首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. A general trend among biomembranes of hepatocytes in the developing avian embryo is to display increasing percentages of unsaturated fatty acids, especially oleic acid (C18:1). 2. However, once increasing amounts of thyroxine appear in the plasma, mitochondria begin to exhibit increasing percentages of saturated fatty acids, primarily stearic acid (C18:0). 3. Increasing saturation of mitochondrial membrane lipids can be inhibited by exposure of embryonated eggs to 500 R of X-irradiation. 4. Injection of embryonated eggs with estrone increases the proportion of oleic acid (C18:1) in mitochondrial membranes but a balancing increase in palmitic acid (C16:0) enables their lipids to remain more saturated than unsaturated.  相似文献   

2.
Steady-state and time-resolved fluorescence spectroscopy has been used to obtain information on oxidation processes and associated dynamical and structural changes in model membrane bilayers made from single unilamellar vesicles (SUV's) of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) mixed with increasing amounts of 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (SAPC). The highly unsaturated arachidonoyl chain containing four double bonds is prone to oxidation. Lipid oxidation was initiated chemically by a proper oxidant and could be followed on line via the fluorescence changes of an incorporated fluorescent lipophilic fatty acid: 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene-3-undecanoic acid (BP-C11). The oxidation rate increases with an increasing amount of SAPC. Size measurements of different SUV's incorporated with a trace amount of a phosphatidylcholine analogue of BP-C11 using fluorescence correlation spectroscopy have demonstrated that an increase of lipid unsaturation results in smaller sized SUV's and therefore to a larger curvature of the outer bilayer leaflet. This suggests that the lipid-lipid spacing has increased and that the unsaturated fatty acyl chains are better accessible for the oxidant. Oxidation results in some characteristic physical changes in membrane dynamics and structure, as indicated by the use of specific fluorescence probes. Fluorescence measurements of both dipyrenyl- and diphenylhexatriene-labelled PC introduced in non-oxidised and oxidised DOPC-SAPC membranes clearly show that the microfluidity (local fluidity at the very site of the probes) significantly decreases when the oxidised SAPC content increases in the lipid mixture. A similar effect is observed from the lateral diffusion experiments using monopyrenyl PC in the same membrane systems: the lateral diffusion is distinctly slower in oxidised membranes.  相似文献   

3.
The in vivo effects of ethanol on lipid synthesis in Escherichia coli have been examined. Under conditions which uncoupled fatty acid synthesis from phospholipid synthesis, ethanol decreased the amount of saturated fatty acids synthesized but had little effect on the selectivity of their incorporation into phospholipids. In the absence of fatty acid degradation and unsaturated fatty acid synthesis, E. coli was still able to adapt its membrane lipids to ethanol, while the inhibition of total fatty acid synthesis eliminated this response. During growth in the presence of ethanol, strain K1060 (an unsaturated fatty acid auxotroph) incorporated an increased amount of exogenous heptadecanoic acid (17:0) to compensate for the reduction in palmitic acid (16:0) available from biosynthesis. Thus, our results indicate that the reduced levels of saturated fatty acids observed in the phospholipids of E. coli following growth in the presence of ethanol result primarily from a decrease in the amounts of saturated fatty acids available for phospholipid synthesis.  相似文献   

4.
Hyperthermic sensitivity and growth stage in Escherichia coli   总被引:1,自引:0,他引:1  
Hyperthermic sensitivities of Escherichia coli B/r and Bs-1 were determined for lag-, midlog-, and stationary-phase cells at 47, 48, and 49 degrees C. In both strains midlog-phase cells were strikingly more heat sensitive (100-fold greater killing after 4 h at 48 degrees C) than stationary-phase cells, with intermediate sensitivity for lag-phase cells. In contrast to the reported difference in the radiation sensitivity between these two strains, very little difference in heat sensitivity was seen. Patterns of fatty acid composition of both strains were very similar at each phase of growth. From midlog to stationary phase, 16:1 and 18:1 unsaturated fatty acids decrease from 16 and 30% to 0.5 and 3%, respectively, while the C17 and C19 cyclopropane fatty acids increase from 7 and 3% to 22 and 25%, respectively. Concomitant with these changes in fatty acid composition, substantially higher membrane microviscosity values were recorded for stationary-phase cells. Total membrane microviscosity was positively associated with the C17 and C19 cyclopropane fatty acid composition and with cell survival following hyperthermia. In contrast to hyperthermic sensitivity, radiation survival differences between B/r and Bs-1 are little affected by growth stage. We propose that these results are consistent with a critical influence of membrane lipids on cellular hyperthermic sensitivity and further that the target sites for radiation and hyperthermia are different in these cells.  相似文献   

