首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The muscarinic agonist, carbachol (CCh), was shown to stimulate the production of inositol phosphates (IP) in isolated cells from rabbit fundic mucosa. This stimulatory effect was time- and dose-dependent: EC50 values for IP1, IP2 and IP3 accumulation were not statistically different. The mean value was 30 +/- 8 microM (n = 6). The corresponding maximal stimulation (% of basal value) observed after 20 min incubation in the presence of 100 microM CCh was 160 +/- 15%. CCh-induced IP accumulation was abolished by atropine (Ki = 0.32 +/- 0.18 nM (n = 3)). The CCh concentrations leading to half-maximal inhibition of N-[3H]methylscopolamine binding and half-maximal IP accumulation were similar. The half-maximal value for CCh-induced aminopyrine accumulation was 8-times lower. These results indicate that IP3-mediated mobilization of intracellular Ca2+ might be involved in CCh-induced acid secretion by parietal cells.  相似文献   

2.
The receptor agonist-mediated hydrolysis of phosphoinositides and production of prostacyclin were studied in murine cerebral endothelial cells (MCEC). Of 11 neurotransmitters and neuromodulators examined, carbachol, noradrenaline (NE), bradykinin, and thrombin significantly increased 3H-inositol phosphate accumulation in the presence of LiCl (20 mM). The maximal stimulation of [3H]inositol monophosphate ([3H]IP1) reached approximately 11, 11, seven, and four times the basal levels for carbachol, NE, bradykinin, and thrombin, respectively. The EC50 values of IP1 accumulation for carbachol and NE were 34 and 0.16 microM, respectively. The muscarinic antagonists, atropine and pirenzepine, blocked the carbachol-induced IP1 accumulation with Ki values of 0.3 and 30 nM, respectively. The adrenergic antagonist, prazosin, blocked NE-induced IP1 accumulation with a Ki of 0.1 nM. The calcium ionophore A23187, histamine, glutamate, vasopressin, serotonin, platelet activating factor, and substance P did not stimulate IP1 accumulation. A23187, bradykinin, and thrombin stimulated prostacyclin release to approximately four, four, and two times the basal levels, respectively, whereas carbachol and NE had little effect upon prostacyclin release. These results suggest that the activation of phospholipase C and of phospholipase A2 in MCEC are regulated separately.  相似文献   

3.
Receptor-stimulated hydrolysis of inositol phospholipids was studied in atrial and ventricular myocytes isolated from guinea-pigs. Membrane phospholipids were labelled with [3H] inositol and their conversion to [3H] labelled inositol phosphate was measured in the presence of Li+ (10 mM). In the absence of added stimulatory hormones or neurotransmitters, little inositol phosphate accumulation was observed. Acetylcholine and carbachol stimulated inositol phosphate accumulation with a maximum of more than 12 times the unstimulated values in atrial myocytes and 7 times in ventricular myocytes. The EC50 values and 95% confidence limits for acetylcholine and carbachol were 0.9 microM (0.2 - 5.3) and 8.8 microM (6.3 - 11.8) in atria and 0.6 M (0.5 - 0.8) and 10.0 M (1.8 - 55.9) in ventricles, respectively. Oxotremorine was a partial agonist in stimulating inositol phosphate accumulation in both atrial and ventricular myocytes. The vasoactive peptides angiotensin II and vasopressin also stimulated inositol phosphate accumulation but the maximum effect was lower than that mediated through muscarinic receptors. However, the adenosine analogues, L-N6-phenylisopropyladenosine and 5'N-ethylcarboxamidoadenosine which, like muscarinic agonists depress cardiac contractility, did not affect inositol phosphate accumulation at concentrations up to 10(-4)M.  相似文献   

