首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Bovine serum albumin (BSA) is one ofthe most widely studied proteins; its structure iswell known and its antigenic properties have beendescribed in animal models. The aimof our work was to evaluate the role of conformationon antigenicity of serum albumins. This study was performed using electrophoresisassociated with the immunoblotting technique, wheresera from children allergic to BSA were used.Data obtained in this research indicatethat serum albumin antigenicity is only partiallycorrelated to its native three-dimensional structure.Heat treatment and chemical denaturation(SDS treatment) are not able to significantly decrease its capability to bind circulating IgEs. Only thereducing treatment is able to modify the antigenicityof this protein. Moreover, a direct correlationbetween the cross-reactivity observed inimmunoblotting between different serum albumins andthe percentage of their sequence identity(phylogenetic similarity of the species) was shown.  相似文献   

2.
In this work, binding interactions of artemisinin (ART) and dihydroartemisinin (DHA) with human serum albumin (HSA) and bovine serum albumin (BSA) were investigated thoroughly to illustrate the conformational variation of serum albumin. Experimental results indicated that ART and DHA bound strongly with the site I of serum albumins via hydrogen bond (H-bond) and van der Waals force and subsequently statically quenched the intrinsic fluorescence of serum albumins through concentration-dependent manner. The quenching abilities of two drugs on the intrinsic fluorescence of HSA were much higher than the quenching abilities of two drugs on the intrinsic fluorescence of BSA. Both ART and DHA, especially DHA, caused the conformational variation of serum albumins and reduced the α-helix structure content of serum albumins. DHA with hydrophilic hydroxyl group bound with HSA more strongly, suggesting the important roles of the chemical polarity and the hydrophilicity during the binding interactions of two drugs with serum albumins. These results reveal the molecular understanding of binding interactions between ART derivatives and serum albumins, providing vital information for the future application of ART derivatives in biological and clinical areas.  相似文献   

3.
Serum albumin, a protein naturally abundant in blood plasma, shows remarkable ligand binding properties of numerous endogenous and exogenous compounds. Most of serum albumin binding sites are able to interact with more than one class of ligands. Determining the protein‐ligand interactions among mammalian serum albumins is essential for understanding the complexity of this transporter. We present three crystal structures of serum albumins in complexes with naproxen (NPS): bovine (BSA‐NPS), equine (ESA‐NPS), and leporine (LSA‐NPS) determined to 2.58 Å (C2), 2.42 Å (P61), and 2.73 Å (P212121) resolutions, respectively. A comparison of the structurally investigated complexes with the analogous complex of human serum albumin (HSA‐NPS) revealed surprising differences in the number and distribution of naproxen binding sites. Bovine and leporine serum albumins possess three NPS binding sites, but ESA has only two. All three complexes of albumins studied here have two common naproxen locations, but BSA and LSA differ in the third NPS binding site. None of these binding sites coincides with the naproxen location in the HSA‐NPS complex, which was obtained in the presence of other ligands besides naproxen. Even small differences in sequences of serum albumins from various species, especially in the area of the binding pockets, influence the affinity and the binding mode of naproxen to this transport protein. Proteins 2014; 82:2199–2208. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Pistolozzi M  Bertucci C 《Chirality》2008,20(3-4):552-558
Drug binding to albumins from different mammalian species was investigated to disclose evidence of species-dependent stereoselectivity in drug-binding processes and affinities. This aspect is important for evaluating the reliability of extrapolating distribution data among species. The circular dichroism (CD) signal induced by drug binding to the albumins [human serum albumin (HSA), bovine serum albumin (BSA), rat serum albumin (RSA), and dog serum albumin (DSA)] were measured and analyzed. The binding of selected drugs and metabolites to HSA significantly differed from the binding to the other albumins in terms of affinity and conformation of the bound ligands. In particular, phenylbutazone, a marker of site one on HSA, showed a higher affinity for binding to BSA with respect to RSA, HSA, and DSA, respectively. In the case of diazepam, a marker of site two on HSA, the affinity decreased in order from HSA to DSA, RSA, and BSA. The induced CD spectra were similar in terms of energy and band signs, suggesting almost the same conformation for the bound drug to the different albumins. Stereoselectivity was high for the binding of ketoprofen to HSA and RSA. A different sign was observed for the CD spectra induced by the drug to the two albumins because of the prevalence of a different conformation of the bound drug. Interestingly, the same induced CD spectra were obtained using either the racemic form or the (S)-enantiomer. Finally, significant differences were observed in the affinity of bilirubin, being highest for BSA, then decreasing for RSA, HSA, and DSA. A more complex conformational equilibrium was observed for bound bilirubin.  相似文献   