5.
The fatty acid composition of Streptococcus sanguis NCTC 7865 was not altered by changing the cation composition (Na+/K+) of the growth medium; glucosyltransferase (GTF; EC 2.4.1.5) also remained constant. In contrast, fructosyltransferase (FTF-S; EC 2.4.1.10) production was reduced by at least 50% in medium with a high Na+ concentration. Growth in the presence of ionophores (gramicidin, nigericin or valinomycin) resulted in an increased proportion of saturated fatty acids, principally octadecanoic acid (C18:0), while the proportion of unsaturated fatty acids, predominantly octadecenoic (C18:1) and hexadecenoic (C16:1) acids, decreased. GTF-S production was reduced in the presence of ionophores whereas FTF-S production was completely abolished. Tween 80 significantly increased both GTF-S production and the proportion of unsaturated fatty acids in the cytoplasmic membrane; FTF-S production was unaltered by Tween 80. The production of GTF-S was inversely proportional to the C18:0:C18:1 fatty acid ratio of the cytoplasmic membrane. It was concluded that FTF-S production is directly influenced by protonmotive force (pmf), whereas GTF-S production is affected more by the physical properties of the cytoplasmic membrane, in particular its fatty acid composition. However, as perturbations in pmf generation can lead to variations in membrane fatty acid composition it can be argued that pmf indirectly influences GTF production by changing the saturated:unsaturated or C18:0:C18:1 fatty acid ratio of the cytoplasmic membrane.  相似文献   

6.
Escherichia coli K1060, a fatty acid auxotroph unable to either synthesize or degrade unsaturated fatty acids (uFAs), was used to study the effect of membrane fluidity on survival after exposure to ionizing radiation. Using this strain of E. coli, significant alterations in the fatty acid composition of the membrane have been produced and verified by gas chromatography. Linolenic, oleic, elaidic and palmitelaidic acids were the uFAs used. Survival above the transition temperature (Tt) (liquid crystal in equilibrium gel) was comparable for these fatty-acid-supplemented membranes after exposure to gamma-irradiation, whereas gamma-irradiation below Tt resulted ina significant decrease in survival. An oxygen enhancement effect was observed for each experimental condition employed.  相似文献   

7.
We have evaluated several local anaesthetics and hypnotics for their relative ability to influence hyperthermic cell killing. Bacterial cell survival following exposure to heat and anaesthetic was used as the assay system. The E. coli bacterium used was the unsaturated fatty acid auxotroph, K1060. It was grown at 37 degrees C in medium supplemented with oleic acid and then exposed to 47 degrees C hyperthermia in the presence of an anaesthetic. The local anaesthetics tested were procaine, lidocaine, tetracaine, and benzocaine, and the general anaesthetics were barbital and pentobarbital. The dose response for each anaesthetic was determined over a five-hour heating period. The anaesthetic concentration required during heating to halve the time for cell killing found with heat alone is 5.9 mM for procaine, 0.8 mM for lidocaine, 0.12 mM for tetracaine, 2.0 mM for benzocaine, 6.7 mM for barbital and 1.2 mM for pentobarbital. There is a direct correlation between equivalent effect doses of the local anaesthetics and published data for the relative potency of the same anaesthetics as determined by respiratory arrest in mice and by myocardial contractile force in dogs. The assay we have described would be a convenient and easy test for the interaction of these drugs with hyperthermia. The use of this interaction with hyperthermia as an adjuvant in combined radiation-hyperthermia therapy should be tested.  相似文献   

