共查询到20条相似文献,搜索用时 15 毫秒
1.
Miranda HF Sierralta F Pinardi G 《Canadian journal of physiology and pharmacology》2002,80(12):1173-1179
The inhibition of cyclooxygenase enzymes by nonsteroidal anti-inflammatory drugs (NSAIDs) does not completely explain the antinociceptive efficacy of these agents. It is known that cholinergic agonists are antinociceptive, and this study evaluates the interactions between carbachol and some NSAIDs. Antinociceptive activity was evaluated in mice by the acetic acid writhing test. Dose-response curves were constructed for NSAIDs and carbachol, administered either intraperitoneally (i.p.) or intrathecally (i.t.). The interactions of carbachol with NSAIDs were evaluated by isobolographic analysis after the simultaneous administration of fixed proportions of carbachol with each NSAID. All of the drugs were more potent after spinal than after systemic administration. The combinations of NSAIDs and carbachol administered i.p. were supra-additive; however, the i.t. combinations were only additive. Isobolographic analysis of the coadministration of NSAIDs and carbachol and the fact that atropine antagonized the synergistic effect suggest that carbachol may strongly modulate the antinociceptive activity of NSAIDs; thus, central cholinergic modulation would be an additional mechanism for the antinociceptive action of NSAIDs, unrelated to prostaglandin biosynthesis inhibition. 相似文献
2.
Sufficient evidence has accumulated to identify DNA as the relevant pharmacological target of antitumor cisplatin [cis-diamminedichloroplatinum(II)]. This drug is administered intravenously so that before it reaches DNA in the nucleus of tumor cells it may interact with various compounds including sulfur-containing molecules such as L-methionine or the compounds containing these residues. L-Methionine increases the rate of reaction of cisplatin with monomeric guanosine 5'-monophosphate, and it was suggested on the basis of these results previously obtained by other authors that methionine residues could mediate the transfer of platinum onto DNA. We studied in the present work the reactions of the 1:1 complex formed between cisplatin and L-methionine or N-acetyl-L-methionine with synthetic, single- and double-stranded oligodeoxyribonucleotides and natural, high molecular mass DNA by using high-pressure liquid chromatography and flameless atomic absorption spectrophotometry. The results demonstrate that both L-methionine and N-acetyl-L-methionine decrease the rate of reaction of cisplatin with base residues in natural, high molecular mass DNA. Thus, the possibility that cisplatin bound to methionine residues serves as a drug reservoir available for platination of DNA in the nucleus of tumor cells appears unlikely. 相似文献
3.
Some aspects of lead(II) DNA interactions 总被引:1,自引:0,他引:1
The interaction of Pb(II) ions with calf-thymus DNA was studied by differential pulse polarography, sweep voltammetry, cyclic voltammetry, chromatography on hydroxyapatite and viscosity measurements. Pb(II) ions may interact with nucleic acid via phosphate groups causing some stabilization of the DNA structure. However, the more specific interaction occurs with nucleic bases. The latter interaction destabilizes the nucleic acid structure and leads to inter- and intra-chain binding. 相似文献
4.
Dioxycyclobutenedione-(1,2-cyclohexanediamine)platinum(II), (R,R-DC-Pt) was found to have stronger cytotoxicity against six cancer cell lines than cisplatin and its DNA interactions was studied by calorimetric measurements, (13)C NMR. The binding specificity study of DNA base with R,R-DC-Pt was conducted by HPLC. To understand the molecular mechanism of R,R-DC-Pt with stronger cytotoxicity than that of cisplatin, we studied R,R-DC-Pt interaction with an oligonucleotide, d(ACCACGTGGT)(2), which contained c-H-ras gene encoding GGT by NMR spectroscopy. The oligomer DNA double helix was destroyed almost completely upon the R,R-DC-Pt binding. However under the same condition, the cisplatin binding with DNA was not so affected, and instead another conformation was formed, which suggests that larger damage to DNA can be induced by R,R-DC-Pt complex than that by cisplatin. 相似文献
5.
Wheate NJ 《Journal of inorganic biochemistry》2008,102(12):2060-2066
Despite the synthesis of hundreds of new platinum(II) and platinum(IV)-based complexes each year as potential anticancer drugs, only three have received world-wide approval: cisplatin, carboplatin and oxaliplatin. The next big advance in platinum-based chemotherapy is not likely to come from the development of new drugs, but from the controlled and targeted delivery of already approved drugs or those in late stage clinical trials. Encapsulation of platinum drugs inside macromolecules has already demonstrated promise, and encapsulation within cucurbit[n]urils has shown particular potential. Partial or full encapsulation within cucurbit[n]urils provides steric hindrance to drug degradation by peptides and proteins, and the use of different sized cucurbit[n]urils allows for the tuning of drug release rates, cytotoxicity and toxicity. 相似文献
6.
