首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
Aeromonas hydrophila, a ubiquitous inhabitant of aquatic environments, commonly expresses several cell-surface properties that may contribute to virulence. Since many aquatic microorganisms in hostile environments can withstand starvation conditions for long periods, we examined the effect of storage under nutrient-poor conditions on the expression of cell-surface properties of this pathogen. Phenotypes studied were: (1) cell-surface hydrophobicity and charge, and (2) the ability to bind connective-tissue proteins and lactoferrin. Our results suggest that the response of A. hydrophila to nutrient-poor conditions is regimen specific. Generally, A. hydrophila cells became more hydrophobic and significantly increased their ability to bind the iron-binding glycoprotein lactoferrin when the bacterium was stored under nutrient-poor conditions; however, under these conditions, the cells seemed to lose their ability to bind connectivetissue proteins.  相似文献   

2.
微生物表面展示技术是通过基因工程手段,将短的外源肽或蛋白质表达在微生物细胞表面,该技术可以应用于开发活的细菌疫苗、筛选抗体库、生产生物细胞吸附剂以及制备整细胞生物催化剂。通过金属高效结合肽的肽库筛选和微生物展示技术,将金属结合肽直接展示在微生物的表面,用于处理环境中的重金属污染,为环境中重金属污染的防治提供了一条崭新的途径。利用微生物表面展示技术制备整细胞催化剂,用于有毒有机污染物的处理,可以极大地加快污染物的降解速率。简要介绍了微生物表面展示技术及其在重金属污染治理和毒性有机污染物的脱毒等环境生物修复方面的最新研究进展。  相似文献   

3.
Partitioning in aqueous polymer two-phase systems of polyethylene glycol and dextran was used to detect and compare cell-surface charge and cell-surface hydrophobicity of Aeromonas hydrophila, A. caviae, A. sobria, Vibrio cholerae, and V. anguillarum strains. These strains have cell-surface components that bound either native or thermally denatured type I collagen (i.e., a mixture of the α1+α2 chains) and gelatin immobilized on latex beads. Our goals were: (1) to compare the possible relationship between the cell-surface charge/hydrophobicity and binding to collagen and (2) to evaluate the influence of the culture media on the expression of surface properties. There was no apparent relationship between cell-surface charge, cell-surface hydrophobicity, and binding to collagen. The expression of surface properties was dependent on the culture media. There was no relationship between binding to immobilized collagen and binding to soluble 125I-labeled collagen. Particle-agglutination reactivity differed when using various collagen-coated microbead preparations. There were general differences in the particle-agglutination reactivity when collagen-coated latex beads were prepared using different coating procedures. The negative charge and hydrophobicity of the various collagen-coated microbead preparations were also studied by partitioning in the two-phase system of polyethylene glycol and dextran. Under these conditions, the α1+α2 collagen-chain mixture covalently immobilized on carboxy-modified latex beads was less hydrophobic and negatively charged than gelatin and native collagen immobilized on the same kind of latex beads. For latex beads passively coated with collagen preparations, the α1+α2 collagen-chain mixture was more hydrophobic than gelatin and native collagen. We suggest that for screening collagen-binding among Vibrio and Aeromonas strains, a reliable and sensitive particle-agglutination assay should consider the collagen preparation and the coating procedure for the immobilization of collagen onto the latex beads. In this regard, carboxy-modified latex beads coated with an α1+α2 collagen-chain mixture gave the best results. Received: 9 January 1995 / Accepted: 30 May 1995  相似文献   

4.
The cell wall of Saccharomyces cerevisiae plays an essential role in the biophysical characteristics of the cell surface. The modification of the cell wall property is an important factor for cellular adaptation to a stressful environment. In this study, we randomly modified the cell wall by displaying combinatorial random peptides on the yeast cell surface, and by screening, we successfully obtained a novel peptide, Scr35, that endowed yeasts with acid tolerance. The yeast, surface-modified by Scr35, was able to grow well under acidic condition and low glucose condition and showed high glucose uptake activity. However, the growth of the modified yeast became inferior as extracellular pH became higher. This inferiority was rescued by decreasing glucose concentration in a medium. Our results suggest that the optimum pH of a medium becomes low when the newly created Scr35 affects glucose uptake activity through cell-surface modification. Therefore, such artificial modification of the cell surface has a great potential as a useful tool for breeding acid-tolerant yeasts for industrial applications of S. cerevisiae as a biocatalyst.  相似文献   