5.
The interactions between loratadine and bovine serum albumin (BSA) and human serum albumin (HSA) were studied using tryptophan fluorescence quenching method. The fluorescence intensity of the two serum albumins could be quenched 70% at the molar ratio [loratadine]:[BSA (or HSA)]=10:1. In the linear range (0-50 micromol L(-1)) quenching constants were calculated using Stern-Volmer equation. Temperature in the range 298 K-310 K had a significant effect (p<0.05) on the two serum albumins through ANOVA analysis and t-test. Furthermore the conformation changes in the interactions were studied using FTIR spectroscopy.  相似文献   

6.
Aggregation and glycation processes in proteins have a particular interest in medicine fields and in food technology. Serum albumins are model proteins which are able to self-assembly in aggregates and also sensitive to a non-enzymatic glycation in cases of diabetes. In this work, we firstly reported a study on the glycation and oxidation effects on the structure of bovine serum albumin (BSA). The experimental approach is based on the study of conformational changes of BSA at secondary and tertiary structures by FTIR absorption and fluorescence spectroscopy, respectively. Secondly, we analysed the thermal aggregation process on BSA glycated with different glucose concentrations. Additional information on the aggregation kinetics are obtained by light scattering measurements. The results show that glycation process affects the native structure of BSA. Then, the partial unfolding of the tertiary structure which accompanies the aggregation process is similar both in native and glycated BSA. In particular, the formation of aggregates is progressively inhibited with growing concentration of glucose incubated with BSA. These results bring new insights on how aggregation process is affected by modification of BSA induced by glycation.  相似文献   

7.
Albumin-mediated changes in sperm sterol content during capacitation   总被引:3,自引:0,他引:3  
The role of albumin in mouse sperm capacitation was studied in relation to its activities as a lipid-solubilizing protein and a sterol acceptor. Two bovine serum albumins (BSA) which supported capacitation, Fraction V and fatty acid-free, both contained cholesterol and phospholipid but were without detectable levels of serum high-density lipoprotein (HDL). The lipid content of BSA could be reduced by trichloroacetic acid (TCA) precipitation; however, removal of all detectable lipids required precipitation with ethanolic acetone and diethyl ether extraction. In medium supplemented with Fraction V, fatty acid-free, or TCA-precipitated BSA, mouse sperm were capacitated as evidenced by their ability to fertilize eggs, concomitant with decreases in total cellular sterol and increases in phospholipid content. Delipidated BSA, fractionated on Sephadex G-100 in guanidine HCl also supported capacitation and mediated a 20% decrease in sperm sterol content, while cellular phospholipid levels remained unchanged. When BSA was modified by cholesterol augmentation, fertilization was inhibited in a cholesterol dose-dependent manner. These findings suggest that modulation of sperm lipid levels comprises an event of capacitation and that albumin mediates this process through its activity as a sterol acceptor.  相似文献   

8.
Bovine serum albumin (BSA) conjugated with a lipid, dodecanoic acid, is capable of inducing strong delayed-type hypersensitivity (DTH) in guinea pigs. This paper reports experiments on the nature and specificity of this hypersensitivity. The response to lipid-conjugated BSA (L-BSA) was found to be classical DTH, as evidenced by its ability to be transferred passively by immune cells, but not by serum. In addition, special histologic examination of skin test sites demonstrated the characteristics of DTH rather than cutaneous basophil hypersensitivity. Similar results were obtained when lipid-conjugated purified protein derivative of tubercle bacilli (L-PPD) was used. The increased immunogenicity of L-BSA was not caused by the presence of protein aggregates, but seemed to be related to the hydrophobic nature of the conjugated side chains. A series of cross-reacting serum albumins was used for a study of the specificity of the antibody and DTH responses to BSA. It was found that the degree of enhancement of immunogenicity for DTH caused by lipid conjugation varied for different antigenic determinants on BSA.  相似文献   

