首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Features of the nerve supply and the encapsulated fibers of muscle spindles were assessed in grafted and normal extensor digitorum longus (EDL) muscles of rats by analysis of serial 10-microns frozen transverse sections stained for enzymes which delineated motor and sensory endings, oxidative capacity and muscle fiber type. The number of fibers was significantly more variable, and branched fibers were more frequently observed in regenerated spindles than in control spindles. Forty-eight percent of regenerated spindles received sensory innervation. Spindles reinnervated by afferents had a larger periaxial space than did spindles which were not reinnervated by afferents. Regenerated fibers innervated by afferents had small cross-sectional areas, equatorial regions with myofibrils restricted to the periphery of fibers, unpredictable patterns of nonuniform and nonreversible staining along the length of the fiber for 'myofibrillar' adenosine triphosphatase (mATPase) after acid and alkaline preincubation. In contrast, regenerated fibers devoid of sensory innervation resembled extrafusal fibers in that they usually exhibited myofibrils throughout the length of the fiber, no central aggregations of myonuclei, uniform staining for mATPase and a reversal of staining for mATPase after preincubation in an acid or alkaline medium. Approximately thirty percent of encapsulated fibers devoid of sensory innervation stained analogous to a type I extrafusal fiber, a pattern of staining never observed in intrafusal fibers of normal spindles. Groups of encapsulated fibers all exhibiting this pattern of staining reflect that either these fibers may have been innervated by collaterals of skeletomotor axons that originally innervated type I extrafusal fibers or that fibers innervated by only fusimotor neurons express patterns of staining for mATPase similar to extrafusal fibers in the absence of sensory innervation. Sensory innervation may also influence the reestablishment of multiple sites of motor endings on regenerated intrafusal fibers. Those regenerated fibers innervated by afferents had more motor endings than did regenerated fibers devoid of sensory innervation. Differences in size, morphology, and patterns of staining for mATPase and numbers of motor endings between fibers innervated by afferents and fibers devoid of sensory innervation reflect that afferents can influence the differentiation of muscle cells and the reestablishment of motor innervation other than during the late prenatal/early postnatal period when muscle spindles form and differentiate in rats.  相似文献   

2.
Innervation of regenerated spindles in muscle grafts of the rat   总被引:1,自引:0,他引:1  
Summary Features of the nerve supply and the encapsulated fibers of muscle spindles were assessed in grafted and normal extensor digitorum longus (EDL) muscles of rats by analysis of serial 10-m frozen transverse sections stained for enzymes which delineated motor and sensory endings, oxidative capacity and muscle fiber type.The number of fibers was significantly more variable, and branched fibers were more frequently observed in regenerated spindles than in control spindles. Forty-eight percent of regenerated spindles received sensory innervation. Spindles reinnervated by afferents had a larger periaxial space than did spindles which were not reinnervated by afferents. Regenerated fibers innervated by afferents had small cross-sectional areas, equatorial regions with myofi-brils restricted to the periphery of fibers, unpredictable patterns of nonuniform and nonreversible staining along the length of the fiber for myofibrillar adenosine triphosphatase (mATPase) after acid and alkaline preincubation. In contrast, regenerated fibers devoid of sensory innervation resembled extrafusal fibers in that they usually exhibited myofibrils throughout the length of the fiber, no central aggregations of myonuclei, uniform staining for mATPase and a reversal of staining for mATPase after preincubation in an acid or alkaline medium. Approximately thirty percent of encapsulated fibers devoid of sensory innervation stained analogous to a type I extrafusal fiber, a pattern of staining never observed in intrafusal fibers of normal spindles. Groups of encapsulated fibers all exhibiting this pattern of staining reflect that either these fibers may have been innervated by collaterals of skeletomotor axons that originally innervated type I extrafusal fibers or that fibers innervated by only fusimotor neurons express patterns of staining for mATPase similar to extrafusal fibers in the absence of sensory innervation. Sensory innervation may also influence the reestablishment, of multiple sites of motor endings on regenerated intrafusal fibers. Those regenerated fibers innervated by afferents had more motor endings than did regenerated fibers devoid of sensory innervation.Differences in size, morphology, and patterns of staining for mATPase and numbers of motor endings between fibers innervated by afferents and fibers devoid of sensory innervation reflect that afferents can influence the differentiation of muscle cells and the reestablishment of motor innervation other than during the late prenatal/early postnatal period when muscle spindles form and differentiate in rats.  相似文献   

