共查询到20条相似文献,搜索用时 15 毫秒
1.
Donald C. Chang 《Cell biochemistry and biophysics》1985,7(2):107-114
The transport mechanism of Na ions within the nerve cell was studied by measuring the radioactivity distribution profile of22Na that had been intracellularly injected into the giant axon. Specifically, we tested whether or not the movement of Na ions
is coupled with the process of “fast axonal transport.” Results of our measurements indicate that the intracellular transport
of Na+ and the fast axonal transport are two independent processes. Very few Na ions are irreversibly sequestered into the axoplasmic
vesicles involved in axonal transport. The movement of Na+ inside the axon can be modeled by a one-dimension diffusion. The effective diffusion coefficient of the intracellular Na+ was determined in this study. 相似文献
2.
A paper by DeGiorgis et al. (DeGiorgis JA, Petukhova TA, Evans TA, Reese TS. Kinesin-3 is an organelle motor in the squid giant axon. Traffic 2008; DOI: 10.1111/j.1600-0854.2008.00809.x) in this issue of Traffic reports on the identification and function of a second squid kinesin, a kinesin-3 motor. As expected, the newly discovered motor associates with axoplasmic organelles in situ and powers motility along microtubules of vesicles isolated from squid axoplasm. Less expected was the finding that kinesin-3 may be the predominant motor for anterograde organelle movement in the squid axon, which challenges the so far undisputed view that this function is fulfilled by the conventional kinesin, kinesin-1. These novel findings let us wonder what the real function of kinesin-1--the most abundant motor in squid axons--actually is. 相似文献
3.
Although the transfer of glial proteins into the squid giant axon is well documented, the mechanism of the transfer remains unknown. We examined the possibility that the transfer involved membrane-bound vesicles, by taking advantage of the fact that the fluorescent compound, 3,6-acridinediamine, N,N,N,',N'-tetramethylmonohydride [acridine orange (AO)], rapidly and selectively stains vesicular structures in glial cells surrounding the giant axon. We labeled cleaned axons (1–3 cm long) by incubation for 1 min in filtered seawater (FSW) containing AO. Because the AO was concentrated in glial vesicular organelles, these fluoresced bright orange when the axon was examined by epifluorescence microscopy. To look for vesicle transfer, axoplasm was extruded from such AO-treated axons at various times after labeling. During the initial 15 min, an increasing number of fluorescent vesicles were observed. No further increases were observed between 15 and 60 min post AO. The transfer of the fluorescent vesicles into the axoplasm seemed to be energy dependent, as it was inhibited in axons treated with 2 mM KCN. These results suggest that a special mode of exchange exists between the adaxonal glia and the axon, perhaps involving phagocytosis by the axon of small portions of the glial cells. 相似文献
4.
Protein phosphorylation is an important mechanism in the modulation of voltage-dependent ionic channels. In squid giant axons, the potassium delayed rectifier channel is modulated by an ATP-mediated phosphorylation mechanism, producing important changes in amplitude and kinetics of the outward current. The characteristics and biophysical basis for the phosphorylation effects have been extensively studied in this preparation using macroscopic, single-channel and gating current experiments. Phosphorylation produces a shift in the voltage dependence of all voltage-dependent parameters including open probability, slow inactivation, first latency, and gating charge transferred. The locus of the effect seems to be located in a fast 20 pS channel, with characteristics of delayed rectifier, but at least another channel is phosphorylated under our experimental conditions. These results are interpreted quantitatively with a mechanistic model that explains all the data. In this model the shift in voltage dependence is produced by electrostatic interactions between the transferred phosphate and the voltage sensor of the channel. 相似文献
5.