8.
Cold hardiness in the Arctic Collembola Megaphorura arctica (Tullberg), formerly Onychiurus arcticus, has been the subject of extensive studies over the last decade. This species employs an unusual strategy known as cryoprotective dehydration to survive winter temperatures as low as ?25 °C. To expand knowledge of cryoprotective dehydration in M. arctica, the present study investigates how a reduction in ambient temperature affects the fatty acid composition of the total body lipid content along with polar (mainly membrane phospholipids) and nonpolar (mainly triacylglycerols) lipids. Most ectothermic animals compensate for changes in fluidity by regulating fatty acid composition, a process often described as homeoviscous adaptation. In M. arctica, changes in the fatty acid composition of total body lipid content during cold treatment are only moderate, with no clear pattern emerging. However, the levels of unsaturated fatty acids in the polar lipids increase with cold exposure, largely attributable to 16 : 1(n? 7), 18 : 1(n? 9), 18 : 3(n? 6) and 18 : 3(n? 3), whereas unsaturated fatty acid levels in the nonpolar lipids correspondingly decrease. These results suggest a reallocation of fatty acids between the two lipid pools as a response to a temperature reduction of 6 °C. Because of hypometabolism, a characteristic of cold adaptation, such a mechanism could be less energy demanding than de novo synthesis of fatty acids and may comprise part of an adaptive homeostatic response.  相似文献   

9.
Four different luminal surfaces of rat urothelium differing in their fatty acid composition were prepared by dietary induction. In order to induce lipid changes, each of four groups of rat received a basal diet rich in one of the unsaturated n-3, n-6 or n-9 fatty acid families and a commercial (control) diet. The effects of the dietary regime on the fatty acid composition of luminal urothelial membranes and their relation to the mobility of fluorescent probes were studied. In comparison with the control diet membrane, all three fatty acid-rich diets induced a decrease of the percentage amount of saturated fatty acid while that of the unsaturated fatty acids was increased. Accordingly, all three diets increased the unsaturation index in comparison with the control diet. The anisotropy across each membrane fraction was assessed using the n-(9-anthroyloxy) fatty acid fluorescent probes 3-AS, 7-AS and 12-AS, which locate at different depths in the membrane. Two different anisotropy profiles were observed. One profile showed the highest anisotropy at the C7 depth, whereas the other exhibited a continuous decrease of the anisotropy from the surface to the center of the bilayer. The molecular properties (isomerization) of 18:2n-9 fatty acid may account, at least in part, for the observed V-shaped profile (the ascending trend) of the membrane anisotropy values as a function of the respective 18:2n-9 fatty acid contents. Nevertheless, the minimum value of the profile did not correspond to the minimum 18:2n-9 fatty acid content, but rather to the higher amount of docosahexaenoic (22:6n-3) fatty acid. Thus, a modulating role of the 22:6n-3 fatty acid on the rigidifying effect of 18:2n-9 fatty acid is suggested, possibly mediated by relationships between fatty acid composition, saturated and unsaturated chain lengths, and freedom of motion of the phospholipid acyl chains.  相似文献   

10.
The solvent-tolerant bacterium Pseudomonas putida S12, which adapts its membrane lipids to the presence of toxic solvents by a cis to trans isomerization of unsaturated fatty acids, was used to study possible in vivo regiospecificity of the isomerase. Cells were supplemented with linoleic acid (C18:2delta9-cis,delta12-cis), a fatty acid that cannot be synthesized by this bacterium, but which was incorporated into membrane lipids up to an amount of 15% of total fatty acids. After addition of 1-octanol, which was used as an activator of the cis-trans isomerase, the linoleic acid was converted into the delta9-trans,delta12-cis isomer, while the delta9-cis,delta12-trans and delta9-trans,epsilon12-trans isomers were not synthesized. Thus, for the first time, regiospecific in vivo formation of novel, mixed cis/trans isomers of dienoic fatty acid chains was observed. The maximal conversion (27-36% of the chains) was obtained at 0.03-0.04% (v/v) octanol, after 2 h. The observed regiospecificity of the enzyme, which is located in the periplasmic space, could be due to penetration of the enzyme to a specific depth in the membrane as well as to specific molecular recognition of the substrate molecules.  相似文献   

