首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitochondrial carriers are a family of transport proteins that, with a few exceptions, are found in the inner membranes of mitochondria. They shuttle metabolites, nucleotides, and cofactors through this membrane and thereby connect and/or regulate cytoplasm and matrix functions. ATP-Mg is transported in exchange for phosphate, but no protein has ever been associated with this activity. We have isolated three human cDNAs that encode proteins of 458, 468, and 489 amino acids with 66-75% similarity and with the characteristic features of the mitochondrial carrier family in their C-terminal domains and three EF-hand Ca(2+)-binding motifs in their N-terminal domains. These proteins have been overexpressed in Escherichia coli and reconstituted into phospholipid vesicles. Their transport properties and their targeting to mitochondria demonstrate that they are isoforms of the ATP-Mg/Pi carrier described in the past in whole mitochondria. The tissue specificity of the three isoforms shows that at least one isoform was present in all of the tissues investigated. Because phosphate recycles via the phosphate carrier in mitochondria, the three isoforms of the ATP-Mg/Pi carrier are most likely responsible for the net uptake or efflux of adenine nucleotides into or from the mitochondria and hence for the variation in the matrix adenine nucleotide content, which has been found to change in many physiopathological situations.  相似文献   

2.
Two isoforms of the human ornithine carrier, ORC1 and ORC2, have been identified by overexpression of the proteins in bacteria and by study of the transport properties of the purified proteins reconstituted into liposomes. Both transport L-isomers of ornithine, lysine, arginine, and citrulline by exchange and by unidirectional mechanisms, and they are inactivated by the same inhibitors. ORC2 has a broader specificity than ORC1, and L- and D-histidine, L-homoarginine, and D-isomers of ornithine, lysine, and ornithine are all substrates. Both proteins are expressed in a wide range of human tissues, but ORC1 is the predominant form. The highest levels of expression of both isoforms are in the liver. Five mutant forms of ORC1 associated with the human disease hyperornithinemia-hyperammonemia-homocitrullinuria were also made. The mutations abolish the transport properties of the protein. In patients with hyperornithinemia-hyperammonemia-homocitrullinuria, isoform ORC2 is unmodified, and its presence compensates partially for defective ORC1.  相似文献   

3.
4.
ORP3 is a member of the newly described family of oxysterol-binding protein (OSBP)-related proteins (ORPs). We previously demonstrated that this gene is highly expressed in CD34(+) hematopoietic progenitor cells, and deduced that the "full-length" ORP3 gene comprises 23 exons and encodes a predicted protein of 887 amino acids with a C-terminal OSBP domain and an N-terminal pleckstrin homology domain. To further characterize the gene, we cloned ORP3 cDNA from PCR products and identified multiple splice variants. A total of eight isoforms were demonstrated with alternative splicing of exons 9, 12, and 15. Isoforms with an extension to exon 15 truncate the OSBP domain of the predicted protein sequence. In human tissues there was specific isoform distribution, with most tissues expressing varied levels of isoforms with the complete OSBP domain; while only whole brain, kidney, spleen, thymus, and thyroid expressed high levels of the isoforms associated with the truncated OSBP domain. Interestingly, the expression in cerebellum, heart, and liver of most isoforms was negligible. These data suggest that differential mRNA splicing may have resulted in functionally distinct forms of the ORP3 gene.  相似文献   