9.
To investigate the influence of magnetic–thermosensitive carbon microspheres (MTCMSs) as a targeting drug carrier on serum albumins in vitro, in this study, bovine serum albumin (BSA) was chosen as a template protein to explore the interaction between serum proteins and MTCMSs. Fluorescence spectrophotometry, ultraviolet–visible absorbance (UV–vis) spectrophotometry and circular dichroism spectrometry were used to investigate the interaction between MTCMSs and BSA. Results indicate that BSA interacts with MTCMSs and the fluorescence intensity of BSA is quenched by 50% in a static quenching at 310 K when the concentration of MTCMSs reaches 30 mg/L. Thermodynamic parameters including free energy change (△Gθ), enthalpy change (△Hθ) and entropy change (△Sθ) were calculated. The results (△Gθ < 0, △Hθ < 0 and △Sθ > 0) suggest a spontaneous process and the formation of a hydrogen bond between MTCMSs and BSA. UV–vis measurements reveal that the micro‐environment of an amino acid residue is altered in the presence of MTCMSs. The α‐helix content of BSA decreases by 4% and the β‐sheet content increases by 3.2% with increasing concentrations of MTCMSs to 30 mg/L, illustrating a change in the skeletal structure of BSA. These results demonstrate that MTCMSs as a targeting drug carrier impact the structure of serum albumins. This work provides not only a theoretical basis of BSA adsorption onto MTCMSs, but also an understanding of safe drug carriers in biomedicine. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The combined effects of concentration and pH on the conformational states of bovine serum albumin (BSA) are investigated by small-angle x-ray scattering. Serum albumins, at physiological conditions, are found at concentrations of ∼35-45 mg/mL (42 mg/mL in the case of humans). In this work, BSA at three different concentrations (10, 25, and 50 mg/mL) and pH values (2.0-9.0) have been studied. Data were analyzed by means of the Global Fitting procedure, with the protein form factor calculated from human serum albumin (HSA) crystallographic structure and the interference function described, considering repulsive and attractive interaction potentials within a random phase approximation. Small-angle x-ray scattering data show that BSA maintains its native state from pH 4.0 up to 9.0 at all investigated concentrations. A pH-dependence of the absolute net protein charge is shown and the charge number per BSA is quantified to 10(2), 8(1), 13(2), 20(2), and 26(2) for pH values 4.0, 5.4, 7.0, 8.0, and 9.0, respectively. The attractive potential diminishes as BSA concentration increases. The coexistence of monomers and dimers is observed at 50 mg/mL and pH 5.4, near the BSA isoelectric point. Samples at pH 2.0 show a different behavior, because BSA overall shape changes as a function of concentration. At 10 mg/mL, BSA is partially unfolded and a strong repulsive protein-protein interaction occurs due to the high amount of exposed charge. At 25 and 50 mg/mL, BSA undergoes some re-folding, which likely results in a molten-globule state. This work concludes by confirming that the protein concentration plays an important role on the pH-unfolded BSA state, due to a delicate compromise between interaction forces and crowding effects.  相似文献   

11.
S Pal  C Saha  M Hossain  SK Dey  GS Kumar 《PloS one》2012,7(8):e43321
The health benefits stemming from green tea are well known, but the exact mechanism of its biological activity is not elucidated. Epicatechin (EC) and epicatechin gallate (ECG) are two dietary catechins ubiquitously present in green tea. Serum albumins functionally carry these catechins through the circulatory system and eliminate reactive oxygen species (ROS) induced injury. In the present study ECG is observed to have higher antioxidant activity; which is attributed to the presence of galloyl moiety. The binding affinity of these catechins to bovine serum albumin (BSA) will govern the efficacy of their biological activity. EC and ECG bind with BSA with binding constants 1.0×10(6) M(-1) and 6.6×10(7) M(-1), respectively. Changes in secondary structure of BSA on interaction with EC and ECG have been identified by circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy. Thermodynamic characterization reveals the binding process to be exothermic, spontaneous and entropy driven. Mixed binding forces (hydrophobic, electrostatic and hydrogen bonding) exist between ECG and BSA. Binding site for EC is primarily site-II in sub-domain IIIA of BSA and for ECG; it is site-I in sub-domain IIA. ECG with its high antioxidant activity accompanied by high affinity for BSA could be a model in drug designing.  相似文献   

12.
Serum albumins (human serum albumin (HSA) and bovine serum albumin (BSA), two main circulatory proteins), are globular and monomeric macromolecules in plasma that transport many drugs and compounds. In the present study, we investigated the interactions of the Tb(III)–quercetin (Tb–QUE) complex with HSA and BSA using common spectroscopic techniques and a molecular docking study. Fluorescence data revealed that the inherent fluorescence emission of HSA and BSA was markedly quenched by the Tb–QUE complex through a static quenching mechanism, confirming stable complex formation (a ground‐state association) between albumins and Tb–QUE. Binding and thermodynamic parameters were obtained from the fluorescence spectra and the related equations at different temperatures under biological conditions. The binding constants (Kb) were calculated to be 0.8547 × 103 M?1 for HSA and 0.1363 × 103 M?1 for BSA at 298 K. Also, the number of binding sites (n) of the HSA/BSA–Tb–QUE systems was obtained to be approximately 1. Thermodynamic data calculations along with molecular docking results indicated that electrostatic interactions have a main role in the binding process of the Tb–QUE complex with HSA/BSA. Furthermore, molecular docking outputs revealed that the Tb–QUE complex has high affinity to bind to subdomain IIA of HSA and BSA. Binding distances (r) between HSA–Tb–QUE and BSA–Tb–QUE systems were also calculated using the Forster (fluorescence resonance energy transfer) method. It is expected that this study will provide a pathway for designing new compounds with multiple beneficial effects on human health from the phenolic compounds family such as the Tb–QUE complex.  相似文献   