4.
Histamine-stimulated accumulation of [3H]inositol monophosphate ([3H]IP1) in lithium-treated slices of rat cerebral cortex was inhibited by gamma-aminobutyric acid (GABA) (IC50 0.30 +/- 0.03 mM). The maximum level of inhibition was 69 +/- 2%. GABA alone caused a small stimulation of basal accumulation of [3H]IP1. The inhibitory action of GABA on the response to histamine was mimicked by the GABAB agonist (-)-baclofen, IC50 0.69 +/- 0.04 microM, which was 430-fold more potent as an inhibitor than the (+)-isomer. (-)-Baclofen also inhibited histamine-induced formation of [3H]inositol bisphosphate ([3H]IP2) and [3H] inositol trisphosphate ([3H]IP3). Inhibition curves for GABA and for (-)-and and (+)-baclofen had Hill coefficients greater than unity. (-)-Baclofen, at concentrations that caused inhibition of histamine-induced [3H]IP1 accumulation, did not alter the basal level of [3H]IP1 or the incorporation of [3H]inositol into total inositol phospholipids. Isoguvacine, a GABAA agonist, had no effect on either the histamine-stimulated or basal accumulation of [3H]IP1. GABA had no effect on carbachol-stimulated [3H]IP1 formation.  相似文献   

5.
S Marc  D Leiber  S Harbon 《FEBS letters》1986,201(1):9-14
In the guinea pig myometrium prelabelled with myo-[2-3H]inositol, carbachol and oxytocin enhanced a concentration-dependent and rapid release of IP3 which preceded that of IP2 and IP1. The specific receptor-mediated phospholipase C activation degrading PIP2 to IP3 did not require the presence of extracellular Ca2+. The ionophore A23187 as well as K+ depolarization failed to increase inositol phosphate accumulation. It is proposed that IP3 could have a role in the contraction of uterine smooth muscle elicited by the activation of muscarinic as well as of oxytocin receptors.  相似文献   

6.
The lifetime of inositol 1,4,5-trisphosphate in single cells   总被引:4,自引:0,他引:4       下载免费PDF全文
In many eukaryotic cell types, receptor activation leads to the formation of inositol 1,4,5-trisphosphate (IP3) which causes calcium ions (Ca) to be released from internal stores. Ca release was observed in response to the muscarinic agonist carbachol by fura-2 imaging of N1E-115 neuroblastoma cells. Ca release followed receptor activation after a latency of 0.4 to 20 s. Latency was not caused by Ca feedback on IP3 receptors, but rather by IP3 accumulation to a threshold for release. The dependence of latency on carbachol dose was fitted to a model in which IP3 synthesis and degradation compete, resulting in gradual accumulation to a threshold level at which Ca release becomes regenerative. This analysis gave degradation rate constants of IP3 in single cells ranging from 0 to 0.284 s-1 (0.058 +/- 0.067 s-1 SD, 53 cells) and a mean IP3 lifetime of 9.2 +/- 2.2 s. IP3 degradation was also measured directly with biochemical methods. This gave a half life of 9 +/- 2 s. The rate of IP3 degradation sets the time frame over which IP3 accumulations are integrated as input signals. IP3 levels are also filtered over time, and on average, large-amplitude oscillations in IP3 in these cells cannot occur with period < 10 s.  相似文献   