5.
In Saccharomyces cerevisiae, the genes ODC1 and ODC2 encode isoforms of the oxodicarboxylate carrier. They both transport C5-C7 oxodicarboxylates across the inner membranes of mitochondria and are members of the family of mitochondrial carrier proteins. Orthologs are encoded in the genomes of Caenorhabditis elegans and Drosophila melanogaster, and a human expressed sequence tag (EST) encodes part of a closely related protein. Information from the EST has been used to complete the human cDNA sequence. This sequence has been used to map the gene to chromosome 14q11.2 and to show that the gene is expressed in all tissues that were examined. The human protein was produced by overexpression in Escherichia coli, purified, and reconstituted into phospholipid vesicles. It has similar transport characteristics to the yeast oxodicarboxylate carrier proteins (ODCs). Both the human and yeast ODCs catalyzed the transport of the oxodicarboxylates 2-oxoadipate and 2-oxoglutarate by a counter-exchange mechanism. Adipate, glutarate, and to a lesser extent, pimelate, 2-oxopimelate, 2-aminoadipate, oxaloacetate, and citrate were also transported by the human ODC. The main differences between the human and yeast ODCs are that 2-aminoadipate is transported by the former but not by the latter, whereas malate is transported by the yeast ODCs but not by the human ortholog. In mammals, 2-oxoadipate is a common intermediate in the catabolism of lysine, tryptophan, and hydroxylysine. It is transported from the cytoplasm into mitochondria where it is converted into acetyl-CoA. Defects in human ODC are likely to be a cause of 2-oxoadipate acidemia, an inborn error of metabolism of lysine, tryptophan, and hydroxylysine.  相似文献   

6.
Proteomic and phosphoproteomic analyses of rice shoot and root tonoplast-enriched and plasma membrane-enriched membrane fractions were carried out to look at tissue-specific expression, and to identify putative regulatory sites of membrane transport proteins. Around 90 unique membrane proteins were identified, which included primary and secondary transporters, ion channels and aquaporins. Primary H(+) pumps from the AHA family showed little isoform specificity in their tissue expression pattern, whereas specific isoforms of the Ca(2+) pump ECA/ACA family were expressed in root and shoot tissues. Several ABC transporters were detected, particularly from the MDR and PDR subfamilies, which often showed expression in either roots or shoots. Ammonium transporters were expressed in root, but not shoot, tissue. Large numbers of sugar transporters were expressed, particularly in green tissue. The occurrence of phosphorylation sites in rice transporters such as AMT1;1 and PIP2;6 agrees with those previously described in other species, pointing to conserved regulatory mechanisms. New phosphosites were found in many transporters, including H(+) pumps and H(+):cation antiporters, often at residues that are well conserved across gene families. Comparison of root and shoot tissue showed that phosphorylation of AMT1;1 and several further transporters may be tissue dependent.  相似文献   

7.
A cDNA from Arabidopsis thaliana and four related cDNAs from Nicotiana tabacum that we have isolated encode hitherto unidentified members of the mitochondrial carrier family. These proteins have been overexpressed in bacteria and reconstituted into phospholipid vesicles. Their transport properties demonstrate that they are orthologs/isoforms of a novel mitochondrial carrier capable of transporting both dicarboxylates (such as malate, oxaloacetate, oxoglutarate, and maleate) and tricarboxylates (such as citrate, isocitrate, cis-aconitate, and trans-aconitate). The newly identified dicarboxylate-tricarboxylate carrier accepts only the single protonated form of citrate (H-citrate2-) and the unprotonated form of malate (malate2-) and catalyzes obligatory, electroneutral exchanges. Oxoglutarate, citrate, and malate are mutually competitive inhibitors, showing K(i) close to the respective K(m). The carrier is expressed in all plant tissues examined and is largely spread in the plant kingdom. Furthermore, nitrate supply to nitrogen-starved tobacco plants leads to an increase in its mRNA in roots and leaves. The dicarboxylate-tricarboxylate carrier may play a role in important plant metabolic functions requiring organic acid flux to or from the mitochondria, such as nitrogen assimilation, export of reducing equivalents from the mitochondria, and fatty acid elongation.  相似文献   

8.
9.
10.
11.
The genome of Saccharomyces cerevisiae encodes 35 members of a family proteins thattransport metabolites and substrates across the inner membranes of mitochondria. They includethree isoforms of the ADP/ATP translocase and the phosphate and citrate carriers. At the startof our work, the functions of the remaining 30 members of the family were unknown. We areattempting to identify these 30 proteins by overexpression of the proteins in specially selectedhost strains of Escherichia coli that allow the carriers to accumulate at high levels in the formof inclusion bodies. The purified proteins are then reconstituted into proteoliposomes wheretheir transport properties are studied. Thus far, we have identified the dicarboxylate,succinate-fumarate and ornithine carriers. Bacterial overexpression and functional identification, togetherwith characterization of yeast knockout strains, has brought insight into the physiologicalsignificance of these transporters. The yeast dicarboxylate carrier sequence has been used toidentify the orthologous protein in Caenorhabditis elegans and, in turn, this latter sequencehas been used to establish the sequence of the human ortholog.  相似文献   

