首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The dual effects of auxin and ethylene on rice seminal root growth were investigated in this study. Low concentrations of exogenous indole-3-acetic acid (IAA) had no effect on rice seminal root growth, whereas higher concentrations (≥0.003 μM) were inhibitory. In contrast, low concentrations of the auxin action inhibitor p-chlorophenoxyisobutyric acid (PCIB), ranging from 0.5 to 50 μM, promoted rice seminal root growth, whereas high concentrations of PCIB (≥500 μM) and the polar auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibited rice seminal root growth. These results suggest that endogenous auxin is required but supraoptimal for rapid growth of rice seminal roots. In addition, although rice seminal root growth was inhibited by the exogenous ethylene-releasing compound ethephon or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) as well as exogenous IAA, the 50% inhibition of growth (I50) caused by ethephon or ACC was weakened by certain concentrations of the ethylene action inhibitor Ag+ (0.016-0.4 μM). However, the I50 caused by exogenous IAA was strengthened by Ag+ or the ethylene biosynthetic inhibitor aminoethoxyvinylglycine (AVG) and weakened by certain concentrations of PCIB (0.5-50 μM). Together, the inhibitory mechanisms of auxin and ethylene on rice seminal root growth should be different, and auxin inhibition of rice seminal root growth should not be caused by ethylene. Furthermore, our results indicated that a certain threshold level of ethylene was required to maintain rice seminal root growth, and that ethylene within the threshold may antagonize auxin inhibition of rice seminal root growth.  相似文献   

3.
The inhibitory effects of indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) on elongation growth of pea (Pisum sativum L.) seedling roots were investigated in relation to the effects of these compounds on ethylene production by the root tips. When added to the growth solution both compounds caused a progressively increasing inhibition of growth within the concentration range of 0.01 to 1 micromolar. However, only ACC increased ethylene production in root tips excised from the treated seedlings after 24 hours. High auxin concentrations caused a transitory increase of ethylene production during a few hours in the beginning of the treatment period, but even in 1 micromolar IAA this increase was too low to have any appreciable effect on growth. ACC, but not IAA, caused growth curvatures, typical of ethylene treatment, in the root tips. IAA caused conspicuous swelling of the root tips while ACC did not. Cobalt and silver ions reversed the growth inhibitory effects induced by ACC but did not counteract the inhibition of elongation or swelling caused by IAA. The growth effects caused by the ACC treatments were obviously due to ethylene production. We found no evidence to indicate that the growth inhibition or swelling caused by IAA is mediated by ethylene. It is concluded that the inhibitory action of IAA on root growth is caused by this auxin per se.  相似文献   

4.
5.
Mondal MH 《Plant physiology》1975,56(5):622-625
The influence of gibberellic acid (GA), calcium, kinetin, and ethylene on growth and cell-wall composition of decapitated pea epicotyls (Pisum sativum L. var. Alaska) was investigated. Calcium, kinetin, and ethylene each caused an inhibition of GA-induced elongation of pea stems. Gibberellic acid did not reverse the induction of swelling by Ca2+, kinetin, or ethylene. Both Ca2+ and ethylene significantly inhibited the stimulatory effects of GA on the formation of residual wall material. Although GA promoted the development of walls relatively low in pectic substances and pectic uronic acid, Ca2+, kinetin, and ethylene favored the formation of walls rich in these constituents. Calcium, kinetin, and GA, alone or in combination, had no effect on the production of ethylene by pea epicotyls.  相似文献   