7.
The present studies were conducted to determine the effects of gonadotropins (LH and hCG) and prostaglandin F2a (PGF2a) on the production of "second messengers" and progesterone synthesis in purified preparations of bovine small luteal cells. Corpora lutea were removed from heifers during the luteal phase of the normal estrous cycle. Small luteal cells were isolated by unit-gravity sedimentation and were 95-99% pure. LH provoked rapid and sustained increases in the levels of [3H]inositol mono-, bis-, and trisphosphates (IP, IP2, IP3, respectively), cAMP and progesterone in small luteal cells. LiCl (10 mM) enhanced inositol phosphate accumulation in response to LH but had no effect on LH-stimulated cAMP or progesterone accumulation. Time course studies revealed that LH-induced increases in IP3 and cAMP occurred simultaneously and preceded the increases in progesterone secretion. Similar dose-response relationships were observed for inositol phosphate and cAMP accumulation with maximal increases observed with 1-10 micrograms/ml of LH. Progesterone accumulation was maximal at 1-10 ng/ml of LH. LH (1 microgram/ml) and hCG (20 IU/ml) provoked similar increases in inositol phosphate, cAMP and progesterone accumulation in small luteal cells. 8-Bromo-cAMP (2.5 mM) and forskolin (1 microM) increased progesterone synthesis but did not increase inositol phosphate accumulation in 30 min incubations. PGF2a (1 microM) was more effective than LH (1 microgram/ml) at stimulating increases in inositol phosphate accumulation (4.4-fold vs 2.2-fold increase for PGF2a and LH, respectively). The combined effects of LH and PGF2a on accumulation of inositol phosphates were slightly greater than the effects of PGF2a alone. In 30 min incubations, PGF2a had no effect on cAMP accumulation and provoked small increases in progesterone secretion. Additionally, PGF2a treatment had no significant effect on LH-induced cAMP or progesterone accumulation in 30 min incubations of small luteal cells. These findings provide the first evidence that gonadotropins stimulate the cAMP and IP3-diacylglycerol transmembrane signalling systems in bovine small luteal cells. PGF2a stimulated phospholipase C activity in small cells but did not reduce LH-stimulated cAMP or progesterone accumulation. These results also demonstrate that induction of functional luteolysis in vitro requires more than the activation of the phospholipase C-IP3/calcium and -diacylglycerol/protein kinase C transmembrane signalling system.  相似文献   

8.
Contractile responses to carbachol of tracheal segments isolated (i) from rats made diabetic 4 months prior by a single intravenous injection (50 mg/kg) of streptozotocin (group B), and (ii) from diabetic rats that had been treated during the same period with a daily dose (2-4 U/animal) of long-acting insulin (group C) were compared with the contractile responses of trachea isolated from age-matched control animals (group A). Tracheal segments from group B were significantly more responsive to carbachol than those from group A or C at low, but not at high carbachol concentrations. Carbachol pD2 values were higher in group B (6.85 +/- 0.05) than in groups A (6.46 +/- 0.07) or C (6.37 +/- 0.06), but were not significantly different between groups A and C. These data indicate that diabetes induces a supersensitivity to carbachol in airway smooth muscles, possibly related to a diabetes-induced vagal autonomic neuropathy.  相似文献   

9.
The effects of glutamate, NMDA and quisqualate on carbachol-and norepinephrine-elicited formation of inositol phosphate (IP) were evaluated in slices prepared from the cerebral cortex of 3-and 24-month Sprague-Dawley rats. Glutamate, NMDA, and quisqualate antagonized the IP response to carbachol in a concentration-dependent fashion. This antagonism was more pronounced in aged than in young rats, both for glutamate (IC5O 0.114 and 0.210 mM) and NMDA (IC5O 0.0029 and 0.127 mM), but not for quisqualate. Glutamate (but not NMDA) also antagonized in a concentration-dependent fashion the IP response to norepinephrine, IC50s were 0.061 and 0.126 mM for aged and young rats, respectively; quisqualate had an inhibitory effect only at 1 mM concentration in the two age-groups, while in aged rats some stimulatory effect was present at 0.1 mM concentration. Glutamate, NMDA and quisqualate (1 mM) did not affect basal IP accumulation in either young or aged rats; quisqualate, however, at 0.1 mM concentration had some stimulatory effect, more pronounced in aged rats. This effect was probably responsible for the biphasic effect of quisqualate in this age-group. The most important finding consists of the demonstration of an age-related increase in the inhibitory effects of NMDA on carbachol-induced IP accumulation. This implies an altered modulation of cholinergic post-receptor mechanisms by glutamatergic mechanisms.  相似文献   

