if certain amino acids are present in the medium in addition to the inhibitory amino acids.  相似文献   

17.
An interesting phenomenon was observed that the existence of the intact cell membrane can enhance the D-amino acids production from D,L-5-substituted hydantoins by reacting with the whole cells of Agrobacterium radiobacter. Two intracellular enzymes were involved in the reaction process. The first enzyme D-hydantoinase converted hydantoins to carbamoyl derivatives which were further converted to D-amino acids by D-amidohydrolase. The amount of D-amino acids produced from hydantoins by the intact cells were 1.8–2.4 fold higher than the toluene treated cells. In addition, by using the intact cells the amount of D-amino acids produced from hydantoins was about 10 fold higher than that produced directly from carbamoyl derivatives. The relatively lower permeability of cell membrane to the reaction intermediate carbamoyl derivatives was confirmed by a simple mathematical model to be the main factor for the better performance of the intact cells for D-amino acid production. Besides, the low intracellular enzymes activities also contributed to the effect of intact cell membrane on enhancing the D-amino acid production.  相似文献   

18.
An enzymatic method for hydrolyzing bovine milk proteins was developed. Purified milk proteins (alpha-lactalbumin, beta-lactoglobulin, and beta-casein) were hydrolyzed in 0.1 M Hepes buffer (pH 7.5) containing pronase E, aminopeptidase M, and prolidase at 37 degrees C for 20 h. Free glutamine and other amino acids were derivatized with phenylisothiocyanate and separated using a C18 Pico-Tag column. Amino acids were eluted from the column with an aqueous sodium acetate-acetonitrile gradient with detection at 254 nm. Glutamine recoveries from hydrolyzed alpha-lactalbumin, beta-lactoglobulin, and beta-casein were 78 +/- 4, 98 +/- 3, and 101 +/- 3% of the theoretical values, respectively. The recoveries of most amino acids were comparable with those obtained using acid hydrolysis, except for the recoveries of proline and acidic amino acids. These peptide bonds appeared to be resistant to enzymatic hydrolysis and also to inhibit the hydrolysis of adjacent amino acids. Free glutamine was found to be very stable (97% recovery) under the enzymatic hydrolysis conditions.  相似文献   

19.
P A Der Garabedian 《Biochemistry》1986,25(19):5507-5512
A new enzyme that catalyzes the transamination of delta-aminovalerate with alpha-ketoglutarate was purified to homogeneity from adapted cells of Candida guilliermondii var. membranaefaciens. The relative molecular mass determined by gel filtration was estimated to be close to 118,000. The transaminase behaved as a dimer with two similar subunits in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has a maximum activity in the pH range of 7.8-8.5 and at 40 degrees C. alpha-Ketoglutarate and to a lesser extent pyridoxal 5'-phosphate were effective protecting agents toward temperature raising. The enzyme exhibits absorption maximum at 330 and 410 nm. The enzyme catalyzes the transamination between omega-amino acids and alpha-ketoglutarate. delta-Aminovaleric acid is the best amino donor. The Km values for delta-aminovalerate, alpha-ketoglutarate, and pyridoxal 5'-phosphate determined from the Lineweaver-Burk plot were 4.9 mM, 3.6 mM, and 22.7 microM, respectively. The inhibitory effect of various amino acids analogues on the transamination reaction between delta-aminovalerate and alpha-ketoglutarate was studied, and Ki values were determined.  相似文献   

20.
Seventeen DL-amino acids labeled with a fluorescent chiral labeling reagent, R(-)-4-(3-isothiocyanatopyrrolidin-1-yl)-7-(N, N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole (R(-)-DBD-PyNCS), were separated by reversed-phase chromatography and detected fluorometrically at 550 nm (excitation at 460 nm). The reagent reacted with amino functional group in dl-amino acids under basic medium. The thiocarbamoyl derivatives were converted to thiohydantoin via thiazolinone in trifluoroacetic acid (TFA) solution. The epimerization ratios during the reaction of the cyclization were less than 37% in all dl-amino acids tested. The resulting thiohydantoin derivatives of individual dl-amino acids were completely separated with isocratic elutions using acidic mobile phase involving 0.1% TFA. The separations of the thiohydantoins yielded from acidic, basic, neutral, hydroxyl, and aromatic amino acids were good enough for the identification of dl-amino acid. The method using the reagent was adopted to identification of dl-amino acid sequences in eight peptides. The separation and identification of the thiohydantoin derivatives liberated from the peptides labeled were performed by the isocratic elutions. The applicability of the proposed procedure to sequential analysis of peptide was demonstrated with [D-Ala(2)]-leucine enkephalin, [D-Ala(2)]-deltorphin II, d-Phe-Met-Arg-Phe-amide, and Phe-D-Met-Arg-Phe-amide. D-Ala, D-Phe, and D-Met in the peptides were positively identified with the proposed procedures. [L-Ala(2)]-leucine enkephalin, beta-lipotropin, Asp-Ser-Asp-Pro-Arg, and Pro-Asp-Val-Asp-His-Val-Phe-Leu-Arg-Phe-amide were also analyzed as the references without D-amino acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号