首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Expression of the DAL2, DAL4, DAL7, DUR1,2, and DUR3 genes in S. cerevisiae is induced by allophanate, the last intermediate in the allantoin catabolic pathway. Analysis of the DAL7 promoter identified a dodecanucleotide, the DAL7 UIS, which was required for inducer-responsiveness. Operation of the DAL7 UIS required functional DAL81 and DAL82 gene products. Since the DAL81 product was not an allantoin pathway-specific regulatory factor, the DAL82 product was considered as the more likely candidate to be the DAL UIS binding protein. Using an E. coli expression system, we showed that DAL82 protein specifically bound to wild type but not mutant DAL UIS sequences. DNA fragments containing DAL UIS elements derived from various DAL gene promoters bound DAL82 protein with different affinities which correlate with the degree of inducer-responsiveness the genes displayed.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
This report describes the isolation of the genes encoding allantoicase (DAL2) and ureidoglycolate hydrolase (DAL3), which are components of the large DAL gene cluster on the right arm of chromosome IX of Saccharomyces cerevisiae. During this work a new gene (DAL7) was identified and found to be regulated in the manner expected for an allantoin pathway gene. Its expression was (i) induced by allophanate, (ii) sensitive to nitrogen catabolite repression, and (iii) responsive to mutation of the DAL80 and DAL81 loci, which have previously been shown to regulate the allantoin degradation system. Hybridization probes generated from these cloned genes were used to analyze expression of the allantoin pathway genes in wild-type and mutant cells grown under a variety of physiological conditions. When comparison was possible, the patterns of mRNA and enzyme levels observed in various strains and physiological conditions were very similar, suggesting that the system is predominantly regulated at the level of gene expression. Although all of the genes seem to be controlled by a common mechanism, their detailed patterns of expression were, at the same time, highly individual and diverse.  相似文献   

11.
12.
13.
14.
The Norway spruce MADS-box genes DAL11, DAL12 and DAL13 are phylogenetically related to the angiosperm B-function MADS-box genes: genes that act together with A-function genes in specifying petal identity and with C-function genes in specifying stamen identity to floral organs. In this report we present evidence to suggest that the B-gene function in the specification of identity of the pollen-bearing organs has been conserved between conifers and angiosperms. Expression of DAL11 or DAL12 in transgenic Arabidopsis causes phenotypic changes which partly resemble those caused by ectopic expression of the endogenous B-genes. In similar experiments, flowers of Arabidopsis plants expressing DAL13 showed a different homeotic change in that they formed ectopic anthers in whorls one, two or four. We also demonstrate the capacity of the spruce gene products to form homodimers, and that DAL11 and DAL13 may form heterodimers with each other and with the Arabidopsis B-protein AP3, but not with PI, the second B-gene product in Arabidopsis. In situ hybridization experiments show that the conifer B-like genes are expressed specifically in developing pollen cones, but differ in both temporal and spatial distribution patterns. These results suggest that the B-function in conifers is dual and is separated into a meristem identity and an organ identity function, the latter function possibly being independent of an interaction with the C-function. Thus, even though an ancestral B-function may have acted in combination with C to specify micro- and megasporangia, the B-function has evolved differently in conifers and angiosperms.  相似文献   

15.
We have isolated three cis-dominant mutations which dramatically enhance DUR1 ,2 gene expression in Saccharomyces cerevisiae. The mutant phenotype, which is expressed both in haploid and MATa/MAT alpha diploid strains, does not appear to be an alteration of the normal control system for this gene because its expression remained fully inducible and sensitive to nitrogen catabolite repression. Instead, we found much higher levels of DUR1 ,2-specific RNA under both uninduced and induced conditions, i.e., the overproduction trait was superimposed on normal regulation of the gene. The mutations seemed to affect gene expression in a unidirectional manner or to be specific for DUR1 ,2 gene expression, because other genes in proximity to the mutations were not affected. We feel that these mutations may alter the chromatin structure in the vicinity of the DUR1 ,2 upstream control sequences or, alternatively, may be Ty insertions which no longer possess the ROAM characteristics reported by others and ourselves.  相似文献   