10.
The following studies were conducted to determine whether luteinizing hormone (LH), a hormone which increases cellular levels of cyclic AMP, also provokes increases in 'second messengers' derived from inositol lipid metabolism (i.e. inositol phosphates and diacylglycerol). Rat granulosa cells isolated from mature Graafian follicles were prelabelled for 3 h with myo-[2-3H]inositol. LH provoked rapid (5 min) and sustained (up to 60 min) increases in the levels of inositol mono-, bis, and trisphosphates (IP, IP2 and IP3, respectively). Time course studies revealed that IP3 was formed more rapidly than IP2 and IP following LH treatment. The response to LH was concentration-dependent with maximal increases at LH concentrations of 1 microgram/ml. LiCl (2-40 mM) enhanced the LH-provoked accumulation of all [3H]inositol phosphates, presumably by inhibiting the action of inositol phosphate phosphatases. The effectiveness of LH, however, was dependent on the concentration of lithium employed; maximal increases in IP were observed at 10 mM-LiCl, whereas maximal increases in IP2 and IP3 were observed at 20 mM- and 40 mM-LiCl, respectively. The stimulatory effects of LH on inositol phosphate and progesterone accumulation were also compared with changes in cyclic nucleotide levels. LH rapidly increased levels of inositol phosphates, progesterone and cyclic AMP, but transiently reduced levels of cyclic GMP. These results demonstrate that LH increases both cyclic AMP and inositol trisphosphate (and presumably diacylglycerol) in rat granulosa cells. Our findings suggest that two messenger systems exist to mediate the action of LH in granulosa cells.  相似文献   

11.
The ability of tricyclic antidepressants, monoamine oxidase inhibitors, mianserin and ouabain to stimulate hydrolysis of inositol phosphates was examined in rat cerebral cortex slices using a direct assay which involves labelling with [3H]inositol and assaying [3H]inositol phosphates in the presence of lithium. Desimipramine, imipramine, chlorimipramine, mianserin, and ouabain stimulated [3H]inositol phosphate accumulation in a concentration-dependent manner. The monoamine oxidase inhibitors, pargyline and nialamide were without effect. The stimulation of [3H]inositol phosphate accumulation caused by the various substances was not blocked by the antagonists prazosin, ketanserin, atropine, or mepyramine. In contrast, the antagonists prazosin, ketanserin, atropine and mepyramine selectively blocked stimulation of [3H]inositol phosphate accumulation caused by noradrenaline, serotonin, carbachol and histamine respectively. When desimipramine was substituted for lithium in the assay procedure, carbachol was ineffectual in stimulating [3H]inositol phosphate accumulation. In these experiments the control (unstimulated) values were much higher than in the normal (when lithium is present) assay procedure. Desimipramine is quite effective in stimulating [3H]inositol phosphate accumulation either in the presence or absence of lithium in the incubation medium. This is not the case for carbachol where it was essential to have lithium in the incubation medium in order to obtain a stimulation of [3H]inositol phosphate accumulation. Furthermore, in the case of carbachol stimulation, most of the radioactivity was associated with a peak corresponding to inositol monophosphate, while for desimipramine stimulation two clear peaks corresponding to inositol monophosphate and inositol bisphosphate were apparent.  相似文献   

12.
Smooth muscle cells (SMC) from human bronchi were isolated by elastase treatment, subcultured, and characterized by their positive reaction with a monoclonal antibody against alpha-smooth muscle actin (alpha SMA). In each cell line tested, at least 95% of the cells were positively stained. The functional properties of these cells were examined by measuring the metabolism of inositol phosphates (IPs). For that purpose, cells were incubated for 3 days before reaching confluency in the presence of myo-[3H]inositol in order to label the phosphoinositide pool, and the various [3H]IPs were separated by HPLC on a SAX column with a phosphate gradient. IP1 isomers were separated in three peaks; IP2, IP3, IP4, IP5 and IP6 (phytic acid) were each eluted as single peaks. The identity of the [3H]peaks was verified with corresponding [3H]IP standards. The accumulation of [3H]IPs was measured by incubating cells up to 30 min in the presence of 10 mM LiCl, with or without a bronchoconstrictor agent (carbachol, histamine, PGF2 alpha). Histamine, 10(-4) M, elicited a four times larger IP accumulation than carbachol, 10(-4) M, and than PGF2 alpha, 5 10(-5) M. Dose-response curves were established for histamine and carbachol in the range 10(-7)-10(-4) M. At 10(-7) M, carbachol was more effective than histamine in stimulating the IP metabolism. Atropine blocked the response to carbachol, and diphenhydramine inhibited the effect of histamine, indicating the specificity of the response to the agonists. These results indicate that cultured human bronchial SMC are a suitable preparation for studying physiological aspects of membrane transduction in the airways.  相似文献   