Aromatase is the rate-limiting enzyme in estrogen biosynthesis. As a cytochrome P450, it utilizes electrons from NADPH-cytochrome P450 reductase (CPR) to produce estrogen from androgen. Estrogen is a key factor in the promotion of hormone-dependent breast cancer growth. Aromatase inhibitors (AIs) are drugs that block estrogen synthesis, and are widely used to treat estrogen-dependent breast cancer. Structure-function experiments have been performed to study how CPR and AIs interact with aromatase to further the understanding of how these drugs elicit their effects. Our studies have revealed a strong interaction between aromatase and CPR, and that the residue K108 is situated in a region important to the interaction of aromatase with CPR. The published X-ray structure of aromatase indicates that the F221, W224 and M374 residues are located in the active site. Our site-directed mutagenesis experiments confirm their importance in the binding of the androgen substrate as well as AIs, but these residues interact differently with steroidal inhibitors (exemestane) and non-steroidal inhibitors (letrozole and anastrozole). Furthermore, our results predict that the residue W224 also participates in the mechanism-based inhibition of exemestane, as time-dependent inhibition is eliminated with mutation on this residue. Together with previous research from our laboratory, this study confirms that W224, E302, D309 and S478 are important active site residues involved in the suicide mechanism of exemestane against aromatase. 相似文献
7.
Anwen M. Krause-Heuer William S. Price Janice R. Aldrich-Wright 《Journal of chemical biology》2012,5(3):105-113
The interactions of three platinum(II)-based anticancer complexes [(5,6-dimethyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane)platinum(II)]2+, [(5,6-dimethyl-1,10-phenanthroline)(1R,2R-diaminocyclohexane)platinum(II)]2+, and [(5,6-dimethyl-1,10-phenanthroline)(1,2-diaminoethane)platinum(II)]2+ (56MEEN) with BSA have been examined by circular dichroism (CD), fluorescence and 1H pulsed gradient spin–echo (PGSE) diffusion NMR spectroscopy. The number of association constants and sites differed depending upon the spectroscopic method. This may be because each technique monitors different types of interaction/s and/or as a consequence of the different concentration ranges required for each technique. The titration of BSA with the achiral 56MEEN as monitored by CD indicates a reduction in the α-helical nature of the albumin, with the association constant calculated to be ~5 × 106 M−1 for one site. Due to the chiral nature of the other two complexes, their association with albumin was not monitored using CD but was examined using fluorescence and PGSE diffusion NMR. Titration of BSA with any of the three metal complexes resulted in quenching of fluorescence, with the number of association sites calculated to be ~1.1, with an association constant of ~2 × 105 M−1. PGSE diffusion NMR provided insights into interactions occurring with the BSA in its entirety, rather than with individual regions. Metal complex binding sites were estimated (~10 equivalent) from the diffusion data, with the average association constant for all sites ~102–103M−1. These experiments highlight the information that can be elucidated from complementary spectroscopic techniques and demonstrate the usefulness of PGSE diffusion NMR in monitoring multiple weak binding sites, which is of great importance in studying drug-biomolecule interactions. 相似文献
8.
Ozçelik AB Utku S Gümüş F Keskin AÇ Açık L Yılmaz S Ozgüngör A 《Journal of enzyme inhibition and medicinal chemistry》2012,27(3):413-418
In the present study, four Pt(II) complexes with 2-ethyl (1)/or benzyl (2)/or p-chlorobenzyl (3)/or 2-phenoxymethyl (4) benzimidazole carrier ligands were evaluated for their in vitro cytotoxic activities against the human HeLa cervix, oestrogen receptor-positive MCF-7 breast, and oestrogen receptor-negative MDA-MB 231 breast cancer cell lines. The plasmid DNA interactions and inhibition of the BamHI restriction enzyme activities of the complexes were also studied. Complex 3 was found to be more active than carboplatin for all examined cell lines and comparable with cisplatin, except for the HeLa cell line. 相似文献
9.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(3):413-418
In the present study, four Pt(II) complexes with 2-ethyl (1)/or benzyl (2)/or p-chlorobenzyl (3)/or 2-phenoxymethyl (4) benzimidazole carrier ligands were evaluated for their in vitro cytotoxic activities against the human HeLa cervix, oestrogen receptor-positive MCF-7 breast, and oestrogen receptor-negative MDA-MB 231 breast cancer cell lines. The plasmid DNA interactions and inhibition of the BamHI restriction enzyme activities of the complexes were also studied. Complex 3 was found to be more active than carboplatin for all examined cell lines and comparable with cisplatin, except for the HeLa cell line. 相似文献
10.