12.
The members of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (ppGaNTase) family transfer GalNAc to serine and threonine sites and initiate mucin-type O-glycosylation. There are at least 13 functionally characterized family members in mammals. Explanations for the large size of this enzyme family have included functional redundancy, differences among isoforms in substrate specificity, and specific expression of individual isoforms in particular tissues or during certain developmental stages. To date no quantitative comparison of the levels of all ppGaNTase isoforms in any tissue of any species has been reported. We performed real-time polymerase chain reaction using the Taqman method to determine the expression of ppGaNTase isoforms in mouse tissues. Several tissues exhibited a common pattern in which isoforms T1 and T2 were the most strongly expressed, although the level of expression varied widely among tissues. In striking contrast to this general pattern, testis, sublingual gland, and colon exhibited distinctive profiles of isoform expression. Isoform T13 was expressed most strongly in brain, and one putative isoform was expressed only in testis. In mammary tissue the expression of several isoforms changed markedly during pregnancy and lactation. In summary these real-time PCR data indicate the contribution of each isoform to the overall ppGaNTase expression within each tissue and highlight the particular isoforms and tissues that will be the targets of future studies on the functions of the ppGaNTase family.  相似文献   

13.
The genome of Saccharomyces cerevisiae contains 35 members of a family of transport proteins that, with a single exception, are found in the inner membranes of mitochondria. The transport functions of the 15 biochemically identified mitochondrial carriers are concerned with shuttling substrates, biosynthetic intermediates and cofactors across the inner membrane. Here the identification of the mitochondrial carrier for the essential cofactor thiamine pyrophosphate (ThPP) is described. The protein has been overexpressed in bacteria, reconstituted into phospholipid vesicles and identified by its transport properties. In confirmation of its identity, cells lacking the gene for this carrier had reduced levels of ThPP in their mitochondria, and decreased activity of acetolactate synthase, a ThPP-requiring enzyme found in the organellar matrix. They also required thiamine for growth on fermentative carbon sources.  相似文献   

14.
Antibodies to the solute carrier protein, CTL2/SLC44A2, cause hearing loss in animals, are frequently found in autoimmune hearing loss patients, and are implicated in transfusion-related acute lung injury. We cloned a novel CTL2/SLC44A2 isoform (CTL2 P1) from inner ear and identified an alternate upstream promoter and exon 1a encoding a protein of 704 amino acids which differs in the first 10–12 amino acids from the known exon 1b isoform (CTL2 P2; 706 amino acids). The expression of these CTL2/SLC44A2 isoforms, their posttranslational modifications in tissues and their localization in HEK293 cells expressing rHuCTL2/SLC44A2 were assessed. P1 and P2 isoforms with differing glycosylation are variably expressed in cochlea, tongue, heart, colon, lung, kidney, liver and spleen suggesting tissue specific differences that may influence function in each tissue. Because antibodies to CTL2/SLC44A2 have serious pathologic consequences, it is important to understand its distribution and modifications. Heterologous expression in X. laevis oocytes shows that while human CTL2-P1 does not transport choline, human CTL2-P2 exhibits detectable choline transport activity.  相似文献   