13.
The effects of somatostatin-14 and bombesin on [3H]inositol phosphate accumulation were studied in 24 h myo-[3H]inositol-prelabeled cultured rat acinar cells. Bombesin, 10 nM, stimulated basal formation of phosphatidyl monophosphate (InsP1), phosphatidyl 4,5-biphosphate (InsP2) and inositol 1,4,5-triphosphate (InsP3) by 128 +/- 5.2%, 147 +/- 10% and 155 +/- 5%, respectively. At 5 s, the ED50 value for InsP3 stimulation was 0.70 +/- 0.2 nM. This stimulation was partly blocked (64 +/- 0.04% inhibition) by 10 ng/ml Bordetella pertussis toxin. In contrast to bombesin, somatostatin, 10 nM, inhibited basal InsP1, InsP2 and InsP3 formation. At 5 s, the inhibition degree for InsP3 was 18 +/- 2.5% and the IC50s values 1 +/- 0.09 nM, 1 +/- 0.12 nM and 0.07 +/- 0.005 nM for InsP1, InsP2 and InsP3, respectively. Bombesin-stimulated InsP3 formation was also inhibited by somatostatin. At 5 s, the inhibition degree was 85 +/- 3.5% at 10 nM and the IC50 value, 0.10 +/- 0.05 nM. Furthermore, somatostatin inhibition of bombesin stimulation was partly blocked (66 +/- 4% inhibition) by Bordetella pertussis toxin. These data therefore suggest that the acinar pancreatic cells contain a somatostatin receptor exerting a negative control on basal and bombesin receptor-stimulated phosphatidyl inositol turnover.  相似文献   

14.
Cultured cerebellar granule cells express phospholipase C-coupled muscarinic cholinergic, histaminergic, alpha 1-adrenergic, and serotonergic receptors. In an attempt to study desensitization of these neurotransmitter receptors, cells were prestimulated with saturating concentrations of carbachol, histamine, norepinephrine, or serotonin during the labeling of cells with myo-[3H]inositol and then rechallenged with various receptor agonists for their ability to elicit accumulation of [3H]inositol monophosphate in the presence of lithium. Prestimulation with each of these receptor agonists was found to cause a time-dependent desensitization to subsequent stimulation with the desensitizing agonist. Thus, prestimulation for 0.5, 4, and 18 h decreased carbachol response to 87 +/- 4, 52 +/- 2, and 40 +/- 1% of the control, respectively; histamine response to 37 +/- 2, 24 +/- 2, and 18 +/- 2%, respectively; norepinephrine response to 55 +/- 5, 14 +/- 1, and 10 +/- 1%, respectively; and serotonin response to 36 +/- 1, 18 +/- 1, and 9 +/- 2%, respectively. In all cases, the responses mediated by receptors which were not prestimulated remained virtually unchanged, thus indicating homologous desensitization. Dose-response studies indicate that the desensitization was associated with a major reduction in the maximal extent of agonist-induced responses. The basal accumulation was markedly enhanced following 0.5- and 4-h prestimulation, but returned to near normal after 18-h pretreatment. Biologically active phorbol ester, 4 beta-phorbol 12-myristate 13-acetate, rapidly attenuated basal phospholipase C activity, as well as the responses mediated by carbachol, histamine, norepinephrine, and serotonin, suggesting that activation and translocation of protein kinase C might play a role in the desensitization of phospholipase C-coupled receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Astrocyte-enriched cultures prepared from the newborn rat cortex incorporated [3H]myo-inositol into intracellular free inositol and inositol lipid pools. Noradrenaline and carbachol stimulated the turnover of these pools resulting in an increased accumulation of intracellular [3H]inositol phosphates. The effects of noradrenaline and carbachol were dose-dependent and blocked by specific alpha 1-adrenergic and muscarinic cholinergic receptor antagonists, respectively. The increase in [3H]inositol phosphate accumulation caused by these receptor antagonists was virtually unchanged when cultures were incubated in Ca2+-free medium, but was abolished when EGTA was also present in the Ca2+-free medium. Cultures of meningeal fibroblasts, the major cell type contaminating the astrocyte cultures, also accumulated [3H]myo-inositol, but no increased accumulation of [3H]inositol phosphates was found in response to either noradrenaline or carbachol.  相似文献   

