首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tryptophan phosphorescence spectrum, intensity and decay kinetics of G-actin and F-actin were measured over a temperature range of 140-293 K. The fine structure in the phosphorescence spectra at low temperature, with O,O vibrational bands centered at 405 nm and 415.5 nm for both species, reveals a marked heterogeneity of the chromophore environment. The thermal quenching profile distinguishes these sites in terms of their flexibility, and shows that probably only one of the four tryptophan residues is still phosphorescent at ambient temperature due to its location in a relatively rigid buried core. Although some differences are demonstrated between G-actin and F-actin at low temperature, the identity of the triplet lifetime at ambient temperature strongly supports the notion that the conformation of the macromolecule is largely unaffected by polymerization. Preliminary phosphorescence anisotropy measurements demonstrate both the occurrence of singlet-singlet energy transfer among tryptophan residues and a strong immobilization of actin in the polymerized state.  相似文献   

2.
Tryptophan synthase from Salmonella typhimurium is a bifunctional alpha 2 beta 2 complex that catalyzes the formation of L-tryptophan. We have characterized over the temperature range from 160 to 293 K the fluorescence and phosphorescence properties of the single tryptophan present at position 177 of the beta-subunit and of the pyridoxal 5'-phosphate bound through a Schiff's base in the beta-active site. The comparison between the fluorescence of the pyridoxal phosphate bound either to the protein or to valine free in solution indicates substantial protection for the coenzyme against thermal quenching and a greater intensity of the ketoenamine tautomer band. Trp-177 is highly luminescent, and its proximity to the pyridoxal moiety leads to an over 50% quenching of its fluorescence with both reduced and native coenzyme. The Trp phosphorescence spectrum possesses a narrow, well-defined, 0-0 vibrational band centered at 418.5 nm, a wavelength that indicates strong polar interactions with neighboring charges. The observation of delayed fluorescence in the native complex implies that the excited triplet state is involved in a process of triplet-singlet energy transfer to the ketoenamine tautomer. The rate of energy transfer, heterogeneous in low-temperature glasses with rate constants of 2.26 and 0.07 s-1, becomes homogeneous in fluid solutions as the coenzyme tautomer interconversion is likely faster than the phosphorescence decay. In both apo- and holo-alpha 2 beta 2, the phosphorescence from Trp-177 is long-lived even at ambient temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The fluorescence and phosphorescence spectra of model indole compounds and of cod parvalbumin III, a protein containing a single tryptophan and no tyrosine, were examined in the time scale ranging from subnanoseconds to milliseconds at 25 degrees C in aqueous buffer. For both Ca- bound and Ca-free parvalbumin and for model indole compounds that contained a proton donor, a phosphorescent species emitting at 450 nm with a lifetime of approximately 20-40 ns could be identified. A longer-lived phosphorescence is also apparent; it has approximately the same absorption and emission spectrum as the short-lived triplet molecule. For Ca parvalbumin, the decay of the long-lived triplet tryptophan is roughly exponential with a lifetime of 4.7 ms at 25 degrees C whereas for N-acetyltryptophanamide in aqueous buffer the decay lifetime was 30 microseconds. In contrast, the lifetime of the long-lived tryptophan species is much shorter in the Ca-free protein compared with Ca parvalbumin, and the decay shows complex nonexponential kinetics over the entire time range from 100 ns to 1 ms. It is concluded that the photochemistry of tryptophan must take into account the existence of two excited triplet species and that there are quenching moieties within the protein matrix that decrease the phosphorescence yield in a dynamic manner for the Ca-depleted parvalbumin. In contrast, for Ca parvalbumin, the tryptophan site is rigid on the time scale of milliseconds.  相似文献   

