首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Plant gum as an elicitor for guggulsterone production in cell cultures of Commiphora wightii is reported for the first time. Guggulsterone production increased 2.4 fold in the cell cultures by gum Arabic (100 mg l−1), while mesquite gum elicited 2 fold. The cells treated with gum Arabic at 7th and 9th day accumulated enhanced guggulsterones within 24 h, which increased further up to 48 h and then declined. The cells treated at 9th day accumulated higher amount (218 μg l−1) of guggulsterones after 48 h of elicitation as compared to cells treated at 7th day (164 μg l−1). The optimized elicitation conditions were used in vessels of varying capacity where maximum yield of 285 μg l−1 of guggulsterones was recorded in 3 l shake flasks. These experiments enabled highest guggulsterones yield in a short duration of 11 days in cell cultures of C. wightii.  相似文献   

2.
Poly‐γ‐glutamate (γ‐PGA) has applications in food, medical, cosmetic, animal feed, and wastewater industries. Bacillus subtilis DB430, which possesses the γ‐PGA synthesis ywsC‐ywtAB genes in its chromosome, cannot produce γ‐PGA. An efficient synthetic expression control sequence (SECS) was introduced into the upstream region of the ywtABC genes, and this resulted in γ‐PGA‐producing B. subtilis mutant strains. Mutant B. subtilis PGA6‐2 stably produces high levels of γ‐PGA in medium A without supplementation of extra glutamic acid or ammonium chloride. The mutant B. subtilis PGA 6‐2 is not only a γ‐PGA producer, but it is also a candidate for the genetic and metabolic engineering of γ‐PGA production. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

3.
Poly(γ‐glutamic acid) (γ‐PGA) is a promising biopolymer with many potential industrial and pharmaceutical applications. To reduce the production costs, the effects of yeast extract and L ‐glutamate in the substrate for γ‐PGA production were investigated systematically at shake flask scale. The results showed that lower concentrations of yeast extract (40 g/L) and L ‐glutamate (30 g/L) were beneficial for the cost‐effective production of γ‐PGA in the formulated medium. By maintaining the glucose concentration in the range of 3–10 g/L via a fed‐batch strategy in a 10‐L fermentor, the production of γ‐PGA was greatly improved with the highest γ‐PGA concentration of 101.1 g/L, a productivity of 2.19 g/L·h and a yield of 0.57 g/g total substrate, which is about 1.4‐ to 3.2‐fold higher than those in the batch fermentation. Finally, this high‐density fermentation process was successfully scaled up in a 100‐L fermentor. The present work provides a powerful approach to produce this biopolymer as a bulk chemical in large scale.  相似文献   

4.
As an environmentally friendly and industrially useful biopolymer, poly‐γ‐glutamic acid (γ‐PGA) from Bacillus licheniformis CGMCC 2876 was characterized by the high‐resolution mass spectrometry and 1H NMR. A flocculating activity of 11,474.47 U mL?1 obtained with γ‐PGA, and the effects of carbon sources, ions, and chemical properties (D‐/L‐composition and molecular weight) on the production and flocculating activity of γ‐PGA were discussed. Being a bioflocculant in the sugar refinery process, the color and turbidity of the sugarcane juice was IU 1,877.36 and IU 341.41 with 0.8 ppm of γ‐PGA, respectively, which was as good as the most widely used chemically synthesized flocculant in the sugarcane industry—polyacrylamide with 1 ppm. The γ‐PGA produced from B. licheniformis CGMCC 2876 could be a promising alternate of chemically synthesized flocculants in the sugarcane industry. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1287–1294, 2015  相似文献   

5.
Aims: Optimal production conditions of conjugated γ‐linolenic acid (CGLA) from γ‐linolenic acid using washed cells of Lactobacillus plantarum AKU 1009a as catalysts were investigated. Methods and Results: Washed cells of Lact. plantarum AKU 1009a exhibiting a high level of CGLA productivity were obtained by cultivation in a nutrient medium supplemented with 0·03% (w/v) α‐linolenic acid as an inducer. Under the optimal reaction conditions with 13 mg ml?1γ‐linolenic acid as a substrate in 5 ‐ml reaction volume, the washed cells [32% (wet cells, w/v) corresponding to 46 mg ml?1 dry cells] as the catalysts produced 8·8 mg CGLA per millilitre reaction mixture (68% molar yield) in 27 h. The produced CGLA was a mixture of two isomers, i.e., cis‐6,cis‐9,trans‐11‐octadecatrienoic acid (CGLA1, 40% of total CGLA) and cis‐6,trans‐9,trans‐11‐octadecatrienoic acid (CGLA2, 60% of total CGLA), and accounted for 66% of total fatty acid obtained. The CGLA produced was obtained as free fatty acids adsorbed mostly on the surface of the cells of Lact. plantarum AKU1009a. Conclusion: The practical process of CGLA production from γ‐linolenic acid using washed cells of Lact. plantarum AKU 1009a was successfully established. Significance and Impact of the Study: We presented the first example of microbial production of CGLA. CGLA produced by the process is valuable for evaluating their physiological and nutritional effects, and chemical characteristics.  相似文献   