16.
M C Sekar  L E Hokin 《Life sciences》1986,39(14):1257-1262
Recently, Tang et al. [BBA 772, 235 (1984)] reported that cholinergic agonists stimulate calcium uptake and cGMP formation in the human erythrocyte. We undertook this investigation since polyphosphoinositide breakdown precedes calcium mobilization and cGMP formation in several tissues. In [32P]-prelabeled erythrocyte ghosts, calcium (0.5 mM) but not carbachol (0.1 mM) caused a 2- and 20-fold increase in the accumulation of IP2 and IP3, respectively. This was accompanied by a 50% decrease in PIP2 and PIP. In intact erythrocytes prelabeled with [32P], 1 microM A23187 but not carbachol (0.1 mM) produced a 300% increase in radioactivity in PA after a 30-min incubation. cGMP levels after a 2-min incubation with saline, A23187 (1 microM), or carbachol (0.1 mM) were 0.27 +/- .03, 0.27 +/- .04, and 0.34 +/- .04 fmol/10(6) cells. Our studies indicate that the muscarinic receptor in the erythrocytes is "non-functional" insofar as its stimulation is not accompanied by phosphoinositide breakdown or cGMP formation.  相似文献   

17.
Neuroblastoma x glioma hybrid cells (NG108-15), differentiated by treatment with 1.5% dimethyl sulfoxide (DMSO) and 0.5% fetal bovine serum, were used to measure the effect of angiotensin II and III (ANG II and ANG III) on the generation of inositol polyphosphates. ANG II increased the synthesis of inositol monophosphates (IP1), inositol diphosphates (IP2), and inositol trisphosphates (IP3) with maximal responses observed at 300, 120, and 30 sec, respectively. The percent increases above basal values at the maximal responses were 140% +/- 9% (IP1), 142% +/- 4% (IP2), and 132% +/- 4% (IP3). This effect was not attenuated by pretreatment of the cells with pertussis toxin. Furthermore, both ANG II and ANG III increased the production of inositol polyphosphates in a dose-dependent manner with ED50 values of 145 nM and 11 nM, respectively. We conclude that differentiated NG108-15 cells express an ANG III selective receptor that mediates phosphatidylinositol breakdown through a pertussis toxin insensitive G-protein.  相似文献   

