首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Analgesia induced by certain tricyclic antidepressants has been largely used for decades, yet the mechanisms involved are incompletely understood. Starting from previously reported dual effects of amitriptyline on wild-type ENaC (Pena F, et al. J Pharm Pharmacol 54:1393-8: 2002), we extended our study to ASIC1a by performing a series of whole cell and single-channel recordings of proton-activated currents in HEK293 cells. Acid pulses were applied at 2 or 5 min intervals, and amitriptyline (1-500 μM) was applied at a holding pH of 7.4 or 8.4 between pulses. Dose-response plots were fitted with dual Hill type functions, yielding a half-activatory constant of 0.3 μM and a half-inhibitory constant of 382 μ M at pH 7.4. At pH 8.4 both constants were shifted to higher values (0.5 and 444 μM, respectively). In whole-cell experiments, FMRF-amide increased the peak amplitude of ASIC1a transients at 0.1 μM and decreased it at 1 and 100 μM. Single-channel recordings were idealized and fitted using an 8-state linear connectivity model comprising four consecutive activation steps. Both amitriptyline (1 μM) and FMRF-amide (0.1 μM) increased the unitary current amplitude, and modified the opening and closing rates of the first gating mode. They also increased the transition rate from the second to the first gating mode, and the rate of final closure. The activatory effect of both compounds vanished after a mild trypsin pretreatment, suggesting the existence of activatory sites for FMRF-amide and amitriptyline in the outer vestibule of ASIC1a, which can be removed by exo- or endogenous serine-proteases.  相似文献   

2.
Bcl-2 family proteins and interleukin-1-beta converting enzyme/Caenorhabditis elegans cell death gene-3 (ICE/CED-3) family proteases (caspases) represent the basic regulators of apoptosis. However, the precise mechanism by which they interact is unclear. In this study, we found that gamma-radiation-induced apoptosis of leukemia cells was associated with activation of multiple caspases and bax up-regulation. Membrane changes and caspase activities were suppressed by specific caspase inhibitors. Similarly, the serine protease inhibitors z-Ala-Ala-Asp-cmk (AAD) and tosyl-lysine chloromethyl ketone (TLCK) also prevented caspase activation and poly(ADP-ribose) polymerase cleavage in vivo but had no effect on caspase activity in vitro. TLCK also prevented bax up-regulation as a result of its inhibitory effect on p53 function. Inhibitors of caspases and serine proteases partially prevented cell death, suggesting a caspase involvement in Bax-mediated cell death. We propose an ordering of signaling events in Bax-mediated cell death, including steps upstream and downstream of p53 and bax up-regulation.  相似文献   

3.
Proteases function at every level in host defense, from regulating vascular hemostasis and inflammation to mobilizing the "rapid responder" leukocytes of the immune system by regulating the activities of various chemoattractants. Recent studies implicate proteolysis in the activation of a ubiquitous plasma chemoattractant, chemerin, a ligand for the G-protein-coupled receptor CMKLR1 present on plasmacytoid dendritic cells and macrophages. To define the pathophysiologic triggers of chemerin activity, we evaluated the ability of serum- and inflammation-associated proteases to cleave chemerin and stimulate CMKLR1-mediated chemotaxis. We showed that serine proteases factor XIIa and plasmin of the coagulation and fibrinolytic cascades, elastase and cathepsin G released from activated neutrophil granules and mast cell tryptase are all potent activators of chemerin. Activation results from cleavage of the labile carboxyl terminus of the chemoattractant at any of several different sites. Activation of chemerin by the serine protease cascades that trigger rapid defenses in the body may direct CMKLR1-positive plasmacytoid dendritic cell and tissue macrophage recruitment to sterile sites of tissue damage, as well as trafficking to sites of infectious and allergic inflammation.  相似文献   