6.
Transverse cortical microtubule (CMT) arrays in lettuce root epidermal cells randomize soon after a shift from pH 6.0 to pH 4.0, and this randomization is essential for root hair initiation. We investigated the hormonal regulation of CMT randomization. At pH 4.0, 1 micro M of the auxin competitive inhibitor 2-(p-chlorophenoxy)-2-methylpropionic acid (PCIB), 0.1 micro M of the ethylene biosynthesis inhibitor aminoethoxyvinylglycine (AVG) or 0.1 micro M of the ethylene action inhibitor Ag(+) suppressed CMT randomization and root hair initiation. At pH 6.0, addition of 0.1 micro M indole-3-acetic acid (IAA) or 1 micro M of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) induced CMT randomization and root hair initiation. Culturing with 0.1 micro M IAA plus 0.1 micro M AVG, or 1 micro M ACC plus 1 micro M PCIB also induced these phenomena. ACC (1 micro M) plus 100 micro M PCIB inhibited CMT randomization and root hair initiation, but 1 micro M AVG with 0.1 micro M Ag(+) and 0.1 micro M IAA induced them. These results suggest that auxin is essential for CMT randomization. As a higher concentration of PCIB was required to suppress CMT randomization when ACC was added, the greater amount of ethylene produced at pH 4.0 may promote the induction by auxin of CMT randomization in hair-forming cells.  相似文献   

7.
Basu P  Brown KM  Pal A 《Plant physiology》2011,155(4):2056-2065
Vertical placement of roots within the soil determines their efficiency of acquisition of heterogeneous belowground resources. This study quantifies the architectural traits of seedling basal roots of bean (Phaseolus vulgaris), and shows that the distribution of root tips at different depths results from a combined effect of both basal root growth angle (BRGA) and root length. Based on emergence locations, the basal roots are classified in three zones, upper, middle, and lower, with each zone having distinct architectural traits. The genotypes characterized as shallow on BRGA alone produced basal roots with higher BRGA, greater length, and more vertically distributed roots than deep genotypes, thereby establishing root depth as a robust measure of root architecture. Although endogenous indole-3-acetic acid (IAA) levels were similar in all genotypes, IAA and 1-N-naphthylphthalamic acid treatments showed different root growth responses to auxin because shallow and deep genotypes tended to have optimal and supraoptimal auxin levels, respectively, for root growth in controls. While IAA increased ethylene production, ethylene also increased IAA content. Although differences in acropetal IAA transport to roots of different zones can account for some of the differences in auxin responsiveness among roots of different emergence positions, this study shows that mutually dependent ethylene-auxin interplay regulates BRGA and root growth differently in different genotypes. Root length inhibition by auxin was reversed by an ethylene synthesis inhibitor. However, IAA caused smaller BRGA in deep genotypes, but not in shallow genotypes, which only responded to IAA in the presence of an ethylene inhibitor.  相似文献   

8.
Gaither DH 《Plant physiology》1975,55(6):1082-1086
The auxin transport inhibitor methyl-2-chloro-9-hydroxyfluorene-9-carboxylate (CFM), a morphactin, inhibits negative geotropism, causes cellular swelling, and induces root hair formation in roots of intact Pisum sativum L. seedlings. In excised pea root tips, CFM inhibits elongation more than increase in fresh weight (swell ratio = 1.3 at 20 mum CFM). CFM growth inhibition was expressed in the presence of ethylene. Indoleacetic acid (IAA) prevented the expression of CFM growth inhibition possibly because IAA inhibited the accumulation of CFM into the tissue sections. CFM inhibited the accumulation of IAA and 2,4-dichlorophenoxyacetic acid into excised root tips. Applying Leopold's (1963. Brookhaven Symp. Biol. 16: 218-234) model for polar auxin transport, this result suggests a possible explanation for CFM inhibition of geotropism in pea roots, i.e. disruption of auxin transport by interfering with auxin binding.  相似文献   

9.
Externally applied GA greatly promoted elongation of the plumularhook section of the etiolated Alaska pea seedling, but IAA hadno such effect when given either alone or with GA. PCIB inhibitedelongation of the plumular hook section both in the presenceand absence of applied GA. The PCIB effect in the absence ofGA was partially overcome by IAA, but not completely. On theother hand, the PCIB effect in the presence of GA was completelyovercome by IAA. No antagonic response was, however, obtainedbetween GA and PCIB. CCC also retarded elongation of the sectionand this inhibition was completely overcome by GA, but not byIAA. There was little difference in the amount of endogenous auxindetectable in GA treated and untreated sections. These resultssuggest that auxin is necessary for the growth of both GA treatedand untreated plumular hook sections and that auxin and gibberellinact differently on the growth of the section. (Received April 24, 1968; )  相似文献   