3.
The first sign of developing intrafusal fibers in chicken leg muscles appeared on embryonic day (E) 13 when sensory axons contacted undifferentiated myotubes. In sections incubated with monoclonal antibodies against myosin heavy chains (MHC) diverse immunostaining was observed within the developing intrafusal fiber bundle. Large primary intrafusal myotubes immunostained moderately to strongly for embryonic and neonatal MHC, but they were unreactive or reacted only weakly with antibodies against slow MHC. Smaller, secondary intrafusal myotubes reacted only weakly to moderately for embryonic and neonatal MHC, but 1–2 days after their formation they reacted strongly for slow and slow-tonic MHC. In contrast to mammals, slow-tonic MHC was also observed in extrafusal fibers. Intrafusal fibers derived from primary myotubes acquired fast MHC and retained at least a moderate level of embryonic MHC. On the other hand, intrafusal fibers developing from secondary myotubes lost the embryonic and neonatal isoforms prior to hatching and became slow. Based on relative amounts of embryonic, neonatal and slow MHC future fast and slow intrafusal fibers could be first identified at E14. At the polar regions of intrafusal fibers positions of nerve endings and acetylcholinesterase activity were seen to match as early as E16. Approximately equal numbers of slow and fast intrafusal fibers formed prenatally; however, in postnatal muscle spindles fast fibers were usually in the majority, suggesting that some fibers transformed from slow to fast.  相似文献   

4.
Muscle fibers in rabbit extensor digitorum longus (EDL), tibialis anterior (TA) and soleus, and rat soleus, were examined immunohistochemically for two proteins of the sarcoplasmic reticulum. Ca-ATPase and calsequestrin (CaS). Fibers were typed with the histochemical reaction for actomyosin ATPase. In the rabbit EDL and TA, type I fibers clearly reacted less for Ca-ATPase and CaS than type II fibers, but the difference was less with CaS than with Ca-ATPase. Although the differences were relatively small, IIB fibers consistently presented greater amounts of Ca-ATPase than IIA fibers. No type II subgroups could be recognized after incubation with anti-CaS. These findings confirm results from previous immunochemical measurements on whole muscles containing different proportions of IIA and IIB fibers (Leberer and Pette 1986). Type IIA and IIC in the rabbit and rat soleus reacted stronger for Ca-ATPase and for CaS than type I fibers. Small differences in Ca-ATPase, but not in CaS, were recognized within the type I fiber population. Therefore, type I fibers in the rabbit and rat soleus are not a homogeneous population.  相似文献   

5.
Summary Muscle fibers in rabbit extensor digitorum longus (EDL), tibialis anterior (TA) and soleus, and rat soleus, were examined immunohistochemically for two proteins of the sarcoplasmic reticulum, Ca-ATPase and calsequestrin (CaS). Fibers were typed with the histochemical reaction for actomyosin ATPase. In the rabbit EDL and TA, type I fibers clearly reacted less for Ca-ATPase and CaS than type II fibers, but the difference was less with CaS than with Ca-ATPase. Although the differences were relatively small, HB fibers consistently presented greater amounts of Ca-ATPase than IIA fibers. No types II subgroups could be recognized after incubation with anti-CaS. These findings confirm results from previous immunochemical measurements on whole muscles containing different proportions of IIA and IIB fibers (Leberer and Pette 1986). Type IIA and IIC in the rabbit and rat soleus reacted stronger for Ca-ATPase and for CaS than type I fibers. Small differences in Ca-ATPase, but not in CaS, were recognized within the type I fiber population. Therefore, type I fibers in the rabbit and rat soleus are not a homogeneous population.  相似文献   