A fast component of displacement current which accompanies the sodium channel gating current has been recorded from the membrane of the giant axon of the squid Loligo forbesii. This component is characterized by relaxation time constants typically shorter than 25 µs. The charge displaced accounts for about 10% (or 2 nC/cm2) of the total displacement charge attributed to voltage-dependent sodium channels. Using a low noise, wide-band voltage clamp system and specially designed voltage step protocols we could demonstrate that this component: (i) is not a recording artifact; (ii) is kinetically independent from the sodium channel activation and inactivation processes; (iii) can account for a significant fraction of the initial amplitude of recorded displacement current and (iv) has a steady state charge transfer which saturates for membrane potentials above + 20 mV and below – 100 mV This component can be modelled as a single step transition using the Eyring-Boltzmann formalism with a quantal charge of 1 e– and an asymmetrical energy barrier. Furthermore, if it were associated with the squid sodium channel, our data would suggest one fast transition per channel. A possible role as a sodium channel activation trigger, which would still be consistent with kinetic independence, is discussed. Despite uncertainties about its origin, the property of kinetic independence allows subtraction of this component from the total displacement current to reveal a rising phase in the early time course of the remaining current. This will have to be taken into account when modelling the voltage-dependent sodium channel. 相似文献
6.
Summary The effects of fatty acids on the ionic currents of the voltage-clamped squid giant axon were investigated using intracellular and extracellular application of the test substances. Fatty acids mainly suppress the Na current but have little effect on the K current. These effects are completely reversed after washing with control solution. The concentrations required to suppress the peak inward current by 50% and Hill number were determined for each fatty acid. ED50 decreased about 1/3 for each increase of one carbon atom. The standard free energy was –3.05 kJ mole–1 for CH2. The Hill number was 1.58 for 2-decenoic acid. The suppression effect of the fatty acids depends on the number of carbon atoms in the compounds and their chemical structure. Suppression of the Na current was clearly observed when the number of carbon atoms exceeded eight. When fatty acids of the same chain length were compared, 2-decenoic acid had strong inhibitory activity, but sebacic acid had no effect at all on the Na channel. The currents were fitted to equations similar to those proposed by Hodgkin and Huxley (J. Physiol. (London)
117:500–544, 1952) and the changes in the parameters of these equations in the presence of fatty acids were calculated. The curve of the steady-state activation parameter (m
) for the Na current against membrane potential and the time constant of activation ({ie113-1}) were shifted 20 mV in a depolarizing direction by the application of fatty acids. The time constant for inactivation ({ie113-2}) was almost no change by application of the fatty acids. The time constant for activation ({ie113-3}) of K current was shifted 20 mV in a depolarizing direction by the application of the fatty acids. 相似文献
7.
The squid giant axon and extruded axoplasm from the giant axon were used to study the capacity of axoplasm for phospholipid synthesis. Extruded axoplasm, suspended in chemically defined media, catalyzed the synthesis of phospholipids from all of the precursors tested. 32P-Labeled inorganic phosphate and gamma-labeled ATP were actively incorporated into phosphatidylinositol phosphate, while [2-3H]myo-inositol and L-[3H(G)]serine were actively incorporated into phosphatidylinositol and phosphatidylserine, respectively. Though less well utilized. [2-3H]glycerol was incorporated into phosphatidic acid, phosphatidylinositol, and triglyceride, and methyl-3H]choline and [1-3H]ethanolamine were incorporated into phosphatidylcholine and phosphatidylethanolamine, respectively. Isolated squid giant axons were incubated in artificial seawater containing the above precursors. The axoplasm was extruded following the incubations. Although most of the product lipids were recovered in the sheath (composed of cortical axoplasm, axolemma, and surrounding satellite cells), significant amounts (4-20%) were present in the extruded axoplasm. With tritiated choline and myo-inositol, the major labeled phospholipids found in both the extruded axoplasm and the sheath were phosphatidylcholine and phosphatidylinositol, respectively. With both glycerol and phosphate, phosphatidylethanolamine was a major labeled lipid in both axoplasm and sheath. These findings demonstrate that all classes of phospholipids are formed by endogenous synthetic enzymes in axoplasm. In addition, we feel that the different patterns of incorporation by intact axons and extruded axoplasm indicate that surrounding sheath cells contribute lipids to axoplasm. A comprehensive picture of axonal lipid metabolism should include axoplasmic synthesis and glial-axon transfer as pathways complementing the axonal transport of perikaryally formed lipids. 相似文献
8.
