首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Turkey muscle acylphosphatase is strongly bound to anti-(horse muscle acylphosphatase ) antibodies covalently linked to an agarose resin. This permits use of an affinity chromatography step in the purification, which increased the final yield and allowed us to isolate three different molecular forms of the enzyme. Form 1 is a mixed disulfide between the polypeptide chain and glutathione; form 3 is an S-S dimer of the polypeptide chain present in form 1, while form 2, present in a very low amount, consists of a polypeptide chain quite similar in aminoacid composition to that found in form 1. The three molecular forms show very similar kinetic parameters. The comparison of these molecular forms with those isolated from horse muscle showed similar kinetic properties but different structural features.  相似文献   

2.
The glutathione transferase from T. infestans is able to render aqueous metabolites when incubated in vitro with malathion, parathion and fenitrothion. It is a soluble enzyme present in every developmental stage and widely distributed in all insect organs. The purification procedure applied, consisting of fractionation with ammonium sulfate and Bio-Gel P-60 chromatography, gives an unique molecular form catalytically active using methyl iodide as substrate in polyacrylamide gel electrophoresis (PAGE). One of the most active substrates is the 1-chloro-2,4-dinitrobenzene (CDNB), with an activity maximum at pH 7.5 and at 45 degrees C temperature. Its activation energy calculated from an Arrhenius plot is 14,846 cal mol-1. The enzyme susceptibility to inhibition by thiol reagents shows three degrees of responses; slight, moderate or high, depending on the compounds used. The kinetics of the enzyme catalysed reaction with the purified fraction is complex, and resembles that reported for glutathione S-transferase A from rat liver, showing a biphasic kinetic mechanism in which the reaction pathway depends on the concentration of GSH. In general, the properties of this insect enzyme are similar to those enzymes isolated from vertebrate organisms.  相似文献   

3.
An enzyme widely distributed in rabbit tissues which catalyzes an interchange between N,N-di-dinitrophenyl-L-cystine and oxidized glutathione to form the mixed disulfide is described. D-Penicillamine disulfide can be substituted for oxidized glutathione and the mixed disulfide of cysteine and glutathione can serve as the sole substrate giving as one product of interchange, oxidized glutathione. The enzyme is very labile and only limited purification of it has been achieved. The activity increases with increasing pH above 6.6, the Km for N,N-di-dinitrophenyl-L-cystine is 0.2 mM and for oxidized glutathione 0.8 mM. The enzyme is inhibited by SH reagents with protection against iodoacetamide inactivation provided by N,N-di-dinitrophenyl-L-cystine. Evidence is presented that disulfide-disulfide interchange enzyme is a different activity from the previously described protein disulfide isomerase and thiol transferase.  相似文献   

4.
The procedure developed for purification of the N-ethylmaleimide-activated microsomal glutathione transferase was applied successfully to isolation of this same enzyme in unactivated form. The microsomal glutathione transferases, the unactivated and activated forms, were shown to be identical in terms of molecular weight, immunochemical properties, and amino acid composition. In addition the microsomal glutathione transferase purified in unactivated form could be activated 15-fold with N-ethylmaleimide to give the same specific activity with 1-chloro-2,4-dinitrobenzene as that observed for the enzyme isolated in activated form. This activation involved the binding of one molecule N-ethylmaleimide to the single cysteine residue present in each polypeptide chain of the enzyme, as shown by amino acid analysis, determination of sulfhydryl groups by 2,2'-dithiopyridyl and binding of radioactive N-ethylmaleimide. Except for the presence of only a single cysteine residue and the total absence of tryptophan, the amino acid composition of the microsomal glutathione transferase is not remarkable. The contents of aspartic acid/asparagine + glutamic acid/glutamine, of basic amino acids, and of hydrophobic amino acids are 15%, 12% and 54% respectively. The isoelectric point of the enzyme is 10.1. Microsomal glutathione transferase conjugates a wide range of substrates with glutathione and also demonstrates glutathione peroxidase activity with cumene hydroperoxide, suggesting that it may be involved in preventing lipid peroxidation. Of the nine substrates identified here, the enzymatic activity towards only two, 1-chloro-2,4-dinitrobenzene and cumene hydroperoxide, could be increased by treatment with N-ethylmaleimide. This treatment results in increases in both the apparent Km values and V values for 1-chloro-2,4-dinitrobenzene and cumene hydroperoxide. Thus, although clearly distinct from the cytosolic glutathione transferases, the microsomal enzyme shares certain properties with these soluble enzymes, including a relative abundance, a high isoelectric point and a broad substrate specificity. The exact role of the microsomal glutathione transferase in drug metabolism, as well as other possible functions, remains to be established.  相似文献   