10.
Summary The effect of exogenously fed hormones on hairy root cultures of Cichorium intybus L. ev. Lucknow Local was studied. It was seen that auxin in the presence of low levels of kinetin induces rapid disorganization in hairy root cultures of C. intybus, ultimately to form suspension cultures, and this process was associated with the decrease in coumarin content in the cells. Of various treatments, it was observed that with an increase in the auxin: cytokinin ratio, the biomass decreased with the increase in disorganization index during the culture period of 28 d. The disorganization index was less when the inoculum size was enhanced to 10-fold. The total endogenous indole-3-acetic acid titers and indole-3-acetic acid oxidase activity also decreased with an increase in disorganization index, and was independent of initial inoculum size, with only a magnitude difference. The total coumarin content strictly correlated with growth in all the treatments. In contrast, exogenously supplied gibberellic acid at the 0.5 mg l−1 level enhanced growth, coumarin content, and branching patterns over the control and other treatments on day 28. The exogenously fed growth regulators had an effect on growth, auxin and coumarin biosyntheses, wherein transformed roots treated with increasing concentration of auxin to cytokinin ratios lost their ability for coumarin biosynthesis. The behavior of hairy roots from an Indian cultivar of chicory upon growth regulator treatment is discussed in terms of growth, coumarin and auxin biosyntheses.  相似文献   

11.
Hypocotyl explants of Mesembryanthemum crystallinum regenerated roots when cultured vertically with either the apical end (AE) or basal end (BE) in media containing indole-3-acetic acid (IAA). IAA alone induced roots regularly from the basal end of the explants, either from the cut surface immersed in the medium or from the opposite side. The inhibitors of auxin efflux carriers, α-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA), inhibited rhizogenesis only from AE-cultured explants, indicating the role of polar auxin transport in root regeneration in this system. Cytokinin (zeatin, kinetin, BAP) added to auxin-containing medium reduced rhizogenesis from the explants maintained with BE and AE and additionally changed the IAA-induced pattern of rooting in AE-cultured explants by favoring rooting from the apical end and middle part of the hypocotyl with its concomitant reduction from the basal end. The addition of kinetin did not influence the content of IAA in the explants maintained with AE, suggesting that the cytokinin effect on root patterning was not dependent on auxin biosynthesis. Kinetin, however, strongly enhanced ethylene production. The importance of ethylene in regulating PAT-dependent rhizogenesis was tested by using an ethylene antagonist AgNO3, an inhibitor of ethylene synthesis aminoethoxyvinylglycine (AVG), and a precursor of ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC). AgNO3 applied together with IAA or with IAA and kinetin strongly reduced the production of ethylene, inhibited rhizogenesis, and induced nonregenerative callus from BE, suggesting the need for ethylene signaling to elicit the rhizogenic action of auxin. A reduction of rhizogenesis and decrease of ethylene biosynthesis was also caused by AVG. In addition, AVG at 10 μM reversed the effect of cytokinin on root patterning, resulting in roots emerging only from BE on the medium with IAA and kinetin. Conversely, ACC at 200 μM markedly enhanced the production of ethylene and partly mimicked the effect of cytokinin when applied with IAA alone, thus confirming that in cultured hypocotyls of ice plant, cytokinin affects IAA-induced rhizogenesis through an ethylene-dependent pathway.  相似文献   