5.
Xue Y  Bao L  Xiao X  Ding L  Lei J  Ju H 《Analytical biochemistry》2011,(1):18154-97
A kind of concanavalin A functionalized multiwalled carbon nanotube (ConA-MWCNT) was constructed by noncovalent assembly of ConA on carboxylated MWCNT with poly(diallyldimethylammonium) as a linker. The novel nanomaterial was characterized with scanning electron microscopy and atomic force microscopy. It incorporated both the specific recognition ability of lectin for cell-surface mannosyl groups and the unique electronic and mechanical properties of MWCNT. An electrochemical label-free method for cytosensing was proposed by constructing a ConA-MWCNT interface on a glassy carbon electrode, which showed a linear response to K562 cells ranging from 1 × 104 to 1 × 107 cells mL−1. The ConA-MWCNT interface could be further used for monitoring of dynamic variation of glycan expression on K562 cells in response to drugs. A facile and high-throughput optical method for the analysis of dynamic glycan expression on living cells was also developed by constructing an array of ConA-MWCNT spots on a glass slide. This method showed acceptable rapidity and low cost. The noncovalent functionalization of MWCNTs with lectins could be potentially applied in cell biological studies based on cell-surface glycan expression.  相似文献   

6.
High risk human papillomavirus types 16 (HPV16) and 18 (HPV18) can cause cervical cancer. Efficient infection by HPV16 and HPV18 pseudovirions requires interactions of particles with cell-surface receptor heparan sulfate oligosaccharide. To understand the virus-receptor interactions for HPV infection, we determined the crystal structures of HPV16 and HPV18 capsids bound to the oligosaccharide receptor fragment using oligomeric heparin. The HPV-heparin structures revealed multiple binding sites for the highly negatively charged oligosaccharide fragment on the capsid surface, which is different from previously reported virus-receptor interactions in which a single type of binding pocket is present for a particular receptor. We performed structure-guided mutagenesis to generate mutant viruses, and cell binding and infectivity assays demonstrated the functional role of viral residues involved in heparin binding. These results provide a basis for understanding virus-heparan sulfate receptor interactions critical for HPV infection and for the potential development of inhibitors against HPV infection.  相似文献   

7.
8.
A novel cell-surface display system was constructed in Aspergillus oryzae. Each of the five genes encoding the putative cell-wall-localized protein from the A. oryzae genome was cloned and these cell-surface anchor functions were examined by fusion to the C-terminal of the green fluorescent protein (GFP). Using the MP1 and CWP proteins as anchor proteins, GFP signals were strongly observed on the cell surface of recombinant A. oryzae. When these proteins were used as anchor proteins for cell-surface display of β-glucosidase from A. oryzae, enzyme activity was detected on the cell surface. In particular, β-glucosidase activity of recombinant A. oryzae using MP1, a putative glycosylphosphatidylinositol (GPI) anchor protein was higher than CWP. Based on these results, it was concluded that the MP1 protein can act as a GPI-anchor protein in A. oryzae, and the proposed cell-surface display system using MP1 allows for the display of heterogeneous and endogenous proteins.  相似文献   

9.
GRP78, a molecular chaperone with critical endoplasmic reticulum functions, is aberrantly expressed on the surface of cancer cells, including prostate and melanoma. Here it functions as a pro-proliferative and anti-apoptotic signaling receptor via NH2-terminal domain ligation. Auto-antibodies to this domain may appear in cancer patient serum where they are a poor prognostic indicator. Conversely, GRP78 COOH-terminal domain ligation is pro-apoptotic and anti-proliferative. There is no method to disrupt cell-surface GRP78 without compromising the total GRP78 pool, making it difficult to study cell-surface GRP78 function. We studied six cell lines representing three cancer types. One cell line per group expresses high levels of cell-surface GRP78, and the other expresses low levels (human hepatoma: Hep3B and HepG2; human prostate cancer: PC3 and 1-LN; murine melanoma: B16F0 and B16F1). We investigated the effect of Escherichia coli subtilase cytoxin catalytic subunit (SubA) on GRP78. We report that SubA specifically cleaves cell-surface GRP78 on HepG2, 1-LN, and B16F1 cells without affecting intracellular GRP78. B16F0 cells (GRP78low) have lower amounts of cleaved cell-surface GRP78. SubA has no effect on Hep3B and PC3 cells. The predicted 28-kDa GRP78 COOH-terminal fragment is released into the culture medium by SubA treatment, and COOH-terminal domain signal transduction is abrogated, whereas pro-proliferative signaling mediated through NH2-terminal domain ligation is unaffected. These experiments clarify cell-surface GRP78 topology and demonstrate that the COOH-terminal domain is necessary for pro-apoptotic signal transduction occurring upon COOH-terminal antibody ligation. SubA is a powerful tool to specifically probe the functions of cell-surface GRP78.  相似文献   