4.
Selective regulation of acid-sensing ion channel 1 by serine proteases   总被引:10,自引:0,他引:10  
Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that belong to the epithelial Na(+) channel/degenerin family. ASICs are transiently activated by a rapid drop in extracellular pH. Conditions of low extracellular pH, such as ischemia and inflammation in which ASICs are thought to be active, are accompanied by increased protease activity. We show here that serine proteases modulate the function of ASIC1a and ASIC1b but not of ASIC2a and ASIC3. We show that protease exposure shifts the pH dependence of ASIC1a activation and steady-state inactivation to more acidic pH. As a consequence, protease exposure leads to a decrease in current response if ASIC1a is activated by a pH drop from pH 7.4. If, however, acidification occurs from a basal pH of approximately 7, protease-exposed ASIC1a shows higher activity than untreated ASIC1a. We provide evidence that this bi-directional regulation of ASIC1a function also occurs in neurons. Thus, we have identified a mechanism that modulates ASIC function and may allow ASIC1a to adapt its gating to situations of persistent extracellular acidification.  相似文献   

5.
Hydrolysis of polyesters by serine proteases   总被引:2,自引:0,他引:2  
The substrate specificity of -chymotrypsin and other serine proteases, trypsin, elastase, proteinase K and subtilisin, towards hydrolysis of various polyesters was examined using poly(L-lactide) (PLA), poly(-hydroxybutyrate) (PHB), poly(ethylene succinate) (PES), poly(ethylene adipate) (PEA), poly(butylene succinate) (PBS), poly(butylene succinate-co-adipate) (PBS/A), poly[oligo(tetramethylene succinate)-co-(tetramethylane carbonate)] (PBS/C), and poly(-caprolactone) (PCL). -Chymotrypsin could degrade PLA and PEA with a lower activity on PBS/A. Proteinase K and subtilisin degraded almost all substrates other than PHB. Trypsin and elastase had similar substrate specificities to -chymotrypsin.  相似文献   

6.
The fluorescent compound p-aminobenzamidine was used to monitor activation of the trypsin-like serine proteases trypsin, thrombin, and blood coagulation factors IXa and Xa. p-Aminobenzamidine, when bound to the activated forms of these proteases but not the corresponding zymogens, displayed an increase in fluorescence. This fluorescence increase was coincident with activation as measured by synthetic substrate hydrolysis, physiological coagulation activity, and the appearance of activation products on gel electrophoresis. The activation of proteolytically modified factor X was also monitored. These results suggest that following p-aminobenzamidine fluorescence is a convenient procedure for monitoring activation of trypsin-like serine proteases.  相似文献   

7.
Analogous to caspases, serine (Ser) proteases are involved in protein degradation during apoptosis. It is unknown, however, whether Ser proteases are activated concurrently, sequentially, or as an alternative to the activation of caspases. Using fluorescent inhibitors of caspases (FLICA) and Ser proteases (FLISP), novel methods to detect activation of these enzymes in apoptotic cells, we demonstrate that two types of Ser protease sites become accessible to these inhibitors during apoptosis of HL-60 cells. The prior exposure to caspases inhibitor Z-VAD-FMK markedly diminished activation of both Ser protease sites. However, the unlabeled inhibitor of Ser-proteases TPCK had modest suppressive effect- while TICK had no effect- on the activation of caspases. Activation of caspases, thus, appears to be an upstream event and likely a prerequisite for activation of FLISP-reactive sites. Differential labeling with the red fluorescing sulforhodamine-tagged VAD-FMK and the green fluorescing FLISP allowed us to discriminate, within the same cell, between activation of caspases and Ser protease sites. Despite a certain degree of co-localization, the pattern of intracellular caspase- vs FLISP- reactive sites, was different. Also different were relative proportions of activated caspases vs Ser protease sites in individual cells. The observed induction of FLISP-binding sites we interpret as revealing activation of at least two different apoptotic Ser proteases; by analogy to caspases we denote them serpases. Their apparent molecular weight (62-65 kD) suggests that they are novel enzymes.  相似文献   