15.
alpha2,6-Sialyltransferase (ST6Gal I) functions in the Golgi to terminally sialylate the N-linked oligosaccharides of glycoproteins. Interestingly, rat ST6Gal I is expressed as two isoforms, STtyr and STcys, that differ by a single amino acid in their catalytic domains. In this article, our goal was to evaluate more carefully possible differences in the catalytic activity and intra-Golgi localization of the two isoforms that had been suggested by earlier work. Using soluble recombinant STtyr and STcys enzymes and three asialoglycoprotein substrates for in vitro analysis, we found that the STcys isoform was somewhat more active than the STtyr isoform. However, we found no differences in isoform substrate choice when these proteins were expressed in Chinese hamster ovary cells, and sialylated substrates were detected by lectin blotting. Immuno-fluorescence and immunoelectron microscopy revealed differences in the relative levels of the isoforms found in the endoplasmic reticulum (ER) and Golgi of transiently expressing cells but similar intra-Golgi localization. STtyr was restricted to the Golgi in most cells, and STcys was found in both the ER and Golgi. The ER localization of STcys was especially pronounced with a C-terminal V5 epitope tag. Ultrastructural and deconvolution studies of immunostained HeLa cells expressing STtyr or STcys showed that within the Golgi both isoforms are found in medial-trans regions. The similar catalytic activities and intra-Golgi localization of the two ST6Gal I isoforms suggest that the particular isoform expressed in specific cells and tissues is not likely to have significant functional consequences.  相似文献   

16.
17.
Amphiphysin I is a 128 kD protein highly concentrated in nerve terminals, where it has a putative role in endocytosis. It is a dominant autoantigen in patients with stiff-man syndrome associated with breast cancer, as well as in other paraneoplastic autoimmune neurological disorders. To elucidate the connection between amphiphysin I autoimmunity and cancer, we investigated its expression in breast cancer tissue. We report that amphiphysin I was expressed as two isoforms of 128 and 108 kD in the breast cancer of a patient with anti-amphiphysin I antibodies and paraneoplastic sensory neuronopathy. Amphiphysin I was also detectable at variable levels in several other human breast cancer tissues and cell lines and at low levels in normal mammary tissue and a variety of other non-neuronal tissues. The predominant amphiphysin I isoform expressed outside the brain in humans is the 108 kD isoform which represents an alternatively spliced variant of neuronal amphiphysin I missing a 42 amino acid insert. Our study suggests a link between amphiphysin I expression in cancer and amphiphysin I autoimmunity. The enhanced expression of amphiphysin I in some forms of cancer supports the hypothesis that amphiphysin family members may play a role in the biology of cancer cells.  相似文献   

18.
The nuclear genome of Saccharomyces cerevisiae encodes 35 members of a family of membrane proteins. Known members transport substrates and products across the inner membranes of mitochondria. We have localized two hitherto unidentified family members, Odc1p and Odc2p, to the inner membranes of mitochondria. They are isoforms with 61% sequence identity, and we have shown in reconstituted liposomes that they transport the oxodicarboxylates 2-oxoadipate and 2-oxoglutarate by a strict counter exchange mechanism. Intraliposomal adipate and glutarate and to a lesser extent malate and citrate supported [14C]oxoglutarate uptake. The expression of Odc1p, the more abundant isoform, made in the presence of nonfermentable carbon sources, is repressed by glucose. The main physiological roles of Odc1p and Odc2p are probably to supply 2-oxoadipate and 2-oxoglutarate from the mitochondrial matrix to the cytosol where they are used in the biosynthesis of lysine and glutamate, respectively, and in lysine catabolism.  相似文献   

19.
20.
Aminopeptidase P (APP) isoforms specifically remove the N-terminal amino acid from peptides that have a proline residue in the second position. The mRNA levels of three different isoforms, each coded by a different gene, were determined in 16 human tissues and in peripheral blood mononuclear cell (PBMC) fractions by RT-PCR. The cytosolic isoform, APP1, and the cell surface membrane-bound isoform, APP2, are expressed in all of the human tissues and PBMC fractions examined. The very high expression of APP2 mRNA in kidney compared to other tissues was confirmed by enzyme activity measurements. Among the PBMC fractions, APP2 expression is highest in resting CD8(+) T cells, but decreases in these cells following their activation with phytohemagglutinin; in contrast, expression of APP2 increases in CD4(+) T cells upon activation. The third isoform, APP3, is a hypothetical protein identified by nucleotide sequencing. A detailed analysis of its amino acid sequence confirmed that the protein is an aminopeptidase P-like enzyme with greater similarity to Escherichia coli APP than to either APP1 or APP2. Two splice variants of APP3 exist, one of which is predicted to have a mitochondrial localization (APP3m) while the other is cytosolic (APP3c). Both forms are variably expressed in all of the human tissues and PBMC fractions examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号