10.
The Making of Neurexins   总被引:14,自引:2,他引:12  
  相似文献   

11.
Summary Damage and repair of cell-surface glycoconjugates were examined in human palmar skin following friction-blister injury, using biotinylated lectins and the avidinbiotin complex method. In normal skin, concanavalin A, Ricinus communis, and Triticum vulgaris bound to the surface of cells from the basal layer to the granular layer. After injury, binding of concanavalin A was absent in the plasma membrane, but appeared in the cytoplasm at perinuclear sites. The surface reaction was recovered in basal and spinous cells, but not in granular cells, when cell maturation began at 5 days after injury. In contrast, binding of Ricinus communis and Triticum vulgaris was, in general, much more resistant to tissue damage. Even in some cells, where the surface staining became obscure at an early period, a normal staining pattern reappeared by 6 h after injury. Staining of Ulex europeus I and Glycine max, detected on the surface of upper spinous and granular cells in normal skin, disappeared immediately after the injury, but recovered quickly on the surfaces of the differentiated cells. These findings suggest that at least 2 oligosaccharide sequences, one binding with concanavalin A, and the other with Ricinus communis and Triticum vulgaris, may exist on epidermal cells. Addition of terminal carbohydrates, detectable with binding of Ulex europeus I and Glycine max, appears to occur on the Ricinus communis I and Triticum vulgaris-bound oligosaccharide chain.  相似文献   

12.
Human pluripotent stem cells (PSCs) have been utilized as a promising source in regenerative medicine. However, the risk of teratoma formation that comes with residual undifferentiated PSCs in differentiated cell populations is most concerning in the clinical use of PSC derivatives. Here, we report that a monoclonal antibody (mAb) targeting PSCs could distinguish undifferentiated PSCs, with potential teratoma-forming activity, from differentiated PSC progeny. A panel of hybridomas generated from mouse immunization with H9 human embryonic stem cells (hESCs) was screened for ESC-specific binding using flow cytometry. A novel mAb, K312, was selected considering its high stem cell-binding activity, and this mAb could bind to several human induced pluripotent stem cells and PSC lines. Cell-binding activity of K312 was markedly decreased as hESCs were differentiated into embryoid bodies or by retinoic acid treatment. In addition, a cell population negatively isolated from undifferentiated or differentiated H9 hESCs via K312 targeting showed a significantly reduced expression of pluripotency markers, including Oct4 and Nanog. Furthermore, K312-based depletion of pluripotent cells from differentiated PSC progeny completely prevented teratoma formation. Therefore, our findings suggest that K312 is utilizable in improving stem cell transplantation safety by specifically distinguishing residual undifferentiated PSCs.  相似文献   

13.
A shift from cell-surface hydrophobicity to hydrophilicity was experimentally induced in the benthic hydrophobic cyanobacterium Phormidium sp. strain J-1, by mechanical shearing, chloramphenicol, and proteolytic treatment after preincubation with sodium dodecyl sulfate (SDS). Treatment with SDS alone, while releasing large amounts of protein and carbohydrates from the cell wall, did not affect cell surface hydrophobicity.Ultrastructural analysis showed the cells, to be enveloped by a double-layered minicapsule. Treatments affecting cellsurface hydrophobicity also caused changes in capsular components. A model, describing cell-surface structure, composition and properties in Phormidium J-1, was constructed by correlating ultrastructural data with surface properties.Abbreviations SDS Sodium dodecyl sulfate - DCMU 3(3,4-dichlorophenyl)-1,1-dimethylurea This paper is contributed in honor of Prof. G. Drews on the occasion of his sixtieth birthday  相似文献   