11.
Based on the ability of bile acids to vectorialize the cytostatic activity of other agents, we have designed and synthesized a new series of platinum and gold complexes. These compounds were studied and characterized by elemental analysis, FT-IR, FAB(+)/MS, 1H, 13C and 195Pt NMR, UV-Vis spectroscopy and conductivity measurements in solution, among other techniques. Kinetic studies carried out in aqueous solution and in the presence of different NaCl concentrations: 4 mM (similar to cytoplasmic concentration), 150 mM (similar to plasmatic concentration). The effects on the electrophoretic mobility of the pUC18 plasmid, the DNA denaturation temperature, and ethidium bromide (EtBr) binding to DNA were studied. The complexes are able to inter-react with DNA to inhibit DNA synthesis and hence, to reduce cell proliferation. The complexes were evaluated for in vitro cytostatic activity against human colon adenocarcinoma, mouse hepatoma, human hepatoma, mouse leukemia, etc. The antitumor effect of some of the compounds prepared was similar to that of cisplatin. However, other compounds had lower cytostatic activity. This different behavior can be accounted for by the structure/activity relationship (SAR), although other factors, such as uptake and the different kinetic behavior in solution, may be responsible for these differences. 相似文献
12.
Woynarowski JM 《Biochimica et biophysica acta》2002,1587(2-3):300-308
Cellular DNA is not a uniform target for DNA-reactive drugs. At the nucleotide level, drugs recognize and bind short motifs of a few base pairs. The location of drug adducts at the genomic level depends on how these short motifs are distributed in larger domains. This aspect, referred to as region specificity, may be critical for the biological outcome of drug action. Recent studies demonstrated that certain minor groove binding (MGB) drugs, such as bizelesin, produce region-specific lesions in cellular DNA. Bizelesin binds mainly T(A/T)(4)A sites, which are on average scarce, but occasionally cluster in distinct minisatellite regions (200-1000 bp of approximately 85-100% AT), herein referred to as AT islands. Bizelesin-targeted AT islands are likely to function as strong matrix attachment regions (MARs), domains that organize DNA loops on the nuclear matrix. Distortion of MAR-like AT islands may be a basis for the observed inhibition of new replicon initiation and the extreme lethality of bizelesin adducts (<10 adducts/cell for cell growth inhibition). Hence, long AT-islands represent a novel class of critical targets for anticancer drugs. The AT island paradigm illustrates the potential of the concept of regional targeting as an essential component of the rational design of new sequence-specific DNA-reactive drugs. 相似文献
13.
Gagnon V St-Germain ME Descôteaux C Provencher-Mandeville J Parent S Mandal SK Asselin E Bérubé G 《Bioorganic & medicinal chemistry letters》2004,14(23):5919-5924
We have recently reported the synthesis of a series of original 17beta-estradiol-linked platinum(II) hybrid molecules. The biological activity of these compounds was evaluated in vitro on estrogen dependent and independent (ER(+) and ER(-)) human uterine and ovarian cancers. The hybrid molecules present higher affinity than that of 17beta-estradiol for the estrogen receptor alpha (ERalpha). The cytotoxicity and the affinity of the hybrid molecules are explained using molecular modeling analysis. This study further confirms that the derivatives made of a 2-(2'-aminoethyl)pyridine ligand displayed superior activity against the cell lines particularly when the connecting arm is 8-10 carbon atoms long. Molecular modeling shows that a long side chain can facilitate the access of the platinum(II) moiety to DNA. The novel compounds also prove to be moderately cytotoxic against platinum resistant endometrial and ovarian cancer cell lines. 相似文献
14.