6.
Sections of chicken tibialis anterior and extensor digitorium longus muscles were incubated with monoclonal antibodies against myosin heavy chains (MHC). Ventricular myosin was present in developing secondary intrafusal myotubes when they were first recognized at embryonic days (E) 13–14, and in developing extrafusal fibers prior to that date. The reaction in intrafusal fibers began to fade at E17, and in 2-week-old postnatal and older muscles the isoform was no longer recognized. Only those intrafusal fibers which also reacted with a monoclonal antibody against atrial and slow myosin contained ventricular MHC. Intrafusal myotubes which developed into fast fibers did not express the isoform. Hence, based on the presence or absence of ventricular MHC, two lineages of intrafusal fiber are evident early in development. Strong immunostaining for ventricular MHC was observed in primary extrafusal myotubes at E10, but the isoform was already downregulated at E14, when secondary intrafusal myotubes were still forming and expressed ventricular MHC. Only light to moderate and transient immunostaining was observed in coexisting secondary extrafusal myotubes, most of which developed into fast fibers. Thus at the time when nascent muscle spindles are first recognized, differences in MHC profiles already exist between prospective intrafusal and extrafusal fibers. If intrafusal fibers stem from a pool of primordial muscle cells, which is common to intrafusal and extrafusal myotubes, they diverged from it some time prior to E13.This paper is dedicated to Prof. D. Pette, Konstanz, on the occasion of his 60th birthday  相似文献   

7.
Serial transverse paraffin sections of intrafusal muscle fibers of spindles from the extensor pollicis and the extensor digitorum communis of ducks show that only one type of intrafusal muscle fiber exists, based on the mid-equatorial nucleation pattern, diameter, and length. Although the overall range in fiber diameter at the mid-equatorial region is between 4.2-20.0 microns, the average caliber is 10.4 +/- 3.18 microns (S.D.) for spindles of the extensor pollicis and 9.3 +/- 2.11 microns (S.D.) for spindles of the extensor digitorum communis muscles. The range in spindle length for the extensor pollicis is 290-2,090 microns, average 1,120 +/- 569 microns (S.D.), and for the extensor digitorum communis 1,160-2,500 microns, average 1,745 +/- 367 microns (S.D.). The range in number of fibers per spindle for the extensor pollicis muscle is 5-12, average 8.2, and for the extensor digitorum muscle it is 1-11. In the extensor digitorum communis, there appear to be two groups, based on fiber number. Spindles of one group have a range of 5-11 fibers per spindle with an average of 7.2, whereas the second group has a range of 1-4 with an average of 2.7 fibers per spindle. The second group of spindles constitutes 52.5% of the 40 spindles studied, and of these 7.5% were monofibril spindles, 15.0% difibril, 17.5% trifibril, 12.5% quadrifibril spindles.  相似文献   

8.
Substrate utilization by English sparrow skeletal muscle has been extensively studied in our lab. However, there are few published studies on the muscle fiber composition of English sparrow wing and gastrocnemius muscles. The objective of the present study was to examine the fiber type composition of a variety of muscles in the English sparrow. The classification of a muscle fiber as fast glycolytic, slow oxidative, or fast oxidative glycolytic provides insight into the physiological function of muscles. Therefore, we completed mATPase and NADH stains on four muscles of the sparrow wing, as well as the gastrocnemius muscle, to characterize these muscle fiber types. Results show that the fibers of extensor digitorum communis, extensor metacarpi ulnaris, and extensor metacarpi radialis are homogeneous fast oxidative. The fibers of the supinator are homogeneous fast oxidative in 62.5% of samples, and heterogeneous (45.2% fast oxidative, 54.8% fast nonoxidative) in 37.5% of samples. Whereas the gastrocnemius muscle fibers are heterogeneous (10% fast oxidative, 64% fast nonoxidative, 26% slow oxidative) in all muscles examined.  相似文献   