14.
P2X4 receptors (P2X4Rs), a subtype of the purinergic P2X family, play important roles in regulating neuronal and glial functions in the nervous system. We have previously shown that the expression of P2X4Rs is upregulated in activated microglia after peripheral nerve injury and that activation of the receptors by extracellular ATP is crucial for maintaining nerve injury-induced pain hypersensitivity. However, the regulation of P2X4R expression on the cell surface of microglia is poorly understood. Here, we identify the CC chemokine receptor CCR2 as a regulator of P2X4R trafficking to the cell surface of microglia. In a quantitative cell surface biotinylation assay, we found that applying CCL2 or CCL12, endogenous ligands for CCR2, to primary cultured microglial cells, increased the levels of P2X4R protein on the cell surface without changing total cellular expression. This effect of CCL2 was prevented by an antagonist of CCR2. Time-lapse imaging of green fluorescent protein (GFP)-tagged P2X4R in living microglial cells showed that CCL2 stimulation increased the movement of P2X4R-GFP particles. The subcellular localization of P2X4R immunofluorescence was restricted to lysosomes around the perinuclear region. Notably, CCL2 changed the distribution of lysosomes with P2X4R immunofluorescence within microglial cells and induced release of the lysosomal enzyme β-hexosaminidase, indicating lysosomal exocytosis. Moreover, CCL2-stimulated microglia enhanced Akt phosphorylation by ATP applied extracellularly, a P2X4R-mediated response. These results indicate that CCL2 promotes expression of P2X4R protein on the cell surface of microglia through exocytosis of P2X4R-containing lysosomes, which may be a possible mechanism for pain hypersensitivity after nerve injury.  相似文献   

15.
BackgroundThis study aimed to examine the cellular components of the gingiva during orthodontic treatment with fixed and removable appliances. The cellular and molecular cues of pathologies of the gingival tissue associated with the use of different orthodontic appliances could be studied.Materials and methodsTissue samples of gingiva were received from healthy patients undergoing gingivectomy for aesthetic purpose and from patients with fixed and removable functional orthodontic appliances undergoing gingivectomy for gingival overgrowth. The collected samples were stored in a sterile container with phosphate-buffered saline and to carry out further processes it was transported to the laboratory.ResultsCells positive for ECAD and NCAD were found to be increased in fixed appliances where as CD90 and CD105 positive cells showed no significant difference in all the three groups. CD24 and CD146 positive cells were increased significantly in removable and fixed than normal whereas CD133 positive cells were decreased in removable and fixed than normal. CD44 positive cells showed no noticeable change in all three groups. The gene expression levels of KRT5, SOX2, NANOG, and CXCL5 were found to be significantly increased in removable and fixed appliance groups. However, KRT8, CXCL10, and TIMP1 were increased only in fixed appliance group but CXCL10 showed decreased expression in removable appliance group. KRT6A, MYC, and MMP9 were decreased in fixed appliance group whereas MYC and MMP9 were increased in removable appliance group. KRT6A, KRT8, and TIMP1 showed no significant difference in removable appliance group.ConclusionThis study demonstrated essential roles of various genes, showing their contribution in regulating cell proliferation and migration in both the removable and fixed functional appliances.  相似文献   

16.
Summary Immunocytochemistry has been used to study distribution of cell surface transferrin receptors in erythroid, leukemic (K562) cells. The cells were fixed and labelled with monoclonal (OKT-9) anti-transferrin receptor antibodies; the antibody-labelled receptors were then detected by either immunofluoresceinor immunoferritin-antimouse-antibody conjugates. Typically, the immunoferritin labels were distributed diffusely at the non-coated regions of the cell surface as well as concentrated in the clathrincoated pits. To examine further this pattern of distribution, cells were labelled at 0° C and then warmed to 37° C for zero to 30 min prior to fixation. The majority of the immunoferritin labels were initially dispersed in small groups at the non-coated regions of the cell surface (mean = 6 immunoferritin labels/cluster), but larger groups were common subsequent to incubation at 37° C (mean = 13 immunoferritin labels/cluster). However, the size of immunoferritin labels in the coated pits was unchanged (mean = 12 immunoferritin labels/pit). Immunoferritin labels were typical in coated and uncoated vesicles l min after warming to 37° C, but common in endosomes, multivesicular bodies and lysosomes by 30 min. It appears that single cell-surface receptors form large aggregates prior to their concentration in coated pits. Coated vesicles, uncoated vesicles, and endosomal vacuoles may together form the non-lysosomal compartment where the internalized receptors might be dissociated from the ligands (antibodies).  相似文献   

17.
Cell surface protein receptors in oral streptococci   总被引:19,自引:0,他引:19  
Abstract Streptococci have a vast repertoire of adherence properties which include binding to human tissue components, epithelial cells and to other bacterial cells. These interactions are determined by the expression of cell-surface receptors some of which are species-specific. In the oral streptococci, two families of surface protein receptors with highly conserved amino acid sequences have been identified. The antigen I/II family of polypeptides are wall-associated high molecular mass proteins (158–166 kDa) with several binding functions that may be attributed to different domains of the receptor molecules. The LraI family of polypeptides are surface-associated lipoproteins (32–33 kDa) involved in adherence of streptococci to salivary glycoprotein pellicle and to oral Actinomyces . A region of amino acid sequence similarity is evident amongst members of the two protein families in Streptococcus gordonii . Ligand-binding specificities of these receptor polypeptides may account for species-specific adherence and site-directed colonization of streptococci within the human oral cavity.  相似文献   