6.
The γ‐tocopherol methyltransferase (γ‐TMT) is an important enzyme regulating synthesis of four tocopherols (α, γ, β and δ). In this report, we investigated the role of γ‐TMT in regulating abiotic stress within chloroplasts. The At γ‐tmt overexpressed via the tobacco chloroplast genome accumulated up to 7.7% of the total leaf protein, resulting in massive proliferation of the inner envelope membrane (IEM, up to eight layers). Such high‐level expression of γ‐TMT converted most of γ‐tocopherol to α‐tocopherol in transplastomic seeds (~10‐fold higher) in the absence of abiotic stress. When grown in 400 mm NaCl, α‐tocopherol content in transplastomic TMT leaves increased up to 8.2‐fold and 2.4‐fold higher than wild‐type leaves. Likewise, under heavy metal stress, α‐tocopherol content in the TMT leaves increased up to 7.5‐fold, twice higher than in the wild type. Under extreme salt stress, the wild type accumulated higher starch and total soluble sugars, but TMT plants were able to regulate sugar transport. Hydrogen peroxide and superoxide content in wild type increased up to 3‐fold within 48 h of NaCl stress when compared to TMT plants. The ion leakage from TMT leaves was significantly less than wild‐type plants under abiotic stress and with less malondialdehyde, indicating lower lipid peroxidation. Taken together, these studies show that α‐tocopherol plays a crucial role in the alleviation of salt and heavy metal stresses by decreasing ROS, lipid peroxidation and ion leakage, in addition to enhancing vitamin E conversion. Increased proliferation of the IEM should facilitate studies on retrograde signalling from chloroplast to the nucleus.  相似文献   

7.
Aluminium oxide (Al2O3) has widely been used for catalysts, insulators, and composite materials for diverse applications. Herein, we demonstrated if γ‐Al2O3 was useful as a luminescence support material for europium (Eu) (III) activator ion. The hydrothermal method and post‐thermal treatment at 800°C were employed to synthesize Eu(III)‐doped γ‐Al2O3 nanofibre structures. Luminescence characteristics of Eu(III) ions in Al2O3 matrix were fully understood by taking 2D and 3D‐photoluminescence imaging profiles. Various sharp emissions between 580 to 720 nm were assigned to the 5D07FJ (J = 0, 1, 2, 3, 4) transitions of Eu(III) activators. On the basis of X‐ray diffraction crystallography, Auger elemental mapping and the asymmetry ratio, Eu(III) ions were found to be well doped into the γ‐Al2O3 matrix at a low (1 mol%) doping level. A broad emission at 460 nm was substantially increased upon higher (2 mol%) Eu(III) doping due to defect creation. The first 3D photoluminescence imaging profiles highlight detailed understanding of emission characteristics of Eu(III) ions in Al oxide‐based phosphor materials and their potential applications.  相似文献   