9.
Summary Soleus, extensor digitorum longus and tibialis anterior muscles of mice voluntarily running in wheels for periods of 5 to 120 days were studied in spaced serial and serial cross-sections. Shortly after the onset of running and during the next 2 weeks, degeneration, necrosis, phagocytosis and regeneration of muscle fibers, satellite cell proliferation and cellular infiltration were found in soleus muscles of mice from all strains investigated (CBA/J, NMRI, C57b, NIH, SWS and Balb/c). Tibialis anterior but not extensor digitorum longus muscles were also damaged. Predominantly high-oxidative fibers were affected (both slow-oxidative and fast oxidative glycolytic in soleus, fast-oxidative glycolytic in tibialis anterior). Denervated soleus muscles that had been passively stretched during running were not damaged. Evidence was found that, during the early period of running, split fibers form by myogenesis within (regeneration) or outside (satellite cell proliferation) necrotic muscle fiber segments. Split fibers persisted in solei of long-term (2 to 3 months) exercised CBA/J but not NMRI mice. In 6 out of 20 solei of CBA/J runners exercised for 2 months or longer, fiber-type grouping was observed in the areas where extensive damage usually occurred in the early periods. The results show that different muscles are damaged and repaired to varying degrees and that marked interstrain and inter-individual differences are present. It appears that acute muscle injury occurring upon onset of voluntary running is a usual event in the adaptation of muscles to altered use.  相似文献   

10.
Summary Muscle spindles were either deafferented or deefferented by selectively severing the sensory or motor nerve supply to neonatal soleus muscles of rats at a time when spindles are formed but when intrafusal muscle fibers are structurally and immunocytochemically immature. Experimental muscles wereexcised two months after nerve section. Control and experimental spindles were examined using monoclonal antibodies specific for myosin heavy chains of slow-tonic (ALD58) and fast-twitch (MF30) chicken muscles. Only intrafusal fibers bound these antibodies in intact soleus muscles. The deefferented spindles exhibited a pattern of ALD58 and MF30 binding similar to that of normal adult intrafusal fibers, whereas deafferented intrafusal fibers were unreactive with the two antibodies. Thus intact sensory innervation is essential for myosin heavy chain expression in intrafusal muscle fibers during postnatal development of rat spindles.  相似文献   

11.
Estimation of instantaneous moment arms of lower-leg muscles   总被引:2,自引:0,他引:2  
Muscle moment arms at the human knee and ankle were estimated from muscle length changes measured as a function of joint flexion angle in cadaver specimens. Nearly all lower-leg muscles were studied: extensor digitorum longus, extensor hallucis longus, flexor digitorum longus, flexor hallucis longus, gastrocnemius lateralis, gastrocnemius medialis, peroneus brevis, peroneus longus, peroneus tertius, plantaris, soleus, tibialis anterior, and tibialis posterior. Noise in measured muscle length was filtered by means of quintic splines. Moment arms of the mm. gastrocnemii appear to be much more dependent on joint flexion angles than was generally assumed by other investigators. Some consequences for earlier analyses are mentioned.  相似文献   

12.
J Kucera  J M Walro 《Histochemistry》1988,90(2):151-160
Muscle spindles were either deafferented or deefferented by selectively severing the sensory or motor nerve supply to neonatal soleus muscles of rats at a time when spindles are formed but when intrafusal muscle fibers are structurally and immunocytochemically immature. Experimental muscles were excised two months after nerve section. Control and experimental spindles were examined using monoclonal antibodies specific for myosin heavy chains of slow-tonic (ALD58) and fast-twitch (MF30) chicken muscles. Only intrafusal fibers bound these antibodies in intact soleus muscles. The deefferented spindles exhibited a pattern of ALD58 and MF30 binding similar to that of normal adult intrafusal fibers, whereas deafferented intrafusal fibers were unreactive with the two antibodies. Thus intact sensory innervation is essential for myosin heavy chain expression in intrafusal muscle fibers during postnatal development of rat spindles.  相似文献   