8.
Host cell proteases that cleave the hemagglutinin (HA) of influenza viruses in the human respiratory tract are still not identified. Here we cloned two human type II transmembrane serine proteases with known airway localization, TMPRSS2 and HAT, into mammalian expression vector. Cotransfection of mammalian cells with plasmids encoding HA and either protease resulted in HA cleavage in situ. Transient expression of either protease in MDCK cells enabled multicycle replication of influenza viruses in these cells in the absence of exogenous trypsin. These data suggest that TMPRSS2 and HAT are candidates for proteolytic activation of influenza viruses in vivo.  相似文献   

9.
S Urban  J R Lee  M Freeman 《Cell》2001,107(2):173-182
The polytopic membrane protein Rhomboid-1 promotes the cleavage of the membrane-anchored TGFalpha-like growth factor Spitz, allowing it to activate the Drosophila EGF receptor. Until now, the mechanism of this key signaling regulator has been obscure, but our analysis suggests that Rhomboid-1 is a novel intramembrane serine protease that directly cleaves Spitz. In accordance with the putative Rhomboid active site being in the membrane bilayer, Spitz is cleaved within its transmembrane domain, and thus is, to our knowledge, the first example of a growth factor activated by regulated intramembrane proteolysis. Rhomboid-1 is conserved throughout evolution from archaea to humans, and our results show that a human Rhomboid promotes Spitz cleavage by a similar mechanism. This growth factor activation mechanism may therefore be widespread.  相似文献   

10.
11.
From stereochemical considerations and model building the following conclusions were drawn for the stereochemistry of the catalytic steps of chymotrypsin and subtilisin. (1) In contrast to previous stereochemical investigations, rotation of 120° or more of the oxygen atom of the “reactive” serine residue is not possible in the course of the reaction with specific substrates. (2) During catalysis the serine oxygen atom is approximately in the position found in the crystalline enzyme, i.e. at a distance of about 3 Å from the nitrogen atom of the catalytically important histidine residue. (3) The detailed stereochemical mechanism involves the formation of a strained tetrahedral intermediate and a strained acylenzyme. The strain energy is supplied by the formation of a hydrogen bond between the enzyme and a specific substrate. (4) The geometry of proton transfers in the intimate encounter complex of chymotrypsin is slightly but significantly different from that of subtilisin.  相似文献   