13.
The interactions between loratadine and bovine serum albumin (BSA) and human serum albumin (HSA) were studied using tryptophan fluorescence quenching method. The fluorescence intensity of the two serum albumins could be quenched 70% at the molar ratio [loratadine]:[BSA (or HSA)] = 10:1. In the linear range (0–50 μmol L 1) quenching constants were calculated using Stern–Volmer equation. Temperature in the range 298 K–310 K had a significant effect (p < 0.05) on the two serum albumins through ANOVA analysis and t-test. Furthermore the conformation changes in the interactions were studied using FTIR spectroscopy.  相似文献   

14.
Stereoselective binding of benzodiazepine and coumarin drugs to serum albumin from human and six mammalian species were studied by chiral chromatographic techniques. The applied methods were affinity chromatography on the albumins immobilized on Sepharose 4B, high-performance liquid chromatography (HPLC) separation on columns based on human serum albumin (HSA) and bovine serum albumin (BSA), and chiral HPLC analysis of ultrafiltrates of solutions containing the racemic drug and the native protein. Substantial differences in preferred configurations and conformations were detected among the species. The binding stereoselectivity of the 2,3-benzodiazepine drug, tofisopam, in human, is opposite to that in all other species. In the binding of 1,4-benzodiazepines, dog albumin is very similar to HSA. Highly preferred binding of (S)-phenprocoumon was found with dog albumin.  相似文献   

15.

Background

Serum albumin is a major transport protein in mammals and is known to have at least seven binding sites for long-chain fatty acids (FAs).

Scope of review

We have devised a new electron paramagnetic resonance (EPR) spectroscopic approach to gain information on the functional structure of serum albumin in solution in a “coarse-grained” manner from the ligands' point of view. Our approach is based on using spin labeled (paramagnetic) stearic acids self-assembled with albumin and subsequent nanoscale distance measurements between the FAs using double electron–electron resonance spectroscopy (DEER). Simple continuous wave (CW) EPR spectroscopy, which allows for quantification of bound ligands, complements our studies.

Major conclusions

Based on DEER nanoscale distance measurements, the functional solution structure of human serum albumin (HSA) has remarkably been found to have a much more symmetric distribution of entry points to the FA binding sites than expected from the crystal structure, indicating increased surface flexibility and plasticity for HSA in solution.In contrast, for bovine serum albumin (BSA), the entry point topology is in good agreement with that expected from the crystal structure of HSA. Changes in the solution structures between albumins can hence be revealed and extended to more albumins to detect functional differences at the nanoscale.Going beyond fundamental structural studies, our research platform is also excellently suited for general studies of protein–solvent interactions, temperature effects and ligand binding.

General significance

We discuss how our research platform helps illuminate protein dynamics and function and can be used to characterize albumin-based hybrid materials. This article is part of a Special Issue entitled Serum Albumin.  相似文献   

16.
The interaction of Cibacron Blue F3G A-Sepharose 4B with several serum albumins was studied. Although all albumins used were fond to bind to this adsorbent, human serum albumin was bound to a far greater extent than were the others. From the results of competition experiments and n.m.r. studies of Cibacron Blue and/or bilirubin binding to human serum albumin it is proposed that the mechanism of the interaction between human serum albumin and cibacron Blue is consistent wit Cibacron Blue binding to bilirubin-binding sites. In contrast with these findings with human serum albumin, there is little or no interaction of Cibacron Blue and the bilirubin-binding sites of albumins from rabbit, horse, bovine or sheep sera, although some interaction occurs between Cibacron Blue and the fatty acid-binding sites of these proteins. Structural analogues of Cibacron Blue have been used to investigate the binding of albumins to these ligands.  相似文献   