5.
Chromatography of bovine kidney aldose reductase using Matrex Orange A affinity gel results in the separation of the unactivated and activated enzyme forms. The former washes through the column, while the latter is eluted with an NADPH step-gradient. The separated enzyme forms display Vmax and Km glycolaldehyde values, and relative sensitivities to inhibition by the aldose reductase inhibitor AL-1576 (spiro[2,7-difluorofluorene-9,4'-imidazolidine]-2',5'- dione), that are similar to those reported previously for the individual forms. However, because Vmax is 17-fold lower for the unactivated enzyme, the purification of aldose reductase via NADP(H) elution from a dye-ligand affinity matrix can result in the selective purification of only the activated enzyme form. These results have direct implications for the study of potential aldose reductase inhibitors, and may explain why linear double-reciprocal plots are commonly observed for enzyme prepared in this manner, while nonlinear plots are seen in other cases.  相似文献   

6.
The purification of Glyoxalase I from rabbit liver using Blue Dextran-Sepharose-4B and S-hexyl Glutathione Sepharose-6B is described. Elution of Glyoxalase I from both the columns was accomplished with S-hexyl glutathione, a competitive inhibitor of the enzyme. The purified enzyme gave two bands on disc electrophoresis. After treatment with glutathione, only one band was found. Except for these interconvertible forms, the purified enzyme was homogeneous as shown by disc electrophoresis and sodium dodecyl sulfate polyacrylamide gel electrophoresis.  相似文献   

7.
Phenylalanine ammonia-lyase (PAL) from spinach (Spinacia oleracea L.) leaves was resolved into three forms by diethyl-aminoethyl(DEAE)-cellulose chromatography. Two forms were found in isolated chloroplasts, and the third form (the major component) was located outside of the chloroplasts. One of the chloroplast forms of the enzyme (designated the regulatory form) was activated by reduced thioredoxin. Neither the other chloroplast form nor the extra-chloroplast form showed a response to thioredoxin. After further purification by hydroxyapatite column chromatography and gel filtration, the regulatory form of chloroplast PAL was stimulated approximately 3-fold by thioredoxin reduced either photochemically by chloroplast membranes, via ferredoxin and ferredoxin-thioredoxin reductase, or chemically by dithiothreitol. Once activated, the enzyme required an added oxidant for deactivation. Physiological oxidants-oxidized glutathione (GSSG) and dehydroascorbate-as well as nonphysiological oxidants-sodium tetrathionate and diamide-were effective in deactivation. The results indicate that chloroplast PAL is regulated by light via the ferredoxin/thioredoxin system in a manner similar to that described for regulatory enzymes of CO2 assimilation. The extra-chloroplast form of the enzyme, by contrast, appears to be regulated by light via the earlier-described phytochrome-linked system.  相似文献   

8.
Purification and properties of sucrose synthase from maize kernels   总被引:14,自引:9,他引:5       下载免费PDF全文
Su JC  Preiss J 《Plant physiology》1978,61(3):389-393
Sucrose synthase was purified from 22-day-old maize (Zea mays L.) kernels to homogeneity by the successive steps of ammonium sulfate fractionation, gel filtration through a Sephadex G-200 column, and affinity chromatography on a UDP-hexanol-amino-agarose column. The degree of purification is 42-fold and the yield is over 80%. Polyacrylamide gel electrophoretic techniques, sedimentation velocity, and gel filtration studies revealed that the enzyme has identical subunits and could assume tetrameric, octameric, and other higher aggregated forms which are dependent on the ionic species and ionic strength of the solution. All of the enzyme forms exhibit catalytic activity but show differences in their specific activities. In most cases, the tetramer is the predominant form and has the highest specific activity. It is thus concluded that the tetramer could be the native form of the enzyme. The subunit protein has a molecular weight of 88,000 and a blocked NH2 terminus which is not available to Edman degradation. Some general properties and the amino acid composition of the enzyme are also reported.  相似文献   