Absorption, fluorescence spectral and viscometric studies have been carried out on the interaction of Morin (2',3,4',5,7-pentahydroxyflavone, ) and its Cu complex, CuL(2) x 2H(2)O [L=Morin (2'-OH group deprotonated), ] with calf thymus DNA. CuL(2) shows different spectral characteristics from that of Morin in the presence of DNA. Increasing fluorescence is seen for CuL(2) with DNA addition whereas decreased fluorescence is observed for Morin. Quenching fluorescence is observed for the DNA-EB system when CuL(2) is added whereas slightly quenched fluorescence is seen for the DNA-EB system with Morin addition. The relative viscosity of DNA and the DNA-EB system increases with the addition of CuL(2.) Hypochromism and a smaller shift are observed in the UV-visible spectra of CuL(2) in the presence of DNA and the denatured temperature of DNA is decreased in the presence of CuL(2). The above results suggested that Morin and CuL(2) can both bind to DNA, but the binding mode is different. The complex binds to DNA mainly by intercalation, while Morin binds in a nonintercalating mode. 相似文献
15.
Side effects of cytostatics commonly used in the Haematology Clinic are analysed. The toxic action on the host's organs is discussed in L-asparaginase, azathioprine, bleomycine, busulfan, cyclophosphamide, cytosin-arabinoside, daunorubicine, fluorouracil, mercaptopurine, methotrexate, dichlorplatinum, procarbazine and the vinca alkaloids. In addition to toxic symptoms arising from single organs the most important 21 anticancer drugs are gathered in a table. Metabolism of activation and inactivation are mentioned to interprete symptoms of toxicity. Furthermore, the interactions between commonly administered drugs and carcinostatics which may enhance or suppress their carcinostatic efficacy are exposed. A final survey of possible pharmacological rescue measures, which may improve the tolerance of anticancer drugs by diminishing their toxicity is presented. 相似文献
16.
Zorbas-Seifried S Hartinger CG Meelich K Galanski M Keppler BK Zorbas H 《Biochemistry》2006,45(49):14817-14825
(SP-4-2)-Bis(2-aminoethanol)dichloroplatinum(II) (KP1356) and (SP-4-2)-bis[(R)-(-)-2-aminobutanol)]dichloroplatinum(II) (KP1433) are promising cytotoxic agents capable of changing their chemical structure depending on the pH value. On the basis of this, they are supposed to be active only in or preferentially in hypoxic tumors with low pH. In this study, we investigated the kinetics of changes of the DNA secondary structure, of the DNA modification degree, and of the formation of interstrand cross-links caused by these complexes in comparison to the parental compound cis-diamminedichloroplatinum(II) (cisplatin). All examinations were performed at physiological pH 7.4 and at pH 6.0 mimicking the acidified environment of many tumor tissues. In general, cisplatin displayed a higher reactivity accompanied by more pronounced DNA compaction, untwisting, and formation of interstrand cross-links at both pH values. Additionally, it was shown for the first time that cisplatin generates interstrand cross-links faster at pH 6.0 than at 7.4. However, the difference between pH 7.4 and 6.0 was much larger for KP1356 and KP1433 than for cisplatin, since they were essentially nonreactive and induced almost no secondary structures at pH 7.4, as contrasted to cisplatin. Our data suggest that formed adducts, i.e., intra- and/or interstrand cross-links, may be the sole cause of the cytotoxicity of KP1356 and KP1433 at pH 6.0. The results of this study may stimulate and contribute to further improvement of these novel, specific cytotoxic drugs that are anticipated to exert their full power in the tumor while being reasonably inactive in normal tissue. 相似文献
17.
Sharon Kemp Nial J. Wheate Shaoyu Wang J. Grant Collins Stephen F. Ralph Anthony I. Day Vincent J. Higgins Janice R. Aldrich-Wright 《Journal of biological inorganic chemistry》2007,12(7):969-979
The partial encapsulation of platinum(II)-based DNA intercalators of the type [Pt(5-Cl-phen)(ancillary ligand)](2+), where 5-Cl-phen is 5-chloro-1,10-phenanthroline and the ancillary ligand is ethylenediamine, (1S,2S)-diaminocyclohexane (S,S-dach) or (1R,2R)-diaminocyclohexane, within cucurbit[n]uril (CB[n], where n is 6, 7 or 8) has been examined by (1)H and (195)Pt NMR and mass spectrometry. For CB[7], the molecule encapsulates over the ancillary ligand of all metal complexes, whether this is ethylenediamine or diaminocyclohexane. For CB[8], encapsulation occurs over the sides of the 5-Cl-phen ligand at low [Pt(5-Cl-phen)(S,S-dach)](2+) (5CLSS) to CB[8] ratios (i.e. 0.25:1) but over the ancillary ligand at higher ratios (i.e. 2:1). For CB[6] binding, 5CLSS exhibits both portal and cavity binding, with the ancillary ligand displaying chemical shifts consistent with fast exchange kinetics on the NMR timescale for portal binding and slow exchange kinetics for cavity binding. Binding constants could not be determined using UV-vis, circular dichroism or fluorescence spectrophotometry, but a binding constant for binding of 5CLSS to CB[6] of approximately 10(5) M(-1) was determined using (1)H NMR. Finally, the effect of CB[n] encapsulation on the cytotoxicity of the metal complexes was examined using L1210 murine leukaemia cells in vitro growth inhibition assays. The cytotoxicity is highly dependent on both the metal complex and the CB[n] size, and whilst CB[7] and CB[8] generally decreased cytotoxicity, it was found that CB[6] increased the cyotoxicity of 5CLSS up to 2.5-fold. 相似文献
18.