12.
The inhibitors of auxin transport-NPA (N-1-naphthylphthalamic acid), DPX1840 (3,3a-dihydro-2-(p-methoxyphenyl)-8H-pyrazolo[5,1-a] isoindol-8-one), and TIBA (2,3,5-triiodobenzoic acid)-inhibited geotropism in roots of intact Pisum sativum L. seedlings. NPA and DPX1840 also caused cellular swelling in the roots. The swelling was due to a greater inhibition of elongation than increase in weight and looked identical to the one caused by ethylene. However, ethylene did not act as an intermediate in the action of auxin transport inhibitors because all three failed to stimulate ethylene production and some of their growth-inhibiting effect was retained in the presence of saturating levels of ethylene. In the presence of 10 mum indoleacetic acid the growth-inhibiting effect of auxin transport inhibitors was lost after 18 hours. On the other hand, auxin transport inhibitors did not interfere with the ability of auxin to promote ethylene production. Growth inhibition caused by auxin transport inhibitors was reversible. Pea root sections resumed normal growth following flushing of treated sections with inhibitor-free solutions. Experiments with (14)C-2, 4-dichlorophenoxyacetic acid revealed that the herbicide and auxin transport inhibitors may have the same binding site. It was concluded that a class of structurally dissimilar compounds may share a similar physiological role since they all appear to compete with endogenous auxin for certain binding sites and they all have similar growth-regulating activities.  相似文献   

13.
We have found that chromosaponin I (CSI), a gamma-pyronyl-triterpenoid saponin isolated from pea (Pisum sativum L. cv Alaska), specifically interacts with AUX1 protein in regulating the gravitropic response of Arabidopsis roots. Application of 60 microM CSI disrupts the vertically oriented elongation of wild-type roots grown on agar plates but orients the elongation of agravitropic mutant aux1-7 roots toward the gravity. The CSI-induced restoration of gravitropic response in aux1-7 roots was not observed in other agravitropic mutants, axr2 and eir1-1. Because the aux1-7 mutant is reduced in sensitivity to auxin and ethylene, we examined the effects of CSI on another auxin-resistant mutant, axr1-3, and ethylene-insensitive mutant ein2-1. In aux1-7 roots, CSI stimulated the uptake of [(3)H]indole-3-acetic acid (IAA) and induced gravitropic bending. In contrast, in wild-type, axr1-3, and ein2-1 roots, CSI slowed down the rates of gravitropic bending and inhibited IAA uptake. In the null allele of aux1, aux1-22, the agravitropic nature of the roots and IAA uptake were not affected by CSI. This close correlation between auxin uptake and gravitropic bending suggests that CSI may regulate gravitropic response by inhibiting or stimulating the uptake of endogenous auxin in root cells. CSI exhibits selective influence toward IAA versus 1-naphthaleneacetic acid as to auxin-induced inhibition in root growth and auxin uptake. The selective action of CSI toward IAA along with the complete insensitivity of the null mutant aux1-22 toward CSI strongly suggest that CSI specifically interacts with AUX1 protein.  相似文献   

14.
Previous research shows that gravity-sensing in flax (Linum usitatissimum) root is initiated during seed imbibition and precedes root emergence. In this study we investigated the developmental attenuation of flax root gravitropism post-germination and the involvement of ethylene. Gravity response deteriorated significantly from 3 to 11?h after root emergence, which occurred at around 19?h after imbibition (that is, from “age” 22 to 30?h). Although the root elongation rate increased from 22 to 30?h, the gravitropic curving rate declined steadily. Older roots were able to tolerate higher levels of exogenous IAA before inhibition of elongation and gravitropism occurred. The age-dependent effect of IAA on root growth and gravitropism suggests that young roots are more sensitive to auxin and respond to a smaller vertical auxin gradient than older roots upon horizontal gravistimulation. The ethylene synthesis inhibitor AVG (2-aminoethoxyvinyl glycine, 10?μM) or ethylene action inhibitor Ag+ (10?μM) stimulated gravitropic curvature of 30?h roots by 24 and 32%, respectively, but had no effect on 22?h roots, suggesting that as roots age, ethylene begins to play a role in root gravitropism. The auxin transport inhibitor NPA (N-naphthylphthalamic acid, 50?μM) reduced gravitropic curvature of 30?h roots by 24% but had no effect on 22?h roots. On the other hand, treating roots simultaneously with the auxin transport inhibitor and ethylene synthesis or action inhibitor stimulated gravitropic curvature of 30?h roots but not 22?h roots. Taken together, these data indicate that as roots develop, their weakened gravity response is due to decreased auxin sensitivity and possibly auxin transport regulated by ethylene.  相似文献   