9.
Studies from several laboratories have demonstrated the existence of at least three separable forms of the hepatic enzyme, tyrosine aminotransferase. The significance of these separable forms of the enzyme isolated in vitro for the nature and regulation of the enzyme in vivo has been the subject of some controversy. The studies reported in this paper demonstrate the existence of a heat-labile, pH- and temperature-dependent, nondialyzable component associated predominantly with the lysosomal and mitochondrial fraction of rat liver which catalyzes the conversion of form II to forms III and IV of the enzyme. The activity of this conversion factor is not significantly affected by F?, molybdate ions, or two inhibitors of proteases. On the other hand, the cyanate ion completely inhibits the conversion of form II to forms III and IV of tyrosine aminotransferase, as do iodoacetate and oxidized glutathione. p-Chloromercuribenzoate also markedly inhibits the conversion. Kinetic studies suggest that the shift from one form to another follows the pathway: II to III to IV. Titration of the available sulfhydryl groups of the three forms of the enzyme demonstrates that form II possesses between 16 and 17 titratable SH groups per mole, while forms III and IV possess 15 and 13 or 14, respectively. The possible catalytic mechanism by which the conversion of the multiple forms of tyrosine aminotransferase is accomplished is discussed.  相似文献   

10.
1. The pH dependencies of the apparent Michaelis constant for oxidized glutathione and the apparent turnover number of yeast glutathione reductase (EC 1.6.4.2) have been determined at a fixed concentration of 0.1 mM NADPH in the range pH 4.5--8.0. Between pH 5.5 and 7.6, both of these parameters are relatively constant. The principal effect of low pH on the kinetics of the enzyme-catalyzed reaction is the observation of a pH-dependent substrate inhibition by oxidized glutathione at pH less than or equal 7, which is shown to correlate with the binding of oxidized glutathione to the oxidized form of the enzyme. 2. The catalytic activity of yeast glutathione reductase at pH 5.5 is affected by the sodium acetate buffer concentration. The stability of the oxidized and reduced forms of the enzyme at pH 5.5 and 25 degrees C in the absence of bovine serum albumin was studied as a function of sodium acetate concentration. The results show that activation of the catalytic activity of the enzyme at low sodium acetate concentration correlates with an effect of sodium acetate on a reduced form of the enzyme. In contrast, inhibition of the catalytic activity of the enzyme at high sodium acetate concentration correlates with an effect of sodium acetate on the oxidized form of the enzyme.  相似文献   

11.
Warner JR  Copley SD 《Biochemistry》2007,46(14):4438-4447
Tetrachlorohydroquinone (TCHQ) dehalogenase catalyzes the conversion of TCHQ to 2,6-dichlorohydroquinone during degradation of pentachlorophenol by Sphingobium chlorophenolicum. TCHQ dehalogenase is a member of the glutathione S-transferase superfamily. Members of this superfamily typically catalyze nucleophilic attack of glutathione upon an electrophilic substrate to form a glutathione conjugate and contain a single glutathione binding site in each monomer of the typically dimeric enzyme. TCHQ dehalogenase, in contrast to most members of the superfamily, is a monomer and uses 2 equiv of glutathione to catalyze a more complex reaction. The first glutathione is involved in formation of a glutathione conjugate, while the second is involved in the final step of the reaction, a thiol-disulfide exchange reaction that regenerates the free enzyme and forms GSSG. TCHQ dehalogenase is severely inhibited by its aromatic substrates, TCHQ and trichlorohydroquinone (TriCHQ). TriCHQ acts as a noncompetitive inhibitor of the thiol-disulfide exchange reaction required to regenerate the free form of the enzyme. In addition, dissociation of the GSSG product is inhibited by TriCHQ. The thiol-disulfide exchange reaction is the rate-limiting step in the reductive dehalogenation reaction under physiological conditions.  相似文献   