16.
Nitrogen catabolic gene expression in Saccharomyces cerevisiae has been reported to be regulated by three GATA family proteins, the positive regulators Gln3p and Gat1p/Nil1p and the negative regulator Dal80p/Uga43p. We show here that a fourth member of the yeast GATA family, the Dal80p homolog Deh1p, also negatively regulates expression of some, but not all, nitrogen catabolic genes, i.e., GAP1, DAL80, and UGA4 expression increases in a deh1 delta mutant. Consistent with Deh1p regulation of these genes is the observation that Deh1p forms specific DNA-protein complexes with GATAA-containing UGA4 and GAP1 promoter fragments in electrophoretic mobility shift assays. Deh1p function is demonstrable, however, only when a repressive nitrogen source such as glutamine is present; deh1 delta mutants exhibit no detectable phenotype with a poor nitrogen source such as proline. Our experiments also demonstrate that GATA factor gene expression is highly regulated by the GATA factors themselves in an interdependent manner. DAL80 expression is Gln3p and Gat1p dependent and Dal80p regulated. Moreover, Gln3p and Dal80p bind to DAL80 promoter fragments. In turn, GAT1 expression is Gln3p dependent and Dal80p regulated but is not autogenously regulated like DAL80. DEH1 expression is largely Gln3p independent, modestly Gat1p dependent, and most highly regulated by Dal80p. Paradoxically, the high-level DEH1 expression observed in a dal80::hisG disruption mutant is highly sensitive to nitrogen catabolite repression.  相似文献   

17.
18.
Degradation of allantoin, allantoate, or urea by Saccharomyces cerevisiae requires the participation of four enzymes and four transport systems. Production of the four enzymes and one of the active transport systems is inducible; allophanate, the last intermediate of the pathway, functions as the inducer. The involvement of allophanate in the expression of five distinct genes suggested that they might be regulated by a common element. This suggestion is now supported by the isolation of a new class of mutants (dal80). Strains possessing lesions in the DAL80 locus produce the five inducible activities at high, constitutive levels. Comparable constitutive levels of activity were also observed in doubly mutant strains (durl dal80) which are unable to synthesize allophanate. This, with the observation that arginase activity remained at its uninduced, basal level in strains mutated at the DAL80 locus, eliminates internal induction as the basis for constitutive enzyme synthesis. Mutations in dal80 are recessive to wild-type alleles. The DAL80 locus has been located and is not linked to any of the structural genes of the allantoin pathway. Synthesis of the five enzymes produced constitutively in dal80-1-containing mutants remains normally sensitive to nitrogen repression even though the dal80-1 mutation is present. From these observations we conclude that production of the allantoin-degrading enzymes is regulated by the DAL80 gene product and that induction and repression of enzyme synthesis can be cleanly separated mutationally.  相似文献   

19.
We demonstrate that the DAL5 gene, encoding a necessary component of the allantoate transport system, is constitutively expressed in Saccharomyces cerevisiae. Its relatively high basal level of expression did not increase further upon addition of allantoin pathway intermediates. However, steady-state DAL5 mRNA levels dropped precipitously when a repressive nitrogen source was provided. These control characteristics of DAL5 expression make this gene a good model with which to unravel the mechanism of nitrogen catabolite repression. Its particular advantage relative to other potentially useful genes derives from its lack of control by induction and hence the complicating effects of inducer exclusion.  相似文献   

20.
We demonstrate that expression of the UGA1, CAN1, GAP1, PUT1, PUT2, PUT4, and DAL4 genes is sensitive to nitrogen catabolite repression. The expression of all these genes, with the exception of UGA1 and PUT2, also required a functional GLN3 protein. In addition, GLN3 protein was required for expression of the DAL1, DAL2, DAL7, GDH1, and GDH2 genes. The UGA1, CAN1, GAP1, and DAL4 genes markedly increased their expression when the DAL80 locus, encoding a negative regulatory element, was disrupted. Expression of the GDH1, PUT1, PUT2, and PUT4 genes also responded to DAL80 disruption, but much more modestly. Expression of GLN1 and GDH2 exhibited parallel responses to the provision of asparagine and glutamine as nitrogen sources but did not follow the regulatory responses noted above for the nitrogen catabolic genes such as DAL5. Steady-state mRNA levels of both genes did not significantly decrease when glutamine was provided as nitrogen source but were lowered by the provision of asparagine. They also did not respond to disruption of DAL80.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号