15.
Flower opening in Iris (Iris × hollandica) requires elongation of the pedicel and ovary. This moves the floral bud upwards, thereby allowing the tepals to move laterally. Flower opening is requires with elongation of the pedicel and ovary. In cv. Blue Magic, we investigated the possible role of hormones other than ethylene in pedicel and ovary elongation and flower opening. Exogenous salicylic acid (SA) and the cytokinins benzyladenine (N6-benzyladenine, BA) and zeatin did not affect opening. Jasmonic acid (JA) and abscisic acid (ABA) were slightly inhibitory, but an inhibitor of ABA synthesis (norflurazon) was without effect. Flower opening was promoted by gibberellic acid (GA3), but two inhibitors of gibberellin synthesis (4-hydroxy-5-isopropyl-2-methylphenyltrimethyl ammonium chloride-1-piperidine carboxylate, AMO-1618; ancymidol) did not change opening. The auxins indoleacetic acid (IAA) and naphthaleneacetic acid (NAA) strongly promoted elongation and opening. An inhibitor of auxin transport (2,3,5-triodobenzoic acid, TIBA) and an inhibitor of auxin effects [α-(p-chlorophenoxy)-isobutyric acid; PCIB] inhibited elongation and opening. The data suggest that endogenous auxins are among the regulators of the pedicel and ovary elongation and thus of flower opening in Iris.  相似文献   

16.
The role of auxins on root system architecture was studied by applying indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and 1-naphthaleneacetic acid (NAA) to maize roots and analysing the main processes involved in root development: primary root (PR) elongation, lateral root (LR) formation, and LR root elongation. We found that these effects were not dependent only on concentration, but also on the type of auxin applied. We also studied temporal changes in auxin inhibition of PR elongation. These temporal changes were analysed calculating the elongation ratio between two consecutive one day periods after auxin application. It was observed that a reduction in root elongation was also dependent on the type of auxin applied and its concentration. The inhibitory effect of IBA and IAA decreased on the second day, and the ratio also increased with the concentration. In contrast, NAA increased root elongation inhibition with time. Indeed, the ratio decreased as the NAA concentration increased. Regarding LR formation, we observed that external auxin increased only LR formation in certain zones of the PR. Finally, comparison of inhibition elongation associated with auxin in the LR and PR clearly demonstrates that PR elongation was more sensitive to auxin than LR elongation.  相似文献   

17.
Lateral root development in cultured seedlings of Pisum sativum (cv. Alaska) was modified by the application of auxin transport inhibitors or antagonists. When applied either to replace the root tip or beneath the cotyledonary node, two auxin transport inhibitors, 2,3,5-triiodobenzoic acid (TIBA) and 3,3a-dihydro-2-(p-methoxyphenyl)-8H-pyrazolo[5,1-α]isoindol-8-one (DPX-1840), increased cell division activity opposite the protoxylem poles. This resulted in the formation of masses of cells, which we are calling root primordial masses (RPMs), 2 to 3 days after treatment. RPMs differed from lateral root primordia in that they lacked apical organization. Some roots however developed both RPMs and lateral roots indicating that both structures were similar in terms of the timing and location of cell division in the pericycle and endodermis leading to their initiation. Removal of the auxin transport inhibitors allowed many of the RPMs to organize later into lateral root primordia and to emerge in clusters. When the auxin, indoleacetic acid (IAA) was added to the growth medium along with DPX-1840, 3 ranks of RPMs now in the form of fasciated lateral roots emerged from the primary root. The auxin antagonist, p-chlorophenoxy-isobutyric acid (PCIB), also induced RPM formation. In contrast to DPX-1840 treatment, the addition of IAA during PCIB treatment caused normal lateral root development.  相似文献   