12.
Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (EC 4.1.3.5) was purified to homogeneity from ox liver and obtained essentially free from acetoacetyl-CoA thiolase activity. The purification procedure included substrate elution from cellulose phosphate and chromatofocusing. The relative molecular mas was about 100 000 and S20,w0 was 6.36S. The enzyme appears to be a dimer of identical subunits (Mr 47 900). The Km for acetoacetyl-CoA is extremely low (less than 0.5 microM), and acetoacetyl-CoA (Acac-CoA) gives marked substrate inhibition (KiAcac-CoA = 3.5 microM) that is competitive with respect to acetyl-CoA. Both CoA and DL-3-hydroxy-3-methylglutaryl-CoA give mixed product inhibition with respect to acetyl-CoA, which is compatible with a Ping Pong mechanism in which both products can form kinetically significant complexes with two forms of the enzyme. The two forms are most likely to be free enzyme and an acetyl-enzyme intermediate.  相似文献   

13.
The presence of glutathione peroxidase activity is reported for the first time for a wild type strain of Saccharomyces cerevisiae. Both forms of enzyme, i.e. that specifically active toward H2O2 alone and that decomposing also organic peroxides, were found to be present. The H2O2 specific form disappeared when cells were grown in the absence of oxygen, while the other form was much increased under the same conditions. Addition of copper to the culture greatly increased both forms. The results show that glutathione peroxidase is to be included, as an important component that is also highly responsive to oxidative environments, in the enzyme defense system of yeast against oxidative damage.  相似文献   

14.
A purification procedure, based on that previously used for rat kidney gamma-glutamyl transpeptidase, was used for the purification of glutathione oxidase (which converts glutathione to gluthathione disulfide). The two activities co-purified, the ratio of the activities remaining constant through all steps of the isolation procedure. The purified enzyme was separable into 12 isozymic species by isoelectric focusing. All 12 isozymes exhibited a constant ratio of transpeptidase to glutathione oxidase activities, strongly supporting the conclusion that conversion of glutathione to glutathione disulfide is a catalytic function of gamma-glutamyl transpeptidase. Modulation of oxidase activity by inhibitors and acceptor substrates of transpeptidase is discussed in relation to the possible glutathione binding sites involved in gamma-glutamyl transfer and oxidase activities of the enzyme.  相似文献   

15.
Previously we reported the purification of soluble gamma-glutamyltransferases (GGTs) from radish cotyledon. Subcellular fractionation of radish cells revealed that soluble GGT is a vacuolar enzyme. Acivicin, a GGT inhibitor, mediated the in vivo catabolism inhibition of the glutathione S-conjugate generated from endogenous glutathione and exogenously supplied monochlorobimane. Thus soluble GGT is possibly involved in the catabolism of glutathione S-conjugates.  相似文献   

16.
Seven major isoenzymes of glutathione transferase with isoelectric points ranging from pH 6.9 to 10 were isolated from rat liver cytosol. The purification procedure included affinity chromatography on immobilized S-hexylglutathione followed by high-performance liquid chromatofocusing. Characteristics, such as physical properties, reactions with antibodies, specific activities with various substrates, kinetic constants, and sensitivities to a set of inhibitors, are given for discrimination and identification of the different isoenzymes. The multiple forms of the enzyme correspond to glutathione transferases 1-1, 1-2, 2-2, 3-3, 3-4, and 4-4 in the recently introduced nomenclature [W.B. Jakoby et al. (1984) Biochem. Pharmacol. 33, 2539-2540]. A seventh form appears to be a heterodimeric protein composed of subunit 3 and an as yet unidentified subunit.  相似文献   

17.
The proteins extracted with 0.4% Triton X-100 from the 105000 g homogenate fraction were shown to possess the phenylalanine hydroxylase (EC 1.14.16.1) activity. This phenylalanine hydroxylase fraction was designated as the membrane form of the enzyme. However, immunochemical methods of the antigen analysis performed under non-denaturating conditions and employing monospecific antisera to phenylalanine hydroxylase (double immunodiffusion in agar, racket immunoelectrophoresis, enzyme purification on immunoadsorbents) failed to reveal the antigen among the membrane fraction proteins of the liver. In this fraction the antigen was identified only by immunoblotting performed after electrophoresis of the proteins under denaturating conditions. The molecular mass of the cytoplasmic and membrane forms of the enzyme subunits is identical (52 kD). The Km value of phenylalanine for the cytoplasmic form of phenylalanine hydroxylase is 0.32.10(-3) M, that for the membrane form is 1.66.10(-3) M. Both enzyme forms can bind to phenyl-Sepharose after their activation by the substrate, and they dissociate from the carrier after phenylalanine removal from the incubation mixture, which points to the intactness of the phenylalanine binding allosteric center in the membrane form of the enzyme. This finding allowed for the purification of the membrane form of phenylalanine hydroxylase by affinity chromatography on phenyl-Sepharose.  相似文献   