4.
The single room temperature phosphorescent (RTP) residue of horse liver alcohol dehydrogenase (LADH). Trp-314, and of alkaline phosphatase (AP), Trp-109, show nonexponential phosphorescence decays when the data are collected to a high degree of precision. Using the maximum entropy method (MEM) for the analysis of these decays, it is shown that AP phosphorescence decay is dominated by a single Gaussian distribution, whereas for LADH the data reveal two amplitude packets. The lifetime-normalized width of the MEM distribution for both proteins is larger than that obtained for model monoexponential chromophores (e.g., terbium in water and pyrene in cyclohexane). Experiments show that the nonexponential decay is fundamental; i.e., an intrinsic property of the pure protein. Because phosphorescence reports on the state of the emitting chromophore, such nonexponential behavior could be caused by the presence of excited state reactions. However, it is also well known that the phosphorescence lifetime of a tryptophan residue is strongly dependent on the local flexibility around the indole moiety. Hence, the nonexponential phosphorescence decay may also be caused by the presence of at least two states of different local rigidity (in the vicinity of the phosphorescing tryptophan) corresponding to different ground state conformers. The observation that in the chemically homogeneous LADH sample the phosphorescence decay kinetics depends on the excitation wavelength further supports this latter interpretation. This dependence is caused by the wavelength-selective excitation of Trp-314 in a subensemble of LADH molecules with differing hydrophobic and rigid environments. With this interpretation, the data show that interconversion of these states occurs on a time scale long compared with the phosphorescence decay (0.1-1.0 s). Further experiments reveal that with increasing temperature the distributed phosphorescence decay rates for both AP and LADH broaden, thus indicating that either 1) the number of conformational states populated at higher temperature increases or 2) the temperature differentially affects individual conformer states. The nature of the observed heterogeneous triplet state kinetics and their relationship to aspects of protein dynamics are discussed.  相似文献   

5.
Cytochrome c degrading activity in rat liver mitochondria   总被引:1,自引:0,他引:1  
Benzophenone can be used as an extrinsic triplet state probe, as its phosphorescence, a broad band centered at 445 nm, is readily observable in aqueous solution at room temperature. When bound covalently as an acyl enzyme at the active site of chymotrypsin, the benzophenone probe produces phosphorescence which is unusually resistant to quenching by O2, trans-cinnamic acid, and H3O+. Sodium 2-naphthalenesulfonate quenches the phosphorescence, probably indirectly. The quenching data indicate that the local protein structure at the enzyme active site provides a rigid and protective substrate environment, which is not penetrated by even the smallest triplet quenchers.  相似文献   

6.
A convenient method for the purification of aspartate aminotransferase [L-aspartate-2-oxoglutarate aminotransferase (EC 2.6.1.1)] from wheat germ is described. An overall purification of 150 fold was achieved. On polyacrylamide gel electrophoresis at pH 8.9 the purified enzyme revealed two protein bands both provided with enzymatic activity. The holoenzyme is readily resolved on conversion to the aminic form and gel-filtration. The apoenzyme is reactivated by pyridoxal-5-phosphate. Kinetic data indicate that a Ping-Pong mechanism is operative similar to that found for the tyrosine aminotransferase by Litwack and Cleland (1968). Phosphate ion behaves as a competitive inhibitor towards the coenzyme. The relatively low affinity between coenzyme and apoenzyme from wheat germ allowed the determination of the dissociation constants for coenzymes (pyridoxal-5'-phosphate and pyridoxamine-5'-phosphate) and of the inhibition constant for phosphate.  相似文献   

7.
The fluorescence and phosphorescence emission of wheat germ agglutinin are reported. Fluorescent tryptophan residues of wheat germ agglutinin are found highly exposed to solvent: fluorescence quenching induced by temperature fits with a single Arrhenius critical energy close to that of tryptophan in solution; the whole fluorescence emission is susceptible to iodide ion quenching and data reveal the homogeneity of fluorescence arising from only one type of tryptophan exposition. Energy transfers are analyzed at singlet and triplet state level. Tyrosine fluorescence at 25 degrees C is very weak. Results obtained from the relative excitation fluorescence quantum yield and from intrinsic fluorescence polarization show that a large amount of energy absorbed by tyrosine at 280 nm is transferred to tryptophan residues. However, tyrosine fluorescence is highly increased at 70 degrees C although disulfide bridges are not reduced. The phosphorescence spectrum at 77 K in 50% ethylene glycol is finely structured with several resolved vibrational bands at 405, 432 and 455 nm. Phosphorescence decay can be fitted with a single exponential. Lifetime is independent of excitation wave-length. Its value is very close to that of free tryptophan. Influence of tri-N-acetyl-chitotriose binding on luminescence properties are investigated. Results are analyzed in terms of steric tryptophan-ligand relationships. It is shown that all the fluorescent chromophores are concerned by the ligand binding but all fluorescence emission is still susceptible to iodide ion quenching. There is no change induced in energy transfer at the singlet state level and no modification in triplet state population.  相似文献   