8.
One of the emerging biopolymers that are currently under active investigation is bacterial poly(γ‐glutamic acid) (γ‐PGA). However, before its full industrial exploitation, a substantial increase in microbial productivity is required. γ‐PGA obtained from the Bacillus subtilis laboratory strain 168 offers the advantage of a producer characterized by a well defined genetic framework and simple manipulation techniques. In this strain, the knockout of genes for the major γ‐PGA degrading enzymes, pgdS and ggt, leads to a considerable improvement in polymer yield, which attains levels analogous to the top wild γ‐PGA producer strains. This study highlights the convenience of using the laboratory strain of B. subtilis over wild isolates in designing strain improvement strategies aimed at increasing γ‐PGA productivity. Biotechnol. Bioeng. 2013; 110: 2006–2012. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
The enantiomeric purity of escitalopram oxalate ESC and its “in‐process impurities,” namely, ESC‐N‐oxide, ESC‐citadiol, and R(?)‐enantiomer were studied in drug substance and products using high‐performance liquid chromatography (HPLC)‐UV (Method I), synchronous fluorescence spectroscopy (SFS) (Method IIA), and first derivative SFS (Method IIB). Method I describes as an isocratic HPLC‐UV for the direct resolution and determination of enantiomeric purity of ESC and its “in‐process impurities.” The proposed method involved the use of αl‐acid glycoprotein (AGP) chiral stationary phase. The regression plots revealed good linear relationships of concentration range of 0.25 to 100 and 0.25 to 10 μg mL?1 for ESC and its impurities. The limits of detection and quantifications for ESC were 0.075 and 0.235 μg mL?1, respectively. Method II involves the significant enhancement of the fluorescence intensities of ESC and its impurities through inclusion complexes formation with hydroxyl propyl‐β‐cyclodextrin as a chiral selector in Micliavain buffer. Method IIA describes SFS technique for assay of ESC at 225 nm in presence of its impurities: R(?)‐enantiomer, citadiol, and N‐oxide at ?λ of 100 nm. This method was extended to (Method IIB) to apply first derivative SFS for the simultaneous determination of ESC at 236 nm and its impurities: the R(?)‐enantiomer, citadiol, and N‐oxide at 308, 275, and 280 nm, respectively. Linearity ranges were found to be 0.01 to 1.0 μg mL?1 for ESC and its impurities with lower detection and quantification limits of 0.033/0.011 and 0.038/0.013 μg mL?1 for SFS and first derivative synchronous fluorescence spectra (FDSFS), respectively. The methods were used to investigate the enantiomeric purity of escitalopram.  相似文献   

10.
Mucor indicus can be used to produce ethanol from a variety of sugars, including pentose’s. An extract of it, produced by autolysis, could replace yeast extract in culture medium with improved production of ethanol. At 10 g l−1, the extract gave a higher ethanol yield (0.47 g g−1) and productivity (0.71 g l−1 h−1) compared to medium containing yeast extract (yield 0.45 g g−1; productivity 0.67 g l−1 h−1).  相似文献   

11.
Single crystals of KCl and KBr singly and doubly doped with Tb3+ and Ce3+, respectively, were successfully grown using the Bridgeman technique. This work reports the comparative luminescence behavior and optical absorption characterization of non‐irradiated and γ‐ray‐irradiated single crystals of these materials. The existing defect and the defect created by γ‐ray irradiation were monitored by optical absorption spectra. The excitation and emission spectra of these materials were measured at room temperature with a spectrofluorometer and the pertaining results were compared. The F‐band comparison was made when bleached with F‐light for 2 mins. The trap‐level changes in KCl and KBr when it is singly and doubly doped enabled us to draw conclusions on the nature of the defect and on the recombination processes involved.  相似文献   

12.
Clostridium beijerinckii mutant strain IB4, which has a high level of inhibitor tolerance, was screened by low-energy ion implantation and used for butanol fermentation from a non-detoxified hemicellulosic hydrolysate of corn fiber treated with dilute sulfuric acid (SAHHC). Evaluation of toxicity showed C. beijerinckii IB4 had a higher level of tolerance than parent strain C. beijerinckii NCIMB 8052 for five out of six phenolic compounds tested (the exception was vanillin). Using glucose as carbon source, C. beijerinckii IB4 produced 9.1 g l−1 of butanol with an acetone/butanol/ethanol (ABE) yield of 0.41 g g−1. When non-detoxified SAHHC was used as carbon source, C. beijerinckii NCIMB 8052 grew well but ABE production was inhibited. By contrast, C. beijerinckii IB4 produced 9.5 g l−1 of ABE with a yield of 0.34 g g−1, including 2.2 g l−1 acetone, 6.8 g l−1 butanol, and 0.5 g l−1 ethanol. The remarkable fermentation and inhibitor tolerance of C. beijerinckii IB4 appears promising for ABE production from lignocellulosic materials.  相似文献   