11.
The ultrastructural state of the crayfish visual membrane is correlated with its fatty acid composition during times of photic and thermal stress and the period over which the dynamic events occur is investigated. Crayfish kept at 4 °C under constant darkness contain in their rhabdoms significantly increased amounts of unsaturated fatty acids such as 16:1, 18:1, 20:5, and 22:6 compared with individuals kept at 25 °C. The ratio of unsaturated/saturated fatty acids (UFA/SFA-ratio) amounts to 2.17 in the cold-water- and 1.46 in the warm water-acclimated animals. The visual membranes of crayfish suddenly transferred from 4 °C to 25 °C exhibited ultrastructural modifications such as membrane collapse and disappearance of microvillar dense␣core-filaments most clearly 3 h post-transfer. Parallel to the structural changes a significant increase in fatty acid 18:0 was observed, while the amounts of 16:1 and 20:1 decreased. When 4 °C, dark-adapted crayfish were exposed to light alone and not a temperature increase, only fatty acid 22:6 showed a significant reduction to 10% of its pre-experimental level within 2 h of exposure. Thereafter, it slowly increased again. In cold water-acclimated crayfish that had been exposed to light of 5000 lx for 3␣weeks no significant change of the UFA/SFA ratio was observed, although fatty acid species 18:0, 20:4, and 20:5 had increased at the expense of fatty acids 14:0, 16:0, 16:1, 18:1, 20:1, and 22:6. The total amount of fatty acids, however, had become significantly smaller (from 0.058 ng g−1 body weight in the dark-adapted to 0.048 ng g−1 in the light-adapted crayfish). Morphologically the rhabdom volume had decreased by approx. 20%, but ultrastructurally rhabdom microvilli remained almost unchanged. The amount of peroxidized lipids in the retina following irradiation with bright white light in the cold-adapted crayfish fell during the first 2 h of exposure from 0.4 nmol g−1 to 0.32 nmol g−1, but after 12 h of exposure had reached a level of 0.48 nmol g−1. Greatest structural abnormalities to the visual membranes occurred when dark-adapted, cold-acclimated crayfish were suddenly subjected to bright light and an increase in water temperature. Under such conditions the microvillar arrangement was disrupted and membrane collapse and disappearance of core-filaments were apparent. Our results provide evidence that the fatty acid composition of the membranes determines to a considerable extent the structural integrity of the photoreceptor, but that it is too simplistic a model to think that peroxidation of membrane lipids alone is responsible for the disintegration of the photoreceptive membranes in the crayfish eye following exposure to bright light. Accepted: 4 July 1996  相似文献   

12.
13.
The growth of an oleaginous strain of Yarrowia lipolytica on an industrial fat composed of saturated free fatty acids (stearin) was studied. Lipid accumulation during primary anabolic growth was critically influenced by the medium pH and the incubation temperature. This process was independent of the nitrogen concentration in the culture medium, but was favored at a high carbon substrate level and at a low aeration rate. At pH 6 and a temperature of 28-33 degrees C, 9-12 g/l of dry biomass was produced, whereas significant quantities of lipids were accumulated inside the yeast cells (0.44-0.54 g of lipid per gram of biomass). The strain showed the tendency to degrade its storage lipids, although significant amounts of substrate fat, rich in stearic acid, remained unconsumed in the culture medium. Y. lipolytica presented a strong fatty acid specificity. The fatty acids C12:0, C14:0, and C16:0 were rapidly incorporated and mainly used for growth needs, while C18:0 was incorporated with reduced rates and was mainly accumulated as storage material. Reserve lipids, principally composed of triacylglycerols (55% w/w of total lipids) and free fatty acids (35% w/w), were rich in stearic acid (80% w/w), while negligible amounts of unsaturated fatty acids were detected. When industrial glycerol was used as co-substrate, together with stearin, unsaturated fatty acid concentration in the reserve lipid increased.  相似文献   

14.
Lipid content and fatty acid profiles of corals and their dinoflagellate endosymbionts are known to vary in response to high-temperature stress. To better understand the heat-stress response in these symbionts, we investigated cultures of Symbiodinium goreauii type C1 and Symbiodinium sp. clade subtype D1 grown under a range of temperatures and durations. The predominant lipids produced by Symbiodinium are palmitic (C16) and stearic (C18) saturated fatty acids and their unsaturated analogs, the polyunsaturated fatty acid docosahexaenoic acid (C22:6, n-3; DHA), and a variety of sterols. Prolonged exposure to high temperature causes the relative amount of unsaturated acids within the C18 fatty acids in Symbiodinium tissue to decrease. Thermal stress also causes a decrease in abundance of fatty acids relative to sterols, as well as the more specific ratio of DHA to an algal 4-methyl sterol. These shifts in fatty acid unsaturation and fatty acid-to-sterol ratios are common to both types C1 and D1, but the apparent thermal threshold of lipid changes is lower for type C1. This work indicates that ratios among free fatty acids and sterols in Symbiodinium can be used as sensitive indicators of thermal stress. If the Symbiodinium lipid stress response is unchanged in hospite, the algal heat-stress biomarkers we have identified could be measured to detect thermal stress within the coral holobiont. These results provide new insights into the potential role of lipids in the overall Symbiodinium thermal stress response.  相似文献   