12.
Inhibition of serine proteases by peptidyl fluoromethyl ketones   总被引:2,自引:0,他引:2  
B Imperiali  R H Abeles 《Biochemistry》1986,25(13):3760-3767
We have synthesized peptidyl fluoromethyl ketones that are specific inhibitors of the serine proteases alpha-chymotrypsin and porcine pancreatic elastase. By analogy with the corresponding aldehydes it is assumed that the fluoromethyl ketones react with the gamma-OH group of the active site serine to form a stable hemiacetal [Lowe, G., & Nurse, D. (1977) J. Chem. Soc., Chem. Commun., 815; Chen, R., Gorenstein, D.G., Kennedy, W.P., Lowe, G., Nurse, D., & Schultz, R.M. (1979) Biochemistry 18, 921; Shah, D.O., Lai, K., & Gorenstein, D.G. (1984) J. Am. Chem. Soc. 106, 4272]. 19F NMR studies of the chymotrypsin-bound trifluoromethyl ketone inhibitors Ac-Leu-ambo-Phe-CF3 and Ac-ambo-Phe-CF3 clearly indicate that the carbonyl carbon is tetrahedral at the active site of the enzyme. The inhibitor is bound as either the stable hydrate or the hemiacetal, involving the active site serine. The effect of varying the number of amino acid residues in the peptidyl portion of the inhibitor and the number of fluorines in the fluoromethyl ketone moiety is examined. In the series of trifluoromethyl ketone elastase inhibitors, the lowering of Ki concomitant with the change from a dipeptide analogue to a tetrapeptide analogue (Ac-Pro-ambo-Ala-CF3, Ki = 3 X 10(-3) M; Ac-Ala-Ala-Pro-ambo-Ala-CF3, Ki = 0.34 X 10(-6) M) correlates well with the variation in V/K for hydrolysis of the corresponding amide substrates. This trend is indicative of the inhibitors acting as transition-state analogues [Bartlett, P.A., & Marlowe, C.K. (1983) Biochemistry 22, 4618; Thompson, R.C. (1973) Biochemistry 12, 47].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The PDGF (platelet-derived growth factor) family members are potent mitogens for cells of mesenchymal origin and serve as important regulators of cell migration, survival, apoptosis and transformation. Tumour-derived PDGF ligands are thought to function in both autocrine and paracrine manners, activating receptors on tumour and surrounding stromal cells. PDGF-C and -D are secreted as latent dimers, unlike PDGF-A and -B. Cleavage of the CUB domain from the PDGF-C and -D dimers is required for their biological activity. At present, little is known about the proteolytic processing of PDGF-C, the rate-limiting step in the regulation of PDGF-C activity. In the present study we show that the breast carcinoma cell line MCF7, engineered to overexpress PDGF-C, produces proteases capable of cleaving PDGF-C to its active form. Increased PDGF-C expression enhances cell proliferation, anchorage-independent cell growth and tumour cell motility by autocrine signalling. In addition, MCF7-produced PDGF-C induces fibroblast cell migration in a paracrine manner. Interestingly, PDGF-C enhances tumour cell invasion in the presence of fibroblasts, suggesting a role for tumour-derived PDGF-C in tumour-stromal interactions. In the present study, we identify tPA (tissue plasminogen activator) and matriptase as major proteases for processing of PDGF-C in MCF7 cells. In in vitro studies, we also show that uPA (urokinase-type plasminogen activator) is able to process PDGF-C. Furthermore, by site-directed mutagenesis, we identify the cleavage site for these proteases in PDGF-C. Lastly, we provide evidence suggesting a two-step proteolytic processing of PDGF-C involving creation of a hemidimer, followed by GFD-D (growth factor domain dimer) generation.  相似文献   

14.
Park IC  Park MJ  Woo SH  Lee KH  Lee SH  Rhee CH  Hong SI 《Cytokine》2001,15(3):166-170
We examined the role of caspases and serine protease(s) in cell death induced by tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). After incubation of adenocarcinoma cells with TRAIL, caspase-3, -8 were activated and the cleavage of Bid induced the release of cytochrome c, from the mitochondria to the cytosol. Tetrapeptide inhibitors of caspase-1, -2, -3, and -8 suppressed DNA fragmentation and attenuated the release of cytochrome c, whereas inhibitors of caspase-5 did not. Interestingly, the general serine protease(s) inhibitor 4-(2-aminoethyl)benzylsulfonyl fluoride (AEBSF) resulted in the arrest of apoptosis. However, the AEBSF did not prevent the release of mitochondrial cytochrome c during TRAIL-induced apoptosis. From these results, we postulate that serine protease(s) may be involved in post-mitochondrial apoptotic events, that lead to the activation of the initiator, caspase-9.  相似文献   

15.
A new class of carbamylating agents based on the cyclosulfamide scaffold is reported. These compounds were found to be efficient time-dependent inhibitors of human neutrophil elastase (HNE). Exploitation of the three sites of diversity present in the cyclosulfamide scaffold yielded compounds which inhibited HNE but not proteinase 3 (PR 3) or bovine trypsin. The findings reported herein suggest that the introduction of appropriate recognition elements into the cyclosulfamide scaffold may lead to highly selective agents of potential value in the design of activity-based probes suitable for investigating proteases associated with the pathogenesis of chronic obstructive pulmonary disease.  相似文献   