13.
The optical spectroscopic characterization of γ‐turns in solution is uncertain and their distinction from β‐turns is often difficult. This work reports systematic ECD and vibrational circular dichroism (VCD) spectroscopic studies on γ‐turn model cyclic tetrapeptides cyclo(Ala‐β‐Ala‐Pro‐β‐Ala) ( 1 ), cyclo(Pro‐β‐Ala‐Pro‐β‐Ala) ( 2 ) and cyclo(Ala‐β‐Ala‐Ala‐β‐Ala) ( 3 ). Conformational analysis performed at the 6‐31G(d)/B3LYP level of theory using an adequate PCM solvent model predicted one predominant conformer for 1‐3 , featuring two inverse γ‐turns. The ECD spectra in ACN of 1 and 2 are characterized by a negative n→π* band near 230 nm and a positive π→π* band below 200 nm with a long wavelength shoulder. The ECD spectra in TFE of 1‐3 show similar spectra with blue‐shifted bands. The VCD spectra in ACN‐d3 of 1 and 2 show a +/?/+/? amide I sign pattern resulting from four uncoupled vibrations in the case of 1 and a sequence of two positive couplets in the case of 2 . A ?/+/+/? amide I VCD pattern was measured for 3 in TFE‐d2. All three peptides give a positive couplet or couplet‐like feature (+/?) in the amide II region. VCD spectroscopy, in agreement with theoretical calculations revealed that low frequency amide I vibrations (at ~1630 cm?1 or below) are indicative of a C7 H‐bonded inverse γ‐turns with Pro in position 2, while γ‐turns encompassing Ala absorb at higher frequency (above 1645 cm?1). Chirality, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Aims: To analyse the production of different metabolites by dark‐grown Euglena gracilis under conditions found to render high cell growth. Methods and Results: The combination of glutamate (5 g l?1), malate (2 g l?1) and ethanol (10 ml l?1) (GM + EtOH); glutamate (7·15 g l?1) and ethanol (10 ml l?1); or malate (8·16 g l?1), glucose (10·6 g l?1) and NH4Cl (1·8 g l?1) as carbon and nitrogen sources, promoted an increase of 5·6, 3·7 and 2·6‐fold, respectively, in biomass concentration in comparison with glutamate and malate (GM). In turn, the production of α‐tocopherol after 120 h identified by LC‐MS was 3·7 ± 0·2, 2·4 ± 0·1 and 2 ± 0·1 mg [g dry weight (DW)]?1, respectively, while in the control medium (GM) it was 0·72 ± 0·1 mg (g DW)?1. For paramylon synthesis, the addition of EtOH or glucose induced a higher production. Amino acids were assayed by RP‐HPLC; Tyr a tocopherol precursor and Ala an amino acid with antioxidant activity were the amino acids synthesized at higher concentration. Conclusions: Dark‐grown E. gracilis Z is a suitable source for the generation of the biotechnologically relevant metabolites tyrosine, α‐tocopherol and paramylon. Significance and Impact of the Study: By combining different carbon and nitrogen sources and inducing a tolerable stress to the cell by adding ethanol, it was possible to increase the production of biomass, paramylon, α‐tocopherol and some amino acids. The concentrations of α‐tocopherol achieved in this study are higher than others reported previously for Euglena, plant and algal systems. This work helps to understand the effect of different carbon sources on the synthesis of bio‐molecules by E. gracilis and can be used as a basis for future works to improve the production of different metabolites of biotechnological importance by this organism.  相似文献   

15.

Aims

To determine the herd prevalence of Enterobacteriaceae producing CTX‐M‐type extended‐spectrum β‐lactamases (ESBLs) among 381 dairy farms in Japan.

Methods and Results

Between 2007 and 2009, we screened 897 faecal samples using BTB lactose agar plates containing cefotaxime (2 μg ml?1). Positive isolates were tested using ESBL confirmatory tests, PCR and sequencing for CTX‐M, AmpC, TEM and SHV. The incidence of Enterobacteriaceae producing CTX‐M‐15 (= 7), CTX‐M‐2 (= 12), CTX‐M‐14 (= 3), CMY‐2 (= 2) or CTX‐M‐15/2/14 and CMY‐2 (= 4) in bovine faeces was 28/897 (3·1%) faecal samples. These genes had spread to Escherichia coli (= 23) and three genera of Enterobacteriaceae (= 5). Herd prevalence was found to be 20/381 (5·2%) dairy farms. The 23 E. coli isolates showed clonal diversity, as assessed by multilocus sequence typing and pulsed‐field gel electrophoresis. The pandemic E. coli strain ST131 producing CTX‐M‐15 or CTX‐M‐27 was not detected.

Conclusions

Three clusters of CTX‐M (CTX‐M‐15, CTX‐M‐2, CTX‐M‐14) had spread among Japanese dairy farms.