8.
采用硫酸铵沉淀、DEAE-Sepharose Fast Flow阴离子交换、Sephadex G-100凝胶过滤和SP Sephadex C-25阳离子交换柱层析等步骤,对烟草磷酸吡哆醛水解酶进行了分离纯化。结果表明:该酶被纯化了119.6倍,得率为28.49%,经凝胶过滤和SDS-PAGE测得该酶的全分子量为49.6kDa,亚基分子量约为25kDa;该酶最适温度为50℃,最适反应pH为5.5;Mg2+、Ca2+、Mn2+等对该酶有激活作用,金属离子螯合剂EDTA对酶有抑制作用,加入Mg2+后抑制作用得到解除;在最适反应条件下,测得反应底物磷酸吡哆醛(PLP)和磷酸吡哆胺(PMP)的Km值分别为0.23mmol/L和0.56mmol/L。  相似文献   

9.
PQQ catalyzes the oxidation of pyridoxamine (PM) and pyridoxamine-5-P (PMP) to pyridoxal and pyridoxal-5-P (PLP) at 37 degrees C in the absence of micelles and proteins. The time course of conversion of PMP into PLP was monitored by absorption spectroscopy; a rate of 10 nmol PLP/min was determined. The product of the reaction was identified by TLC, HPLC and its ability to restore the catalytic activity of apoaspartate aminotransferase. The conversion of PMP into PLP by free PQQ is more efficient than reactions catalyzed by the enzymes plasma amine oxidase and pyridoxamine-5-P oxidase at optimal pH values.  相似文献   

10.
The decay rate of the excited triplet state of Zn cytochrome c was enhanced by electron acceptors including methyl viologen and ferric complexes of cyanide, oxalate, EDTA and cytochrome c at room temperature. Ferrous compounds were several orders of magnitude less effective than the respective ferric form in quenching the phosphorescence. In the presence of ferricytochrome c and ferricyanide the semilogarithmic plots of the decay curve showed an anomalous decay profile in which the rate of interaction appeared to accelerate after excitation. One explanation is that the quenching process was accelerated by a conformational change of the polypeptide chain around the excited triplet state porphyrin. Another explanation is that quenching occurs via an intermediate.  相似文献   

11.
Affinity chromatography of yeast aspartate aminotransferase [l-aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1] on N′(ω-aminohexyl) pyridoxamine-5-phosphate Sepharose 4B is reported. The specific activity of the enzyme obtained, fully activated with pyridoxal-5-phosphate, was higher than that of previous preparations but the yield of purified enzyme was poor. Purification using DEAE-cellulose gave a higher yield of enzyme with lower specific activity. This preparation contained an appreciable amount of the holoenzyme. Use of sodium borohydride permitted the preparation of apoenzyme containing only 1.4% of the holo-form. Four coenzyme analogues were synthesized. These were the N′-acetyl-, the N′-methyl- and the N′-benzyloxycarbonylglycyl-pyridoxamine-5-phosphate and the O-acetylpyridoxal-5-phosphate. The three N′-substituted pyridoxamine-5-phosphate derivatives were all effective inhibitors of the enzyme, while the O-acetylpyridoxal-5-phosphate bound to the apoenzyme and gave an active enzyme.  相似文献   

12.
Z Li  W E Lee    W C Galley 《Biophysical journal》1989,56(2):361-367
In the present study the distance dependence of tryptophan-disulfide interaction is examined with a view to both utilizing the interaction as a more quantitative indicator of subtle conformational changes in proteins as well as elucidating the interaction mechanism. To examine perturbations specifically at the indole triplet level 2-(3-indolyl)-ethyl phenyl ketone (IEPK) in which excitation is transferred with high efficiency to the triplet state of the indole moiety was employed. Phosphorescence decays of IEPK excited by a laser pulse in 70/30 (vol/vol) ethanolether at 77 K were measured in the presence of various concentrations of simple disulfides. The nonexponential phosphorescence decays arising from a distribution of fixed chromophoreperturber separations and the steady-state quenching of IEPK were accounted for with an exponential dependence of the quenching rate constant with distance. The small effective Bohr radius (0.8 A) that appears in the exponent emphasizes the localized nature of the interaction. Comparison of the triplet quenching rate constant obtained at quencher contact with IEPK to that estimated in proteins suggests a dependence on the triplet energy of the indole moiety and an endothermic nature for the quenching process. The study predicts that in proteins tryptophan-disulfide interactions are very localized in nature and should give rise to detectable anomalous decays only out to 2 A beyond van der Waals contact between the interacting partners.  相似文献   