18.
Wysocki P  Strzezek J 《Theriogenology》2006,66(9):2152-2159
The fluid of boar epididymis is characterized by a high activity of acid phosphatase (AcP), which occurs in three molecular forms. An efficient procedure was developed for the purification of a molecular form of epididymal acid phosphatase from boar seminal plasma. We focused on the epididymal molecular form, which displayed the highest electrophoretic mobility. The purification procedure (dialysis, ion exchange chromatography, affinity chromatography and hydroxyapatite chromatography) used in this study gave more than 7000-fold purification of the enzyme with a yield of 50%. The purified enzyme was homogeneous by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The purified molecular form of the enzyme is a thermostable 50kDa glycoprotein, with a pI value of 7.1 and was highly resistant to inhibitors of acid phosphatase when p-nitrophenyl phosphate was used as the substrate. Hydrolysis of p-nitrophenyl phosphate by the purified enzyme was maximally active at pH of 4.3; however, high catalytic activity of the enzyme was within the pH range of 3.5-7.0. Kinetic analysis revealed that the purified enzyme exhibited affinity for phosphotyrosine (K(m)=2.1x10(-3)M) and was inhibited, to some extent, by sodium orthovanadate, a phosphotyrosine phosphatase inhibitor. The N-terminal amino acid sequence of boar epididymal acid phosphatase is ELRFVTLVFR, which showed 90% homology with the sequence of human, mouse or rat prostatic acid phosphatase. The purification procedure described allows the identification of the specific biochemical properties of a molecular form of epididymal acid phosphatase, which plays an important role in the boar epididymis.  相似文献   

19.
Human brain contains one cationic (pI8.3) and two anionic (pI5.5 and 4.6) forms of glutathione S-transferase. The cationic form (pI8.3) and the less-anionic form (pI5.5) do not correspond to any of the glutathione S-transferases previously characterized in human tissues. Both of these forms are dimers of 26500-Mr subunits; however, immunological and catalytic properties indicate that these two enzyme forms are different from each other. The cationic form (pI8.3) cross-reacts with antibodies raised against cationic glutathione S-transferases of human liver, whereas the anionic form (pI5.5) does not. Additionally, only the cationic form expresses glutathione peroxidase activity. The other anionic form (pI4.6) is a dimer of 24500-Mr and 22500-Mr subunits. Two-dimensional gel electrophoresis demonstrates that there are three types of 26500-Mr subunits, two types of 24500-Mr subunits and two types of 22500-Mr subunits present in the glutathione S-transferases of human brain.  相似文献   

20.
We developed a method for selective preparation of two forms of alkaline phosphatase from rat tissues. The enzyme was extracted by n-butanol treatment at pH 5.5 and pH 8.5 as soluble and aggregated (membranous) forms, respectively. The soluble form prepared from liver was found to be identical with the serum enzyme. Complete solubilization of the membrane-bound enzyme without detergents had a great advantage in its purification. Rat hepatoma AH-130 cells enriched in alkaline phosphatase were first used for purification of the liver-type enzyme. The hepatoma enzyme, purified by chromatographies on concanavalin-A-Sepharose, Sephacryl S-300 and hydroxyapatite was used for production of antibodies specific for the liver-type isozyme. An immunoaffinity column, prepared with anti-(hepatoma-enzyme) IgG was utilized for the enzyme purification from other tissues including the membranous form. Analyses of amino acid composition of the purified enzymes revealed that all the liver-type enzymes from hepatoma, liver, kidney and serum had the same composition, whereas the intestinal type consisted of the composition distinctly different from that in the liver type. In addition, there was no significant difference in amino acid composition between the soluble and membranous forms, suggesting a possible involvement in the membranous form of a hydrophobic component other than its polypeptide domain. The present method for selective preparation of the soluble and membranous forms of alkaline phosphatase will be useful for a further investigation on the interaction of the enzyme with membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号