16.
17.
Acid-sensing ion channels (ASICs) are modulated by various classes of ligands, including the recently described hydrophobic monoamines, which inhibit and potentiate ASICs in a subunit-specific manner. In particular, memantine inhibits ASIC1a and potentiates ASIC2a homomers. The aim of the present work was to characterize action mechanism of memantine on recombinant ASIC1a expressed in CHO (Chinese hamster ovary) cells. We have demonstrated that effect of memantine on ASIC1a strongly depends on membrane voltage, conditioning pH value and application protocol. When applied simultaneously with activating acidification at hyperpolarized voltages, memantine caused the strongest inhibition. Surprisingly, application of memantine between ASIC1a activations at zero voltage caused significant potentiation. Analysis of the data suggests that memantine produces two separate effects, voltage-dependent open-channel block and shift of steady-state desensitization curve to more acidic values. Putative binding sites are discussed based on the computer docking of memantine to the acidic pocket and the pore region.  相似文献   

18.
Unlike mammalian Toll-like Receptors, the Drosophila Toll receptor does not interact directly with microbial determinants but is rather activated upon binding a cleaved form of the cytokine-like molecule Spatzle (Spz). During the immune response, Spz is thought to be processed by secreted serine proteases (SPs) present in the hemolymph that are activated by the recognition of gram-positive bacteria or fungi . In the present study, we have used an in vivo RNAi strategy to inactivate 75 distinct Drosophila SP genes. We then screened this collection for SPs regulating the activation of the Toll pathway by gram-positive bacteria. Here, we report the identification of five novel SPs that function in an extracellular pathway linking the recognition proteins GNBP1 and PGRP-SA to Spz. Interestingly, four of these genes are also required for Toll activation by fungi, while one is specifically associated with signaling in response to gram-positive bacterial infections. These results demonstrate the existence of a common cascade of SPs upstream of Spz, integrating signals sent by various secreted recognition molecules via more specialized SPs.  相似文献   

19.
Clp P represents a unique family of serine proteases   总被引:19,自引:0,他引:19  
The amino acid sequence of Clp P, the proteolytic subunit of the ATP-dependent Clp protease of Escherichia coli, closely resembles a protein encoded by chloroplast DNA, which is well conserved between chloroplasts of different plant species. The homology extends over almost the full length of the sequences of both proteins and consists of approximately 46% identical and approximately 70% similar amino acids. Antibodies against E. coli Clp P cross-reacted with proteins with Mr of 20,000-30,000 in bacteria, lower eukaryotes, plants, and animal cells. Since the regulatory subunit of Clp protease, Clp A, also has a homolog in plants, as well as in other bacteria and in lower eukaryotes, it is likely that ATP-dependent proteolysis in chloroplasts is catalyzed in part by a Clp-like protease and that both components of Clp-like proteases are widespread in living cells. We have identified Ser-111 as the active site serine in E. coli Clp P modified by diisopropyl fluorophosphate. Mutational alteration of Ser-111 or His-136 eliminates proteolytic activity of Clp P. Both residues are found in highly conserved regions of the protein. The sequences around the active site residues suggest that Clp P represents a unique class of serine protease. Amino-terminal processing of cloned Clp P mutated at either Ser-111 or His-136 occurs efficiently when wild-type clpP is present in the chromosome but is blocked in clpP- hosts. Processing of Clp P appears, therefore, to involve an intermolecular autocatalytic cleavage reaction. Since processing of Clp P occurs in clpA- cells, the autoprocessing activity of Clp P is independent of Clp A.  相似文献   

20.
Highly conserved amino acids that form crucial structural elements of the catalytic apparatus can be used to account for the evolutionary history of serine proteases and the cascades into which they are organized. One such evolutionary marker in chymotrypsin-like proteases is Ser(214), located adjacent to the active site and forming part of the primary specificity pocket. Here we report the mutation of Ser(214) in thrombin to Ala, Thr, Cys, Asp, Glu, and Lys. None of the mutants seriously compromises active site catalytic function as measured by the kinetic parameter k(cat). However, the least conservative mutations result in large increases in K(m) because of lower rates of substrate diffusion into the active site. Therefore, the role of Ser(214) is to promote the productive formation of the enzyme-substrate complex. The S214C mutant is catalytically inactive, which suggests that during evolution the TCN-->AGY codon transitions for Ser(214) occurred through Thr intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号