共查询到20条相似文献,搜索用时 15 毫秒
1.
Some properties of the cellulolytic complex obtained from Trichoderma reesei QM 9414 grown on Solka floc as carbon source and its ability to hydrolyze the lignocellulosic biomass of Onopordum nervosum Boiss were studied. The optimum enzyme activity was found at temperatures between 50 and 55 degrees C and pH ranging from 4.3 to 4.8. Hydrolysis of 4-nitropnenyl-beta-D-glucopyranoside (4-NPG) and cellobiose by the beta-glucosidase of the complex, showed competitive inhibition by glucose with a K(i) value of 0.8 mM for 4-NPG and 2. 56 mM for cellobiose. Enzymatic hydrolysis yield of Onopordum nervosum, evaluated as glucose production after 48 h, showed a threefold increase by pretreating the lignocellulosic substrate with alkali. When the loss of glucose incurred by de pretreatment was taken into account, a 160% increase in the final cellulose to glucose conversion was found to be due to the pretreatment. 相似文献
2.
Solid state enzymatic hydrolysis (SSEH) has many advantages, such as higher sugar concentration, lower operating costs, and less energy input. It should be a potential approach for the industrial application of lignocellulosic ethanol. The purpose of this work is to review the enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading and introduce its both challenges and perspectives. The limitations of SSEH, including inhibition effects, water constraint, and rheology characteristic, are summarized firstly. Various strategies for overcoming these limitations are proposed correspondingly. Fed batch process and its feeding strategy to improve the SSEH efficiency are then discussed. Finally, several intensification methods, hydrolysis reactor, and pilot‐ and demonstration‐scale operations of SSEH are described. In‐depth analysis of main limitations and development of novel intensification methods and reactors should provide an effective way to achieve large‐scale implementation of SSEH. 相似文献
3.
Eucalyptus wood samples were delignified with HCl-catalysed acetic acid solutions under selected experimental conditions and treated with NaClO solutions. The solid residues obtained were employed as substrates for enzymatic hydrolysis. The NaClO concentration used in the pretreatment step, the liquor/solid ratio and the enzyme/substrate ratio were considered as operational variables. The experimental data allowed the development of generalized kinetic models which provided the necessary information for design calculations. The operational conditions were compared from an engineering viewpoint on the basis of economic estimates. Optimum conditions were established from these estimates. 相似文献
4.
Three strains of Trichoderma-T. reesei C30, T. reesei QM9414, and Trichoderma species E-58-were used to study the enzymatic hydrolysis of pretreated wood substrates. ach of the culture filtrates was incubated with a variety of commercially prepared cellulose substrates and pretreated wood substrates. Solka floc was the most easily degraded commercial cellulose. The enzyme accessibility of steam-exploded samples which had been alkali extracted and then stored wet decreased with the duration of the steam treatment. Air drying reduced the extent of hydrolysis of all the samples but had a greater effect on the samples which had previously shown the greatest hydrolysis. Mild pulping using 2% chlorite increased the enzymatic hydrolysis of all the samples. Steam explosion was shown to be an excellent pretreatment. The results indicate that the distribution of the lignin as well as the surface area of the cellulosic substrate are important features in enzymatic hydrolysis. 相似文献
5.
6.
Pretreatment of lignocellulosic biomass has been taken up as a global challenge as it comprises a large renewable source of fermentable sugars. In this study, effect of electron beam irradiation (EBI) on a hybrid grass variety investigated as a biomass pretreatment method. Dry biomass samples after characterization were exposed to EBI doses of 0, 75, 150 and 250kGy. The pretreated biomass samples were enzymatically hydrolyzed using Trichoderma reesei ATCC 26921 cellulase for 144h. The enzyme loadings were 15 and 30FPU/g of biomass. The structural changes and degree of crystallinity of the pretreated biomass were studied by FTIR, XRD and SEM analyses. The lignocellulosic biomass sample showed 12.0% extractives, 36.9% cellulose, 28.4% hemicellulose, 11.9% lignin and 8.6% ash. Significant improvements in the reducing sugar and glucose yields were observed in the hydrolysate of EBI pretreated biomass compared to the control. In 250kGy exposed samples 79% of the final reducing sugar yield was released within 48h of hydrolysis at an enzyme loading rate of 30FPU/g of biomass. The IR crystallinity index calculated from the FTIR data and degree of crystallinity (XRD) decreased in the EBI treated samples. A significant negative correlation was observed between degree of crystallinity and the glucose yield from enzymatic hydrolysis. 相似文献
7.