In fed rats, the following NSAIDs were administered orally 24 hr before or 18 hr after the intraperitoneal administration of 1.34 mg/kg warfarin: phenylbutazone, 150 mg/kg; diflunisal, 75 mg/kg; ibuprofen, 150 mg/kg; acetylsalicylic acid, 300 mg/kg; indomethacin, 8 mg/kg; tolmetin sodium, 50 mg/kg; ketoprofen, 8 mg/kg; and amfenac sodium, 8 mg/kg. The elevation of the 24-hr prothrombin time was indicative of the effect of the warfarin. Warfarin-treated fasted rats showed a significantly higher prothrombin time than warfarin-treated fed rats. Interaction with phenylbutazone and warfarin occurred in fed and not in fasted rats when administered 18 hr after administration of the warfarin. At the 24-hr pretreatment time, only phenylbutazone significantly reduced the elevated prothrombin time. With the exception of amfenac sodium, all the NSAIDs significantly enhanced the elevated prothrombin time when administered 18 hr after warfarin. Their decreasing order of activity in enhancing the elevated prothrombin time was phenylbutazone, diflunisal, acetylsalicylic acid, ibuprofen, indomethacin, tolmetin sodium, and ketoprofen. The results indicate that the rat is more sensitive than the human to the interaction between warfarin and NSAIDs. 相似文献
19.
The natural binding of streptavidin (STA) for a small molecule, biotin, has made it a useful tool in specific targeting application, due to their most specific noncovalent biological interactions in nature. Here, we describe a polydiacetylene (PDA)-based colorimetric biosensor to detect the STA-biotin interactions. We synthesized two kinds of biotin-labeled 10,12-pentacosadiynoic acid (PCDA) monomers having 2(ethylene oxide) or 3(ethylene oxide) spacer and prepared biotin-modified PDA liposomes using them. Upon the addition of STA, the modified PDA liposomes showed a color change from blue to red in about 1h followed by their aggregation and precipitation. The aggregation was found to be due to the cross-linking between the PDA liposomes caused by the STA having four biotin binding sites, which was confirmed by their TEM analysis. Since the STA-biotin interactions are widely adopted for various biological detection systems; the biotin-modified PDA sensor developed in this study has enormous potentials for the development of various colorimetric biosensors. 相似文献
20.
Human telomeric G-quadruplex DNA interactions of N-phenanthroline glycosylamine copper(II) complexes
《Bioorganic & medicinal chemistry》2016,24(1):33-41
We report in this article the interactions of five N-(1,10-phenanthrolin-5-yl)-β-glycopyranosylamine copper(II) complexes with G-quadruplex DNA. Specifically, the interactions of these compounds with a human telomeric oligonucleotide have been assessed by fluorescence-based assays (FRET melting and G4-FID), circular dichroism and competitive equilibrium dialysis experiments. The metal complexes bind and stabilize G-quadruplex DNA structures with apparent association constants in the order of 104–105 M−1 and the affinity observed is dependent on the ionic conditions utilized and the specific nature of the carbohydrate moiety tethered to the 1,10-phenanthroline system. The compounds showed only a slight preference to bind G-quadruplex DNA over duplex DNA when the quadruplex DNA was folded in sodium ionic conditions. However, the binding affinity and selectivity, although modest, were notably increased when the G-quadruplex DNA was folded in the presence of potassium metal ions. Moreover, the study points towards a significant contribution of groove and/or loop binding in the recognition mode of quadruplex structures by these non-classical quadruplex ligands. The results reported herein highlight the potential and the versatility of carbohydrate bis-phenanthroline metal-complex conjugates to recognize G-quadruplex DNA structures. 相似文献