17.
In this work we return to the problem of the determination of ligand-receptor binding stoichiometry and binding constants. In many cases the ligand is a fluorescent dye which has low fluorescence quantum yield in free state but forms highly fluorescent complex with target receptor. That is why many researchers use dye fluorescence for determination of its binding parameters with receptor, but they leave out of account that fluorescence intensity is proportional to the part of the light absorbed by the solution rather than to the concentration of bound dye. We showed how ligand-receptor binding parameters can be determined by spectrophotometry of the solutions prepared by equilibrium microdialysis. We determined the binding parameters of ANS - human serum albumin (HSA) and ANS - bovine serum albumin (BSA) interaction, absorption spectra, concentration and molar extinction coefficient, as well as fluorescence quantum yield of the bound dye. It was found that HSA and BSA have two binding modes with significantly different affinity to ANS. Correct determination of the binding parameters of ligand-receptor interaction is important for fundamental investigations and practical aspects of molecule medicine and pharmaceutics. The data obtained for albumins are important in connection with their role as drugs transporters.  相似文献   

18.
Albumin binding to the endothelial surface apparently initiates its transcytosis via plasmalemmal vesicles and also increases capillary permselectivity. Several albumin-binding proteins, which, we call gp60, gp30, and gp18, have been identified; however, their functional relationship to each other is unclear. In this study, we show that gp30 and gp18 are both variably expressed by cultured rat fibroblasts, smooth muscle cells, and endothelial cells and are present in all tissues examined (heart, lung, skeletal muscle, diaphragm, duodenum, kidney, fat, brain, adrenal, pancreas, and liver). The binding of albumin-gold complexes (A-Au) to gp30 and gp18 was compared with that of native and modified albumins. Monomeric native bovine serum albumin (BSA) interacted much less avidly than A-Au and BSA that was chemically modified by formaldehyde (Fm-BSA) or maleic anhydride (Mal-BSA). Mal-BSA and A-Au have similar affinity constants for gp30 and gp18 (KD approximately 3-7 micrograms/ml (50-100 nM)), which is 1000-fold greater than BSA. These interactions were Ca(2+)-independent but sensitive to pH (< 6.0) and high salt concentrations (> or = 1.0 M). Comparative biochemical characterization provided evidence of conformational changes for Mal-BSA, Fm-BSA, and A-Au. Anti-native BSA serum recognizes BSA much more avidly than modified BSA. Mal-BSA, Fm-BSA, and A-Au are much more sensitive to trypsin digestion than BSA. Cellular processing was also examined. A-Au and Mal-BSA bound at the endothelial cell surface were degraded, whereas BSA was not. Our results indicate that: (i) gp30 and gp18, unlike gp60, are expressed in all tissues tested regardless of the type of endothelia lining the microvasculature and the local mechanism of transendothelial albumin transport; (ii) BSA conformationally modified by either surface adsorption or chemical means not only interacts more avidly with gp30 and gp18 than native albumin but also is preferentially degraded by the cells; (iii) A-Au and native albumin are not equivalent probes for detecting albumin interaction sites; and (iv) gp30 and gp18 exhibit binding behavior resembling scavenger receptors. The possible roles of gp30 and gp18 in albumin binding, transcytosis, endocytosis, and even protein catabolism are discussed.  相似文献   

19.
Isoelectrofocusing and infrared spectroscopy were used to study blood serum and liver albumins in rats aged 30, 45, 90 days, 6 months and 2 years. The analysis of infrared and isoelectric spectra shows that the blood serum albumin as compared to the liver albumin is more basic albumin with a less hard structure. With age theses albumins are found to become similar. An assumption is advanced that a modified albumin participates in the processes of this albumin decay and synthesis.  相似文献   

20.
A notable hysteretic effect has been observed in the interaction of Co(II) with human serum albumin (HSA) or bovine serum albumin (BSA) using UV-Visible spectrometry at physiological pH (7.43), which shows that the binding between Co(II) and HSA or BSA may induce a slow transition of HSA or BSA from the conformation of weaker affinity for Co(II) to one of stronger affinity (A-B transition). The rate constants and activation parameters of this transition were measured and are discussed. It is inferred that such a conformation transition may occur due to the binding of the first Co(II) ion with the peptide segment of N-terminal residues 1-3, which results in a 'hinged movement' of the relatively hydrophobic 'valley' in the IA subdomain. This process leads to a slow conformational transition in the albumins, makes the other binding sites of Co(II) exposed, and shows a positive cooperativity effect. The LMCT (ligand-to-metal charge transition) bands of the Co(II)-HSA and Co(II)-BSA systems also show a kind of hypochromic effect featuring a dipole-dipole interaction mechanism. This phenomenon is rarely reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号