18.
Little is known about the cell-surface molecules that are related to the undifferentiated and pluripotent state of human embryonic stem cells (hESCs). Here, we generated a panel of murine monoclonal antibodies (MAb) against undifferentiated hESCs by a modification of a previously described decoy immunization strategy. H9 hESCs were differentiated in the presence of retinoic acid and used as a decoy immunogen. Twelve Balb/c mice were immunized in the right hind footpads with differentiated H9 cells and in the left hind footpads with undifferentiated H9 cells. After immunization, the left popliteal lymph node cells were collected and were fused with mouse myeloma cells. The fusion resulted in 79 hybridomas secreting MAbs that bound to the undifferentiated H9 cells as shown by flow cytometric analysis. Of these, 70 MAbs bound to the undifferentiated H9 cells, but only weakly or not at all to the differentiated H9 cells. We characterized 37 MAbs (32 IgGs, 5 IgMs) recognizing surface molecules that were down-regulated during embryoid body cell formation. One of the MAbs, L125-C2, was confirmed to immunoprecipitate CD9, previously known as a surface molecule on the undifferentiated hESCs. To investigate the relationship between the MAbs and hESC-specific antibodies, two representative MAbs, viz., L125-C2 and 291-D4, were selected and studied by multi-color flow cytometric analysis. This showed that more than 60% of L125-C2- and 291-D4-positive cells were also positive for the expression of hESC-specific surface molecules such as SSEA3, SSEA4, TRA-1-60, and TRA-1-81, indicating the close relationship between the two MAbs and the hESC-specific surface molecules. Our results suggest that the decoy immunization strategy is an efficient method for isolating a panel of MAbs against undifferentiated hESCs, and that the generated MAbs should be useful for studying the surface molecules on hESCs in the pluripotent and undifferentiated state.  相似文献   

19.
A molecular display technology that uses the displayed proteins on cell surfaces has many applications in microbiology and molecular biology. Here, we describe the resistance of displayed proteins to proteases using simulated gastric fluid (SGF), which included pepsin at pH 2. The displayed β-glucosidase resisted pepsin digestion compared with secreted, free β-glucosidase. In SDS-PAGE and Western blotting analysis, the secreted β-glucosidase was immediately digested within 1 min following SGF treatment, although the displayed β-glucosidase was stable for more than 60 min following SGF treatment. In addition, the residual activity of secreted β-glucosidase was completely destroyed after 10 min SGF treatment. However, displayed β-glucosidase retained 14% of its residual activity following the same treatment. These results clearly show that cell surface display technology using enzymes can reveal the protease resistance of a protein of interest under various conditions.  相似文献   

20.
Development of resistance to TRAIL, an apoptosis-inducing cytokine, is one of the major problems in its development for cancer treatment. Thus, pharmacological agents that are safe and can sensitize the tumor cells to TRAIL are urgently needed. We investigated whether gossypol, a BH3 mimetic that is currently in the clinic, can potentiate TRAIL-induced apoptosis. Intracellular esterase activity, sub-G1 cell cycle arrest, and caspase-8, -9, and -3 activity assays revealed that gossypol potentiated TRAIL-induced apoptosis in human colon cancer cells. Gossypol also down-regulated cell survival proteins (Bcl-xL, Bcl-2, survivin, XIAP, and cFLIP) and dramatically up-regulated TRAIL death receptor (DR)-5 expression but had no effect on DR4 and decoy receptors. Gossypol-induced receptor induction was not cell type-specific, as DR5 induction was observed in other cell types. Deletion of DR5 by siRNA significantly reduced the apoptosis induced by TRAIL and gossypol. Gossypol induction of the death receptor required the induction of CHOP, and thus, gene silencing of CHOP abolished gossypol-induced DR5 expression and associated potentiation of apoptosis. ERK1/2 (but not p38 MAPK or JNK) activation was also required for gossypol-induced TRAIL receptor induction; gene silencing of ERK abolished both DR5 induction and potentiation of apoptosis by TRAIL. We also found that reactive oxygen species produced by gossypol treatment was critical for TRAIL receptor induction and apoptosis potentiation. Overall, our results show that gossypol enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and the up-regulation of TRAIL death receptors through the ROS-ERK-CHOP-DR5 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号