13.
S Ghosh  A Misra  A Ozarowski  C Stuart  A H Maki 《Biochemistry》2001,40(49):15024-15030
The phosphorescence and zero field optically detected magnetic resonance (ODMR) of the tryptophan (Trp) residues of alkaline phosphatase from Escherechia coli are examined. Each Trp is resolved optically and identified with the aid of the W220Y mutant and the terbium complex of the apoenzyme. Trp(109), known from earlier work to be the source of room-temperature phosphorescence (RTP), emits a highly resolved low-temperature phosphorescence (LTP) spectrum and has the narrowest ODMR bands observed thus far from any protein site, revealing a uniquely homogeneous local environment. The decay kinetics of Trp(109) at 1.2 K reveals that the major triplet population (70%) undergoes inefficient crystallike spin-lattice relaxation by direct interaction with lattice phonons, the remainder being relaxed efficiently by local disorder modes. The latter population is smaller than is typical for protein sites, suggesting an unusual degree of local rigidity and order consistent with the long-lived RTP. Trp(220) emits a broader LTP spectrum originating to the blue of Trp(109). It has typically broad ODMR bands consistent with local heterogeneity. The LTP of Trp(268) has an ill-defined origin blue shifted relative to Trp(220) and ODMR frequencies consistent with a greater degree of solvent exposure. Trp(268) has noticeable dispersion of its decay kinetics, consistent with quenching at the triplet level by a nearby disulfide residue.  相似文献   

14.
This paper presents evidence that the approximately two-fold increase in vitamin K-dependent carboxylation of the pentapeptide PheLeuGluGluLeu, but not of endogenous protein substrate, brought about by pyridoxal-5′-phosphate, is due to binding of the pyridoxal-5′-phosphate to microsomal enzyme(s), rather than to the pentapeptide. Pyridoxine inhibits this peptide carboxylation, while pyridoxal, pyridoxamine, and pyridoxamine-5′-phosphate have no effect on the reaction.  相似文献   

15.
We have used measurements of the phosphorescence intensity decay of the triplet probe erythrosin B, dispersed in amorphous glucose, maltose, and maltotriose at probe:sugar mole ratios of approximately 1:10(4), to monitor the molecular mobility of the sugar matrix in the glass and melt around the glass-transition temperature (Tg). Intensity decays were well fit using a stretched-exponential decay model in which the Kohlrausch-Williams-Watts lifetime tau and the stretching exponent beta are the physically meaningful parameters. When normalized to the glass-transition temperature, the erythrosin lifetime decreased in the order glucose>maltose>maltotriose. Analysis of the lifetime provided an estimate of the collisional quenching constant for deexcitation of the triplet state (kTS0); kTS0 increased in the order glucosemaltose>maltotriose, indicating that the lifetime heterogeneity increased in the order glucose相似文献   

16.
J W Berger  J M Vanderkooi 《Biochemistry》1989,28(13):5501-5508
Room temperature phosphorescence techniques were used to study the structural and dynamic features of the tryptophan residues in bovine alpha-crystallin. Upon excitation at 290 nm, the characteristic signature of tryptophan phosphorescence was observed with an emission maximum at 442 +/- 2 nm. The phosphorescence intensity decay was biphasic with lifetimes of 5.4 ms (71%) and 42 ms (29%). Phosphorescence quenching measurements strongly suggest that each component corresponds to one class of tryptophans with the more buried residues having the longer emission lifetime. Three small-molecule quenchers were surveyed, and in order of increasing quenching efficiency: iodide less than nitrite less than acrylamide. A heavy-atom effect was observed in iodide solutions, and an upper limit of 5% was placed on the quantum yield of triplet formation in iodide-free solutions, while the phosphorescence quantum yield was estimated to be approximately 3.2 x 10(-4). The temperature dependence of the phosphorescence lifetime was measured between 5 and 40 degrees C. Arrhenius plots exhibited discontinuities at 26 and 29 degrees C for the short- and long-lived components, respectively, corresponding to abrupt transitions in segmental flexibility. Denaturation studies revealed conformational transitions between 1 and 2 M guanidine hydrochloride, and 4 and 6 M urea. Long-lived phosphorescence lifetimes of 3 and 7 ms were measured in 6 M guanidine hydrochloride and 8 M urea, respectively, suggesting that some structural features are preserved even at very high concentrations of denaturant. Our studies demonstrate the sensitivity of room temperature phosphorescence spectroscopy to the structure of alpha-crystallin, and the applicability of this technique for monitoring conformational changes in lens crystallin proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The phosphorescence properties of liver alcohol dehydrogenase from horse were characterized at limiting concentrations of coenzyme and coenzyme analogues. The emission decay kinetics of Trp-314 in strong, slowly exchanging, ternary complexes with NADH/isobutyramide, NAD/pyrazole, and NADH/dimethyl sulfoxide displays a markedly nonexponential character. The analysis of decay components over the saturation curve reveals that the phosphorescence from singly bound protein molecules has a lifetime from 1 to 1.3 s, which is 2-3 times larger than observed with fully bound and unliganded enzyme. The remarkably tighter configuration reported by the triplet probe for the coenzyme-binding domain in half-saturated macromolecules is not exclusive of strongly inhibited ternary complexes. Measurements on binary complexes with NADH, ADPR, and the inactive coenzyme analogue 1,4,5,6-tetrahydronicotinamide adenine dinucleotide confirm that binding of the ligand to one subunit has qualitatively the same influence on protein structure. If the lifetime of Trp-314 provides clear evidence for an appreciable change in conformation at half-binding that is apparently triggered by the ADPR fragment of the coenzyme, such communication between subunits does not lead to allosteric phenomena in coenzyme binding.  相似文献   