15.
1. Exogenously supplied, BSA complexed saturated and unsaturated fatty acids were compared for their effects on mitogen-induced DNA synthesis in channel catfish T and B lymphocytes. 2. At "permissive" in vitro temperatures (27 degrees C), high concentrations (greater than or equal to 240 microM) of all the fatty acids used were inhibitory. However, at lower concentrations (80-160 microM), differences were noted in the ability of some fatty acids to modulate mitogen responses. While palmitic acid (16:0) and linoleic acid (18:2) had little effect on LPS-induced B cell- or Con A-induced T cell proliferation, stearic acid (18:0) suppressed while oleic acid (18:1) enhanced T cell responses only. 3. Adding equimolar amounts of 18:0 and 18:1 obviated the effects of singularly added fatty acids on T cell mitogenesis. 4. 18:1 was used to successfully "rescue" approximately 60% of the Con A-induced T cell proliferation normally inhibited at "nonpermissive" in vitro temperatures (17 degrees C). 5. While B cells readily appear to desaturate 18:0 and synthesize unsaturated fatty acids, T cells accumulate comparatively large amounts of 18:0 in membrane associated phospholipids. 6. It is proposed that 18:1 enhances T cell responses at permissive high temperatures and rescues suppressed T cell responses at nonpermissive low temperatures by increasing membrane fluidity.  相似文献   

16.
V Letts  P Shaw  L Shapiro    S Henry 《Journal of bacteriology》1982,151(3):1269-1278
The fatty acid composition of the dimorphic bacterium Caulobacter crescentus was found to consist primarily of 16- and 18-carbon fatty acids, both saturated and monounsaturated, in agreement with the findings of Chow and Schmidt (J. Gen. Microbiol. 83:359-373, 1974). In addition, two minor but as yet unidentified fatty acids were detected. Chromatographic mobilities suggested that these fatty acids may be a cyclopropane and a branched-chain fatty acid. In addition, we demonstrated that the fatty acid composition of wild-type C. crescentus can be altered by growing the cells in medium supplemented with any one of a variety of unsaturated fatty acids. Linoleic acid, a diunsaturated fatty acid which is not synthesized by C. crescentus, was incorporated into phospholipids without apparent modification. In addition, we found that C. crescentus, like Escherichia coli, synthesizes vaccenic acid (18:1 delta 11,cis) rather than oleic acid (18:1 delta 9,cis). This result allowed us to deduce that the mechanism of fatty acid desaturation in C. crescentus is anaerobic, as it is in E. coli. Finally, we examined the fatty acid biosynthesis and composition of two unsaturated fatty acid auxotrophs of C. crescentus. Neither of these mutants resembled the E. coli unsaturated fatty acid auxotrophs, which have defined enzymatic lesions in fatty acid biosynthesis. Rather, the mutants appeared to have defects relating to the complex coordination of membrane biogenesis and cell cycle events in C. crescentus.  相似文献   

17.
Uptake of Tween-fatty acid esters and incorporation of the fatty acids into lipids by soybean (Glycine max [L.] Merr.) suspension cultures was investigated, together with subsequent turnover of the incorporated fatty acids and associated changes in endogenous fatty acid synthesis. Tween uptake was saturable, and fatty acids were rapidly transferred from Tweens to all acylated lipids. Patterns of incorporation into glycerolipids were similar in cells treated with Tweens carrying [1-14C]-fatty acids and in cells treated with [1-14C]acetate, indicating that exogenous fatty acids were used for glycerolipid synthesis essentially as if they had been made by the cell. In Tween-treated cells neutral lipids (which include Tweens) initially accounted for the majority of lipid radioactivity. Radioactivity was then rapidly transferred to glycerolipids. A transient pool of free fatty acids accounting for up to 10% of lipid radioactivity was observed. This was consistent with the hypothesis that fatty acids are transferred from Tweens to lipids by deacylation of the Tweens, creating a pool of free fatty acids which are then used for lipid synthesis. Sterols were only slightly labeled in cells treated with Tweens, but accounted for nearly 50% of lipid radioactivity in cells treated with acetate. This suggested very little degradation and reutilization of the radioactive fatty acids in cells treated with Tweens. In cells treated with either [1-14C]acetate or Tween-[1-14C]-18:1, 70% of the initial fatty acid radioactivity remained in fatty acids after a 100 hour chase. By contrast, fatty acids not normally present disappeared more rapidly, suggesting differential treatment of such fatty acids compared with those normally present. Cells which had incorporated large amounts of exogenous fatty acids altered fatty acid synthesis in three distinct ways: (a) amounts of [1-14C]acetate incorporated into fatty acids were reduced; (b) cells incorporating exogenous unsaturated fatty acids increased the proportion of [1-14C]acetate partitioned into saturated fatty acids, while the converse was true of cells which had incorporated exogenous saturated fatty acids; (c) desaturation of 18:1 to 18:2 and 18:3 was reduced in cells which had incorporated unsaturated fatty acids. These results suggest that Tween-fatty acid esters will be useful for supplying fatty acids to cells for a variety of studies related to fatty acid or membrane metabolism.  相似文献   