13.
Indirect immunofluorescence analysis of different rat skeletal muscles using anti-myosin heavy chain (MHC) monoclonal antibodies (MAb) revealed the presence of two immunologically distinct kinds of fibers within the IIB fibers, histochemically identified by myosin ATPase staining. Some IIB fibers (designated here as IIB1) were unreactive with one anti-fast MHC MAb, whereas they did react with another anti-fast MHC MAb; other IIB fibers (designated here as IIB2) reacted with both anti-fast MAbs. Neither of the two IIB fiber subtypes was significantly reactive with a neonatal MHC MAb. The number of each IIB fiber subtype was age-dependent, at least in the plantaris muscle. IIB1 fibers were observed only in the superficial portion of the plantaris and gastrocnemius muscle. The ratio of IIB1:IIB2 fibers was about the same throughout the extensor digitorum longus and extraocular muscles. Therefore, the two kinds of IIB fibers here observed have a different myosin heavy chain content. On the basis of their specific immunoreactivities, we suggest that IIB1 fibers contain the previously described MHCB. IIB2 fibers contain either a unique new MHC isoform or a mixture of at least two MHC, possibly composed of the MHCB and either the previously described MHCA or a new MHC isoform.  相似文献   

14.
Immunofluorescence microscopy of carbonic anhydrase III (CA III) was performed on sections of rat anterior tibialis (AT), extensor digitorum longus (EDL) and soleus after denervation. In contralateral control muscles, CAIII was located only in type I fibres whereas following the operation, CAIII was markedly induced in type II fibers of all the muscles, most strikingly in EDL.  相似文献   

15.
Summary Mammalian intrafusal fibre types (nuclear chain, nuclear bag1 and nuclear bag2 fibres) are known to differ in their ultrastructure, intensity of the myofibrillar histochemical ATP-ase reaction, type of innervation and time course of contraction. The present study concerns the myosin composition of these intrafusal fibre types in the soleus muscle (mouse) and the extensor digitorum longus muscle (rat). We used an immunohistochemical method with three myosin antisera raised in rabbits: anti chicken pectoral myosin, anti chicken heart myosin (1) and anti chicken heart myosin (2) (=anti chicken heart myosin (1) adsorbed with muscle powder from soleus muscle of guinea pig). The results showed that three intrafusal fibre types differed in their myosin composition. A comparison of intrafusal fibre types with extrafusal fibre types for the histochemical myofibrillar ATP-ase reactivity and the reactivity with myosin antisera showed a resemblance of nuclear chain fibres with extrafusal type II fibres and a difference between nuclear bag1 and nuclear bag2 fibres and all other fibre types.  相似文献   

16.
Mouse extensor digitorum longus (EDL) muscle was subjected to a dose of gamma irradiation that causes reproductive death of satellite cells and/or to chronic compensatory overload, achieved by removal of the distal portion of the tibialis anterior muscle. Four weeks later the mass, fiber type percentage, and fiber size of the EDL muscle were measured. Both the irradiated + overloaded and the irradiated only EDL muscles were significantly lighter and contained significantly smaller fibers than untreated muscle or muscle subjected to chronic overload only. Overload muscle, whether irradiated or not, had a larger percentage of type IIx fibers and a smaller percentage of type IIb fibers than muscle that had not been overloaded. The results confirm that satellite cell proliferation is a prerequisite for muscle hypertrophy induced by synergist incapacitation, but it appears not to be required for the maintenance of, or change in, normal muscle fiber myosin heavy chain phenotype expression.  相似文献   