18.
Variability in the temperature dependence of disulfide quenching of the tryptophan phosphorescence of globular proteins in rigid glasses is illustrated with lysozyme and α-bungarotoxin. A laser-pulsed phosphorescence study of this short-range interaction with a model indole-disulfide system is described. The perturbation of secondary dibutyl disulfide on the triplet state of the indole moiety in 2-(3-indolyl)ethyl phenyl ketone in rigid media is found to display a bimodal temperature dependence. The quenching rate constant at contact between chromophore and perturber is observed to be temperature independent below 30 K, but to increase with temperature between 30 and 100 K with an activation energy of ~200 cm-1. The results suggest that the underlying quenching interaction involves a photo-induced one-electron transfer from the excited state of indole to the disulfide.  相似文献   

19.
The triplet state absorption and phosphorescence of Zn and Pd derivatives of myoglobin were compared. Both metal derivatives exhibit long triplet state lifetimes at room temperature, but whereas the Pd derivative showed exponential decay and an isosbestic point in the transient absorption spectra, the decay of the Zn derivative was nonsingle exponential and the transient absorption spectra showed evidence of more than one excited state species. No difference was seen in triplet quenching by oxygen for either derivative, indicating that differences in the polypeptide chain between the two derivatives are not large enough to affect oxygen penetrability. Quenching was also observed by anthraquinone sulfonate. In this case, the possibility of long-range transfer by an exchange mechanism is considered.  相似文献   

20.
We have used phosphorescence from erythrosin B to characterize the molecular mobility and dynamic heterogeneity in dry films of amorphous lactose and lactitol from -25 to 120 degrees C. The phosphorescence emission spectra red-shifted and broadened with temperature in both sugars, indicating that both the rate of dipolar relaxation and the extent of inhomogeneous broadening increased dramatically at higher temperature. Phosphorescence intensity decays were well fit using a stretched exponential decay model; the rate constant for non-radiative quenching due to collisions with the matrix was calculated from the lifetimes. Arrhenius plots of this rate were non-linear, increasing very gradually at low and dramatically at high temperatures in both sugars. The rate of quenching was significantly lower in a 1:1 (wt/wt) mixture of lactose/lactitol in both the glass and the melt, providing strong evidence that specific interactions within the mixture lowered the matrix mobility. The lifetimes varied systematically with emission wavelength in both matrixes; analysis of the temperature dependence indicated that the activation energy for non-radiative quenching of the triplet state varied somewhat with emission wavelength. Time-resolved emission spectra collected as a function of delay time following pulsed excitation exhibited significant shifts to higher energy as a function of time. These data support a photophysical model in which erythrosin B molecules are distributed among matrix sites that vary such that blue-emitting sites with slower rates of matrix dipolar relaxation also have slower rates of molecular collisions. The amorphous matrixes of lactose and lactitol in both the glass and the melt state are thus characterized by dynamic site heterogeneity in which different sites vary in terms of their overall molecular mobility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号