18.
19.
Vitamin E, a dietary antioxidant, is presumed to be incorporated into the lipid bilayer of biological membranes to an extent proportional to the amount of polyunsaturated fatty acids or phospholipids in the membrane. In the present study we evaluated the distribution of incorporated polyunsaturated fatty acids (PUFA) and phosphatidylethanolamine (PE) in various membranes of pulmonary artery endothelial cells. We also studied whether incorporation of PUFA or PE is responsible for increased incorporation of [3H]-vitamin E into the membranes of these cells. Following a 24-hr incubation with linoleic acid (18:2), 18:2 was increased by 6.9-, 9.2-, and 13.2-fold in plasma, mitochondrial, and microsomal membranes, respectively. Incorporation of 18:2 caused significant increases in the unsaturation indexes of mitochondrial and microsomal polyunsaturated fatty acyl chains (P less than .01 versus control in both membranes). Incubation with arachidonic acid (20:4) for 24 hr resulted in 1.5-, 2.3-, and 2.4-fold increases in 20:4 in plasma, mitochondrial, and microsomal membranes, respectively. The unsaturation indexes of polyunsaturated fatty acyl chains of mitochondrial and microsomal membranes also increased (P less than .01 versus control in both membranes). Although incubations with 18:2 or 20:4 resulted in several-fold increases in membrane 18:2 or 20:4 fatty acids, incorporation of [3H]-vitamin E into these membranes was similar to that in controls. Following a 24-hr incubation with PE, membrane PE content was significantly increased, and [3H]-vitamin E incorporation was also increased to a comparable degree, i.e., plasma membrane greater than mitochondria greater than microsomes. Endogenous vitamin E content of the cells was not altered because of increased incorporation of PE and [3H]-vitamin E. When [3H]-vitamin E was incorporated into lipid vesicles prepared from the total lipid extracts of endothelial cells and varying amounts of exogenous PE, vitamin E content was directly related to PE content. These results demonstrate that PUFA and PE distribute in all pulmonary artery endothelial cell membranes. However, only increases in PE were associated with increased incorporation of [3H]-vitamin E in membranes of these cells.  相似文献   

20.
The alteration of the degree of unsaturated fatty acids in membrane lipids has been shown to be a key mechanism in the tolerance to temperature stress of living organisms. The step that most influences the physiology of membranes has been proposed to be the amount of di-unsaturated fatty acids in membrane lipids. In this study, we found that the desaturation of fatty acid to yield the di-unsaturated fatty acid 18:2(9,12), in Spirulina platensis strain C1, was not regulated by temperature. As shown by the fatty acid composition and gene expression patterns, the levels of 18:1(9) and 18:2(9,12) remained almost constant either when the cells were grown at 35 degrees C (normal growth temperature) or 22 and 40 degrees C. The expression of desC (Delta9) and desA (Delta12) genes, which are responsible for the introduction of first and second double bonds into fatty acids, respectively, was not affected by the temperature shift from 35 to 22 degrees C or to 40 degrees C. Only the expression and mRNA stability of the desD gene (Delta6) that is responsible for the introduction of a third double bond into fatty acids were enhanced by a temperature shift from 35 to 22 degrees C, but not the shift from 35 to 40 degrees C. The increase in the level of desD mRNA elevated the desaturation of fatty acid from 18:2(9,12) to 18:3(6,9,12) at 22 degrees C. However, the increased level of 18:3(6,9,12) was observed after 36 h of incubation at 22 degrees C, indicating a slow response to temperature of fatty acid desaturation in this cyanobacterium. These findings suggest that the desaturation of fatty acids might not be a key mechanism in the response to the temperature change of S. platensis strain C1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号