Toshifumi Takenaka Hidenori Horie Hideaki Hori Tadashi Kawakami 《The Journal of membrane biology》1988,106(2):141-147
Summary The effects of arachidonic acid and some other long-chain fatty acids on the ionic currents of the voltage-clamped squid giant axon were investigated using intracellular application of the test substances. The effects of these acids, which are usually insoluble in solution, were examined by using -cyclodextrin as a solvent. -cyclodextrin itself had no effect on the excitable membrane. Arachidonic acid mainly suppresses the Na current but has little effect on the K current. These effects are completely reversed after washing with control solution. The concentration required to suppress the peak inward current by 50% (ED50) was 0.18mm, which was 10 times larger than that of medium-chain fatty acids like 2-decenoic acid. The Hill number was 1.5 for arachidonic acid, which is almost the same value as for medium-chain fatty acids. This means that the mechanisms of the inhibition are similar in both long- and medium-chain fatty acids. When the long-chain fatty acids were compared, the efficacy of suppression of Na current was about the same value for arachidonic acid, docosatetraenoic acid and docosahexaenoic acid. The suppression effects of linoleic acid and linolenic acid on Na currents were one-third of that of arachidonic acid. Oleic acid had a small suppression effect and stearic acid had almost no effect on the Na current. The currents were fitted to equations similar to those proposed by Hodgkin and Huxley (Hodgkin, A.L., Huxley, A.F. (1952)J. Physiol (London)
117:500–544) and the change in the parameters of these equations in the presence of fatty acids were calculated. The curve of the steady-state activation parameter (m
) for the Na current against membrane potential and the time constant of activation (
m
) were shifted 10 mV in a depolarizing direction by the application of fatty acids. The time constant for inactivation (
h
) has almost unaffected by application of these fatty acids. 相似文献
9.
In mammalian and squid nervous systems, the phosphorylation of neurofilament proteins (NFs) seems to be topographically regulated. Although NFs and relevant kinases are synthesized in cell bodies, phosphorylation of NFs, particularly in the lys‐ser‐pro (KSP) repeats in NF‐M and NF‐H tail domains, seem to be restricted to axons. To explore the factors regulating the cellular compartmentalization of NF phosphorylation, we separated cell bodies (GFL) from axons in the squid stellate ganglion and compared the kinase activity in the respective lysates. Although total kinase activity was similar in each lysate, the profile of endogenous phosphorylated substrates was strikingly different. Neurofilament protein 220 (NF220), high‐molecular‐weight NF protein (HMW), and tubulin were the principal phosphorylated substrates in axoplasm, while tubulin was the principal GFL phosphorylated substrate, in addition to highly phosphorylated low‐molecular‐weight proteins. Western blot analysis showed that whereas both lysates contained similar kinases and cytoskeletal proteins, phosphorylated NF220 and HMW were completely absent from the GFL lysate. These differences were highlighted by P13suc1 affinity chromatography, which revealed in axoplasm an active multimeric phosphorylation complex(es), enriched in cytoskeletal proteins and kinases; the equivalent P13 GFL complex exhibited six to 20 times less endogenous and exogenous phosphorylation activity, respectively, contained fewer cytoskeletal proteins and kinases, and expressed a qualitatively different cdc2‐like kinase epitope, 34 kDa rather than 49 kDa. Cell bodies and axons share a similar repertoire of molecular consitutents; however, the data suggest that the cytoskeletal/kinase phosphorylation complexes extracted from each cellular compartment by P13 are fundamentally different. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 89–102, 1999 相似文献
10.