18.
Submergence induces elongation in the petioles of Ranunculus sceleratus L., after a rise in endogenous ethylene levels in the tissue. Petioles of isolated leaves also elongate 100% in 24 hours when treated with ethylene gas, without a change in the radius. Application of silver thiosulfate, aminoethoxyvinylglycine (AVG), abscisic acid (ABA), or methyl jasmonate inhibits this elongation response. Gibberellic acid treatment promotes ethylene-induced elongation, without an effect on the radius. Indoelastic acid (IAA) induces radial growth in the petioles, irrespective of the presence or absence of added ethylene. High concentrations of IAA will also induce elongation growth, but this is largely due to auxin-induced ethylene synthesis; treatment with silver thiosulfate, AVG, ABA, or methyl jasmonate inhibit this auxin-promoted elongation growth. However, the radial growth induced by IAA is not affected by gibberellic acid, and not specifically inhibited by ABA, methyl jasmonate, silver thiosulfate, or AVG. These results support the idea that petiole cell elongation during “accommodation growth” can be separated from radial expansion. The radial expansion may well be regulated by IAA. However, effects of high levels of IAA are probably anomalous, since they do not mimic normal developmental patterns.  相似文献   

19.
The hormone auxin is known to inhibit root elongation and to promote initiation of lateral roots. Here we report complex effects of auxin on lateral root initiation in roots showing reduced cell elongation after auxin treatment. In Arabidopsis thaliana, the promotion of lateral root initiation by indole-3-acetic acid (IAA) was reduced as the IAA concentration was increased in the nanomolar range, and IAA became inhibitory at 25 nM. Detection of this unexpected inhibitory effect required evaluation of root portions that had newly formed during treatment, separately from root portions that existed prior to treatment. Lateral root initiation was also reduced in the iaaM-OX Arabidopsis line, which has an endogenously increased IAA level. The ethylene signaling mutants ein2-5 and etr1-3, the auxin transport mutants aux1-7 and eir1/pin2, and the auxin perception/response mutant tir1-1 were resistant to the inhibitory effect of IAA on lateral root initiation, consistent with a requirement for intact ethylene signaling, auxin transport and auxin perception/response for this effect. The pericycle cell length was less dramatically reduced than cortical cell length, suggesting that a reduction in the pericycle cell number relative to the cortex could occur with the increase of the IAA level. Expression of the DR5:GUS auxin reporter was also less effectively induced, and the AXR3 auxin repressor protein was less effectively eliminated in such root portions, suggesting that decreased auxin responsiveness may accompany the inhibition. Our study highlights a connection between auxin-regulated inhibition of parent root elongation and a decrease in lateral root initiation. This may be required to regulate the spacing of lateral roots and optimize root architecture to environmental demands.  相似文献   

20.
Application of gibberellic acid to the apex of dwarf bean plants (cv. Alabaster) stimulated the elongation growth of epicotyl and hypocotyl but showed no significant effect on elongation growth in a normal cultivar (‘Blue Lake’). Gibberellin-treatment of dwarf plants was characterized by about twofold increase in the level of endogenous auxin. Maximum increase in IAA level was observed after 48 h of GA treatment. There was less increase in IAA content in normal bean plants. — Gibberellin treatment to excised epicotyl and hypocotyl sections of either dwarf or normal cultivar showed no effect on elongation growth. However, a considerable increase in the auxin level was observed in the sections of the dwarf cultivar. The maximum effect occurred with only 1 h incubation in basal medium containing gibberellin. — The indolo-α-pyrone spectro-fluoremetric method for IAA determination was used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号