18.
We have examined some of the characteristics of phorbol ester- and agonist-induced down-regulation of astrocyte receptors coupled to phosphoinositide metabolism. Our results show that preincubation of [3H]inositol-labelled astrocyte cultures with phorbol 12-myristate 13-acetate (PMA) resulted in a time- (t 1/2, 1-2 min) and concentration-dependent (IC50, 1 nM) decrease in the accumulation of [3H]inositol phosphates (IP) evoked by muscarinic receptor stimulation. Much longer (30-40 min) preincubation periods with higher concentrations (IC50, 600 microM) were required to elicit the same effect with the receptor agonist carbachol. Following preincubation, agonist-stimulated [3H]IP accumulation recovered with time; in both cases pretreatment levels of inositol lipid metabolism were attained within 2 days. Both phorbol ester and agonist pretreatments were also effective in reversing the carbachol-evoked mobilisation of 45Ca2+ in these cells. However, their effects on phosphoinositide metabolism were found not to be additive. Although neither pretreatment affected the incorporation of [3H]inositol into phosphoinositides, both resulted in a loss of membrane muscarinic receptors as assessed by [3H]N-methylscopolamine binding. In washed membranes prepared from [3H]inositol-labelled cultures, the guanine nucleotide analogue, guanosine 5'-O-thiotriphosphate (GTP-gamma-S), caused a dose-dependent increase in [3H]IP formation. This response was enhanced when carbachol was also included in the incubation medium, although the agonist alone was without effect. Pretreatment with either PMA or carbachol had no effect on GTP-gamma-S-stimulated [3H]IP accumulation but did reduce the ability of carbachol to augment this response. Similar findings were obtained when membranes were exposed directly to PMA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The formation of inositol phosphates in response to agonists was studied in brain slices, parotid gland fragments and in the insect salivary gland. The tissues were first incubated with [3H]inositol, which was incorporated into the phosphoinositides. All the tissues were found to contain glycerophosphoinositol, inositol 1-phosphate, inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate, which were identified by using anion-exchange and high-resolution anion-exchange chromatography, high-voltage paper ionophoresis and paper chromatography. There was no evidence for the existence of inositol 1:2-cyclic phosphate. A simple anion-exchange chromatographic method was developed for separating these inositol phosphates for quantitative analysis. Stimulation caused no change in the levels of glycerophosphoinositol in any of the tissues. The most prominent change concerned inositol 1,4-bisphosphate, which increased enormously in the insect salivary gland and parotid gland after stimulation with 5-hydroxytryptamine and carbachol respectively. Carbachol also induced a large increase in the level of inositol 1,4,5-trisphosphate in the parotid. Stimulation of brain slices with carbachol induced modest increase in the bis- and tris-phosphate. In all the tissues studied, there was a significant agonist-dependent increase in the level of inositol 1-phosphate. The latter may be derived from inositol 1,4-bisphosphate, because homogenates of the insect salivary gland contain a bisphosphatase in addition to a trisphosphatase. These results suggest that the earliest event in the stimulus-response pathway is the hydrolysis of polyphosphoinositides by a phosphodiesterase to yield inositol 1,4,5-trisphosphate and inositol 1,4-bisphosphate, which are subsequently hydrolysed to inositol 1-phosphate and inositol. The absence of inositol 1:2-cyclic phosphate could indicate that, at very short times after stimulation, phosphatidylinositol is not catabolized by its specific phosphodiesterase, or that any cyclic derivative liberated is rapidly hydrolysed by inositol 1:2-cyclic phosphate 2-phosphohydrolase.  相似文献   

20.
The m1 muscarinic acetylcholine receptor gene was transfected into and stably expressed in A9 L cells. The muscarinic receptor agonist, carbachol, stimulated inositol phosphate generation, arachidonic acid release, and cAMP accumulation in these cells. Carbachol stimulated arachidonic acid and inositol phosphate release with similar potencies, while cAMP generation required a higher concentration. Studies were performed to determine if the carbachol-stimulated cAMP accumulation was due to direct coupling of the m1 muscarinic receptor to adenylate cyclase via a GTP binding protein or mediated by other second messengers. Carbachol failed to stimulate adenylate cyclase activity in A9 L cell membranes, whereas prostaglandin E2 did, suggesting indirect stimulation. The phorbol ester, phorbol 12-myristate 13-acetate (PMA), stimulated arachidonic acid release yet inhibited cAMP accumulation in response to carbachol. PMA also inhibited inositol phosphate release in response to carbachol, suggesting that activation of phospholipase C might be involved in cAMP accumulation. PMA did not inhibit prostaglandin E2-, cholera toxin-, or forskolin-stimulated cAMP accumulation. The phospholipase A2 inhibitor eicosatetraenoic acid and the cyclooxygenase inhibitors indomethacin and naproxen had no effect on carbachol-stimulated cAMP accumulation. Carbachol-stimulated cAMP accumulation was inhibited with TMB-8, an inhibitor of intracellular calcium release, and W7, a calmodulin antagonist. These observations suggest that carbachol-stimulated cAMP accumulation does not occur through direct m1 muscarinic receptor coupling or through the release of arachidonic acid and its metabolites, but is mediated through the activation of phospholipase C. The generation of cytosolic calcium via inositol 1,4,5-trisphosphate and subsequent activation of calmodulin by m1 muscarinic receptor stimulation of phospholipase C appears to generate the accumulation of cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号