Significance and Impact of the Study

This is the first report on the prevalence of multidrug‐resistant CTX‐M‐15–producing E. coli among Japanese dairy farms.  相似文献   

16.
Genome shuffling was used to improve the thermotolerance of l-glutamic acid-producing strain Corynebacteria glutamicum. Five strains with subtle improvements in high temperature tolerance and productivity were selected by ultraviolet irradiation and diethyl sulfate mutagenesis. An improved strain (F343) was obtained by three rounds of genome shuffling of the five strains as mentioned above. The cell density of F343 was four times higher than that of ancestor strains after 24 h of cultivation at 44°C, and importantly, the yield of l-glutamic acid was increased by 1.8-times comparing with that of the ancestor strain at 38°C in a 5-L fermentor. With glucose supplement and two-stage pH control, the l-glutamate acid concentration of F343 reached 119 g/L after fermentation for 30 h. The genetic diversity between F343 and its ancestors was also evaluated by amplified fragment length polymorphism analysis. Results suggest that the phenotypes for both thermotolerance and l-glutamic acid production in F343 were evolved.  相似文献   

17.
Glutathione (GSH), an important tripeptide compound, is widely used as a therapeutic and in the food and cosmetic industries. To improve its production yield, we added the antibiotic nystatin to a batch fermentation of Saccharomyces cerevisiae, at different concentrations and at various times. Based on the results that nystatin can effectively stimulate GSH accumulation but at the same time inhibits cell growth, a three‐point addition strategy (0.05 mg/L at 8 h, 0.25 mg/L at 16 h, and 0.5 mg/L at 20 h) was developed to maximize GSH production. As a result, a maximum yield of 237.8 mg/L was obtained, which was by 50.6% higher than without the addition of nystatin. When combining this strategy with cysteine addition, the GSH yield increased to 278.9 mg/L. Subsequently, the γ‐glutamylcysteine synthetase (γ‐GCS) activity and K+ concentration were analyzed to investigate the possible mechanism involved in the increased production. It was found that the nystatin‐induced increase in the GSH yield was associated with a higher γ‐GCS activity and K+ concentration.  相似文献   

18.
Aims: To characterize of a thermostable recombinant α‐l ‐arabinofuranosidase from Caldicellulosiruptor saccharolyticus for the hydrolysis of arabino‐oligosaccharides to l ‐arabinose. Methods and Results: A recombinant α‐l ‐arabinofuranosidase from C. saccharolyticus was purified by heat treatment and Hi‐Trap anion exchange chromatography with a specific activity of 28·2 U mg?1. The native enzyme was a 58‐kDa octamer with a molecular mass of 460 kDa, as measured by gel filtration. The catalytic residues and consensus sequences of the glycoside hydrolase 51 family of α‐l ‐arabinofuranosidases were completely conserved in α‐l ‐arabinofuranosidase from C. saccharolyticus. The maximum enzyme activity was observed at pH 5·5 and 80°C with a half‐life of 49 h at 75°C. Among aryl‐glycoside substrates, the enzyme displayed activity only for p‐nitrophenyl‐α‐l ‐arabinofuranoside [maximum kcat/Km of 220 m(mol l?1)?1 s?1] and p‐nitrophenyl‐α‐l ‐arabinopyranoside. This substrate specificity differs from those of other α‐l ‐arabinofuranosidases. In a 1 mmol l?1 solution of each sugar, arabino‐oligosaccharides with 2–5 monomer units were completely hydrolysed to l ‐arabinose within 13 h in the presence of 30 U ml?1 of enzyme at 75°C. Conclusions: The novel substrate specificity and hydrolytic properties for arabino‐oligosaccharides of α‐l ‐arabinofuranosidase from C. saccharolyticus demonstrate the potential in the commercial production of l ‐arabinose in concert with endoarabinanase and/or xylanase. Significance and Impact of the Study: The findings of this work contribute to the knowledge of hydrolytic properties for arabino‐oligosaccharides performed by thermostable α‐l ‐arabinofuranosidase.  相似文献   

19.
20.
Poly‐γ‐glutamate (PGA) is a versatile nylon‐like material, and enhanced production of PGA is required for various bio‐industrial applications. In this study, we first examined the effects of available sugars on the production of Bacillus subtilis PGA, and demonstrated the good applicability of pentoses (e.g., D ‐xylose). Then, we characterized the pgsE gene of B. subtilis, which encodes a 6.5‐kDa protein of 55 amino acids (PgsE), as a genetic tool for increasing the yield of PGA without changing its structural features (e.g., polymer stereochemistry and molecular size distribution). In the presence of Zn2+, the induction of PgsE tripled the PGA productivity of B. subtilis subsp. chungkookjang. This finding will contribute to the establishment of an improved PGA‐production system. Biotechnol. Bioeng. 2011; 108:226–230. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号