In neurons, many receptors must be localized correctly to axons or dendrites for proper function. During development, receptors for nerve growth and guidance are targeted to axons and localized to growth cones where receptor activation by ligands results in promotion or inhibition of axon growth. Signaling outcomes downstream of ligand binding are determined by the location, levels and residence times of receptors on the neuronal plasma membrane. Therefore, the mechanisms controlling the trafficking of these receptors are crucial to the proper wiring of circuits. Membrane proteins accumulate on the axonal surface by multiple routes, including polarized sorting in the trans Golgi network, sorting in endosomes and removal by endocytosis. Endosomes also play important roles in the signaling pathways for both growth-promoting and -inhibiting molecules: signaling endosomes derived from endocytosis are important for signaling from growth cones to cell bodies. Growth-promoting neurotrophins and growth-inhibiting Nogo-A can use EHD4/Pincher-dependent endocytosis at the growth cone for their respective retrograde signaling. In addition to retrograde transport of endosomes, anterograde transport to axons in endosomes also occurs for several receptors, including the axon outgrowth-promoting cell adhesion molecule L1/NgCAM and TrkA. L1/NgCAM also depends on EHD4/Pincher-dependent endocytosis for its axonal polarization. In this review, we will focus on receptors whose trafficking has been reported to be modulated by the EHD4/Pincher family of endosomal regulators, namely L1/NgCAM, Trk and Nogo-A. We will first summarize the pathways underlying the axonal transport of these proteins and then discuss the potential roles of EHD4/Pincher in mediating their endocytosis. 相似文献
11.
Phosphorylation of αSNAP is Required for Secretory Organelle Biogenesis in Toxoplasma gondii 下载免费PDF全文
Rebecca J. Stewart David J. P. Ferguson Lachlan Whitehead Clare H. Bradin Hong J. Wu Christopher J. Tonkin 《Traffic (Copenhagen, Denmark)》2016,17(2):102-116
Upon infection, apicomplexan parasites quickly invade host cells and begin a replicative cycle rapidly increasing in number over a short period of time, leading to tissue lysis and disease. The secretory pathway of these highly polarized protozoan parasites tightly controls, in time and space, the biogenesis of specialized structures and organelles required for invasion and intracellular survival. In other systems, regulation of protein trafficking can occur by phosphorylation of vesicle fusion machinery. Previously, we have shown that Toxoplasma gondii αSNAP – a protein that controls the disassembly of cis‐SNARE complexes – is phosphorylated. Here, we show that this post‐translational modification is required for the correct function of αSNAP in controlling secretory traffic. We demonstrate that during intracellular development conditional expression of a non‐phosphorylatable form of αSNAP results in Golgi fragmentation and vesiculation of all downstream secretory organelles. In addition, we show that the vestigial plastid (termed apicoplast), although reported not to be reliant on Golgi trafficking for biogenesis, is also affected upon overexpression of αSNAP and is much more sensitive to the levels of this protein than targeting to other organelles. This work highlights the importance of αSNAP and its phosphorylation in Toxoplasma organelle biogenesis and exposes a hereto fore‐unexplored mechanism of regulation of vesicle fusion during secretory pathway trafficking in apicomplexan parasites. 相似文献
12.
Steuble M Gerrits B Ludwig A Mateos JM Diep TM Tagaya M Stephan A Schätzle P Kunz B Streit P Sonderegger P 《Proteomics》2010,10(21):3775-3788
Kinesin motors play crucial roles in the delivery of membranous cargo to its destination and thus for the establishment and maintenance of cellular polarization. Recently, calsyntenin-1 was identified as a cargo-docking protein for Kinesin-1-mediated axonal transport of tubulovesicular organelles along axons of central nervous system neurons. To further define the function of calsyntenin-1, we immunoisolated calsyntenin-1 organelles from murine brain homogenates and determined their proteome by MS. We found that calsyntenin-1 organelles are endowed with components of the endosomal trafficking machinery and contained the β-amyloid precursor protein (APP). Detailed biochemical analyses of calsyntenin-1 immunoisolates in conjunction with immunocytochemical colocalization studies with cultured hippocampal neurons, using endosomal marker proteins for distinct subcompartments of the endosomal pathways, indicated that neuronal axons contain at least two distinct, nonoverlapping calsyntenin-1-containing transport packages: one characterized as early-endosomal, APP positive, the other as recycling-endosomal, APP negative. We postulate that calsyntenin-1 acts as a general mediator of anterograde axonal transportation of endosomal vesicles. In this role, calsyntenin-1 may actively contribute to axonal growth and pathfinding in the developing as well as to the maintenance of neuronal polarity in the adult nervous system; further, it may actively contribute to the stabilization of APP during its anterograde axonal trajectory. 相似文献
13.