17.
Myosin heavy chain (MHC) expression by intrafusal fibers was studied by immunocytochemistry to determine how closely it parallels MHC expression by extrafusal fibers in the soleus and tibialis anterior muscles of the rat. Among the MHC isoforms expressed in extrafusal fibers, only the slow-twitch MHC of Type 1 extrafusal fibers was expressed along much of the fibers. Monoclonal antibodies (MAb) specific for this MHC bound to the entire length of bag2 fibers and the extracapsular region of bag1 fibers. The fast-twitch MHC isoform strongly expressed by bag2 and chain fibers had an epitope not recognized by MAb to the MHC isoforms characteristic of developing muscle fibers or the three subtypes (2A, 2B, 2X) of Type 2 extrafusal fibers. Therefore, intrafusal fibers may express a fast-twitch MHC that is not expressed by extrafusal fibers. Unlike extrafusal fibers, all three intrafusal fiber types bound MAb generated against mammalian heart and chicken limb muscles. The similarity of the fast-twitch MHC of bag2 and chain fibers and the slow-tonic MHC of bag1 and bag2 fibers to the MHC isoforms expressed in avian extrafusal fibers suggests that phylogenetically primitive MHCs might persist in intrafusal fibers. Data are discussed relative to the origin and regional regulation of MHC isoforms in intrafusal and extrafusal fibers of rat hindlimb muscles.  相似文献   

18.
The metabolic integrity of fully regenerated transplants was investigated by measuring induced changes in glycogen concentration. The extensor digitorum longus and the soleus muscles were cross transplanted: the extensor digitorum longus into the soleus muscle bed (SOLT) and the soleus muscle into the extensor digitorum longus bed (EDLT). The histochemical fiber type distribution of the regenerated muscles was determined and was found to transform in cross-transplanted EDLT and SOLT. After transplantation and regeneration, both muscles had initially low glycogen concentrations. However, the EDLT glycogen concentration was not significantly different from that of the contralateral extensor digitorum longus control muscle after 60 days. In the SOLT, glycogen gradually increased but remained less than in the contralateral soleus control muscle. SOLT and control soleus muscles responded with a significant glycogen depletion to an epinephrine dose two orders of magnitude less than the lowest dose affecting glycogen levels in EDLT and extensor digitorum longus muscles. These results indicate that transplanted muscles are capable of regenerating normal glycogenolytic responses and that the sensitivity of the response observed depends on the site of transplantation and is related to the type of innervation and histochemical fiber type.  相似文献   

19.
Single muscle fibers were isolated from soleus and extensor digitorum longus muscle of adult rats. The muscle fiber type of single fibers was determined physiologically by the skinned fiber method according to the sensitivity to strontium (Sr) ions. The fiber type of single fibers was contrasted to the pattern of myosin light chains analyzed by one and two dimensional gel-electrophoreses. All the type 2 fibers isolated from soleus muscle contained both fast and slow types of myosin light chains.  相似文献   

20.
Fiber type composition of four hindlimb muscles of adult Fisher 344 rats   总被引:8,自引:0,他引:8  
 The limb and trunk muscles of adult rats express four myosin heavy chain (MHC) isoforms, one slow (MHCI) and three fast (MHCIIa, MHCIId, and MHCIIb). The distribution of these isoforms correlates with fiber types delineated using myofibrillar actomyosin adenosine triphosphatase (mATPase) histochemistry. For example, type I fibers express MHCI and fiber types IIA, IID, and IIB express MHCIIa, MHCIId, and MHCIIb, respectively. Fibers containing only one MHC isoform have been termed ”pure” fibers. Recent evidence suggests that a population of ”hybrid” fibers exist in rat skeletal muscle which contain two MHC isoforms. The purpose of the present investigation was to document the entire range of histochemically defined ”pure” and ”hybrid” fiber types in untreated muscles of the young adult Fisher 344 rat hindlimb. The selected hindlimb muscles (soleus, tibialis anterior, extensor digitorum longus, and gastrocnemius muscles) were removed from 12 male rats and analyzed for muscle fiber type distribution, cross-sectional area, and MHC content. Care was taken to delineate eight fiber types (I, IC, IIC, IIA, IIAD, IID, IIDB, and IIB) using refined histochemical techniques. Hybrid fibers were found to make up a considerable portion of the muscles examined (a range of 8.8–17.8% of the total). The deep red portion of the gastrocnemius muscle contained the largest number of hybrid fibers, most of which were the fast types IIAD (8.5±2.8%) and IIDB (5.2±2.3%). In conclusion, hybrid fibers make up a considerable portion of normal rat limb musculature and are an important population that should not be ignored. Accepted: 15 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号