Enzymatic hydrolysis of peptidyl-tRNA 总被引:3,自引:0,他引:3
8.
Il'ina AV Zueva OIu Lopatin SA Varlamov VP 《Prikladnaia biokhimiia i mikrobiologiia》2004,40(1):42-45
It was shown that the enzymatic preparation Celloviridin G20x can be used for the hydrolysis of alpha-chitin of various origin. The purity of the final product of hydrolysis, N-acetylglucosamine, was monitored using HPLC. 相似文献
9.
D Cavallini C De Marco C Crifò 《Bollettino della Società italiana di biologia sperimentale》1964,40(24):Suppl:1973-Suppl:1977
10.
11.
Kinetic studies of the enzymatic hydrolysis of molasses were conducted using glucoamylase. Central Sugar Refinery SDN BHD contains 13-20% glucose. The molasses was diluted and the kinetic experiments were conducted at 67 degrees C with 100-1000 mg/l of glucoamylase. The glucose contents of the molasses were enhanced after hydrolysis of molasses solution with 1000 mg/l glucoamylase. A Lineweaver-Burk plot was obtained based on enzyme kinetic data. The rate constant, Km and maximum reaction rate, Vmax for 500 mg/l of glucoamylase were 100 mmol/l (18 g/l) and 5 mmol/l min (0.9 g/l min), respectively. The maximum reaction rate, Vmax for 1000 mg/l of glucoamylase was doubled, to 100 mmol/l (18 g/l) and the rate constant, Km was the same for 500 mg/l of glucoamylase. The substrate inhibition model was noncompetitive based on the resulting Lineweaver-Burk plot for enzyme concentration of 500 and 1000 mg/l. 相似文献
12.
A Ia Strizhevskaia 《Mikrobiologicheekij zhurnal》1979,41(5):509-516
13.
14.
15.
The process of gelatin hydrolysis by means of enzymes of the proteolytic action with the aim to determine most effective destructor of gelatin macromolecules for recovering permeability and selective properties of ultrafiltration membranes was investigated. The presence of free alpha-NH2-groups was determined by means of the Lee and Takahashi method. Calculation of the destruction degree of substances in the Lee and Takahashi method during determination of the quantity of free alpha-NH2-groups rose precision of the method by 6-8%. The maximum degree of destruction (48.2% for 1-2 hours) was provided by the enzyme preparation "Pronaz-1" (Str. griseus + Acr. chrysogenum) and by industrial enzymes: alkali proteaze and proteaze C. 相似文献
16.
The nucleoside phosphoramidate thymidine-5′-phospho-α-naphthylamidate and thymidine-3′-phospho-α-naphthylamidate were prepared as fluorogenic substrates for the study of enzymatic hydrolysis of the PN bond. With these new substrates, the rate and specificity of hydrolysis of the PN bond of the nucleoside phosphoramidate by snake venom and spleen phosphodiesterase could be studied. It was found that the 5′-phosphoramidate was hydrolyzed by snake venom phosphodiesterase and the 3′-phosphoramidate was hydrolyzed only by the spleen phosphodiesterase. Thus, the specificity requirement for PN bond cleavage is similar to that of the P0 bond cleavage, even though the rate is much slower. 相似文献
17.
Fang Z 《Bioresource technology》2011,102(3):3587-3590
Willow without any pretreatment, and water were studied in an optical micro-reactor, diamond anvil cell by rapid heating (7-10°C/s) to high temperatures and high pressures (up to 403°C and 416 MPa), most of willow (89-99%) dissolved and hydrolyzed in water at 330-403°C within 22 s. It was found that low-density water (e.g., 571 kg/m(3)) solubilized almost all willow with particle size less than 200 μm, and subsequently hydrolyzed to hydrolysates in subcritical water at 354°C and 19 MPa within 9 s. These results were further used to propose a flow process to fast hydrolyze wood in seconds to valuable sugars. 相似文献
18.
19.