14.
Shank3 is localized in axons and presynaptic specializations of developing hippocampal neurons and involved in the modulation of NMDA receptor levels at axon terminals 下载免费PDF全文
Sonja Halbedl Michael Schoen Marisa S Feiler Tobias M Boeckers Michael J Schmeisser 《Journal of neurochemistry》2016,137(1):26-32
15.
Monoclonal antibody (Mab) 8B7 was shown in a previous study to inhibit protein translation in lysates of Sf21 cells. The antibody was thought to be specific for a 60-kDa form of elongation factor-1 alpha (EF-1alpha), primarily because the antigen immunoprecipitated by Mab 8B7 cross-reacted with Mab CBP-KK1, an antibody generated to EF-1alpha from Trypanosoma brucei. The purpose of the current study was to investigate further the antigenic specificity of Mab 8B7. The concentration of the 60-kDa antigen relative to total cellular protein proved insufficient for its definitive identification. However, subcellular fractionation of Sf21 cells yielded an additional protein of 37 kDa in the cytosolic and microsomal fractions that was reactive with Mab 8B7. The 37-kDa protein could be easily visualized by colloidal Coomassie Blue G-250 staining as a series of pI 6.9-8.4 spots on two-dimensional gels. Excision of an abundant immunoreactive spot enabled identification of the protein as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) and protein database searching. Subsequent immunoblotting of purified rabbit skeletal muscle GAPDH with Mab 8B7 confirmed the antibody's specificity for GAPDH. Besides the pivotal role GAPDH plays in glycolysis, the enzyme has a number of noncanonical functions, including binding to mRNA and tRNA. The ability of Mab 8B7 to disrupt these lesser-known functions of GAPDH may account for the antibody's inhibitory effect on in vitro translation. 相似文献
16.
17.
Ethanol stimulates the in vivo axonal movement of neuropeptide dense‐core vesicles in Drosophila motor neurons 下载免费PDF全文
18.
The high incidence of obesity-related pathologies, led to the study of the mechanisms involved in preadipose cell proliferation and differentiation. Here, we demonstrate that modulation of erbB2, plays a fundamental role during proliferation and adipogenic induction of preadipocytes. Using 3T3-L1 cells as model, we demonstrate that EGF (10 nM, 5 min) in addition to stimulate receptor tyrosine phosphorylation of both erbB2 and EGFR, is able to induce the heterodimer erbB2-EGFR. We treated proliferating 3T3-L1 cells with two inhibitors, AG 825 (IC(50) 0.35 microM, 54 times more selective for erbB2 than for EGFR, IC(50) 19 microM), and AG 879 (IC(50) of 1 microM for erbB2 versus 500 microM for EGFR). We found that both inhibited the proliferation on a dose-dependent basis, reaching a 30% maximal inhibition at 100 microM (P < 0.001) for AG825, and a 20% maximal inhibition at 10 microM (P < 0.001) for AG 879. These results involve erbB2 in 3T3-L1 proliferation. When studying the differentiation process, we found that the action of MIX-Dexa immediately activates MEK, JNK and p38 kinases. We observed that PD98059 and SP600125 (MEK-ERK and JNK inhibitors, respectively) added 1 h prior to the MIX-Dexa induction produced a decrease in erbB2 expression after 6 h, which is even greater than the one produced by the inducers, MIX-Dexa. This work supports erbB2 as a key factor in 3T3-L1 adipogenesis, acting mostly and not only during the proliferative phase but also during the differentiation through modulation of both its expression and activity. 相似文献
19.