首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the antioxidant and enzyme inhibitory activities and chemical composition of the hydro-distilled essential oil (0.35% yield) from aerial parts of Thymus spathulifolius. Antioxidant capacity of the oil was assessed by different methods including free radical scavenging (DPPH and ABTS), reducing power (FRAP and CUPRAC) and phosphomolybdenum assay. Inhibitory activities were analyzed against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, α-glucosidase, and tyrosinase. Twenty-one constituents were identified representing 97.2% of the total oil with thymol (50.5%), borneol (16.7%) and carvacrol (7.7%) as the major components. The essential oil exhibited good antioxidant activity with IC50 values of 3.82 and 0.22?mg/mL determined by free radical scavenging DPPH and ABTS, respectively. EC50 values of FRAP and CUPRAC were found to be 0.12 and 0.34?mg/mL, respectively. The results of the present study support the uses of T. spathulifolius essential oil as a source of natural antioxidants and bioactivities for functional foods and phytomedicines.  相似文献   

2.
The ethanolic extract derived from aerial parts of an indigenous medicinal plant Paeonia emodi was screened for enzyme inhibition activities against Urease (jack bean and Bacillus pasteurii) and α-Chymotrypsin. The extract was also investigated for its radical scavenging activity using DPPH assay. The crude extract was found to possess significant enzyme inhibition activities against jack bean (74%) and Bacillus pasteurii (80%) urease and a moderate activity (54%) against α-Chymotrypsin. The extract also displayed excellent (83%) radical scavenging activity. On the basis of these results, the crude extract was subsequently fractionated into n-hexane, chloroform, ethyl acetate, n-butanol and water fractions and tested independently for the aforesaid activities. Significant inhibitory activity against urease enzyme was observed for the ethyl acetate, n-butanol and water fractions while the n-hexane and chloroform fractions were devoid of any such activity. In the α-Chymotrypsin enzyme inhibition studies the activity was concentrated into the ethyl acetate fraction. All the fractions displayed potent radical scavenging activity. The crude extract and fractions thereof were also subjected to total phenolic content determination. A correlation between radical scavenging capacities of extracts and total phenolic content was observed in the majority of cases.  相似文献   

3.
Spermacoce verticillata (L.) G. Mey. is commonly used in the folk medicine by various cultures to manage common diseases. Herein, the chemical and biological profiles of S. verticillata were studied in order to provide a comprehensive characterization of bioactive compounds and also to highlight the therapeutic properties. The in vitro antioxidant activity using free-radical scavenging, phosphomolybdenum, ferrous-ion chelating and reducing power assays, and the inhibitory activity against key enzymes such as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), tyrosinase, α-amylase and α-glucosidase of S. verticillata extracts (dichloromethane, ethyl acetate, methanol and water) were investigated. The highest total phenolic and flavonoid content were observed in the methanolic and aqueous extracts. Exhaustive 2DNMR investigation has revealed the presence of rutin, ursolic and oleanoic acids. The methanolic extract, followed by aqueous extract have showed remarkable free radical quenching and reducing ability, while the dichloromethane extract was the best source of metal chelators. The tested extracts showed notable inhibitory activity against cholinesterases (AChE: 1.63–4.99 mg GALAE/g extract and BChE: 12.40–15.48 mg GALAE/g extract) and tyrosinase (60.85–159.64 mg KAE/g extract). No inhibitory activity was displayed by ethyl acetate and aqueous extracts against BChE and tyrosinase, respectively. All the tested extracts showed modest α-amylase inhibitory activity, while only the ethyl acetate and aqueous extracts were potent against α-glycosidase. This study further validates the use of S. verticillata in the traditional medicine, while advocating for further investigation for phytomedicine development.  相似文献   

4.
Tragopogon dubius and Tussilago farfara are consumed as vegetables and used in folk medicine to manage common diseases. Herein, the chemical compositions and biological activities of different leaf extracts (ethyl acetate, methanol, and water) of T. dubius and T. farfara were evaluated. The antibacterial, antifungal, and antioxidant abilities of the extracts were tested using different assays including free radical scavenging, reducing power, phosphomolybdenum, and metal chelating assays. Enzyme inhibitory potentials were evaluated against cholinesterases, tyrosinase, α-amylase and α-glucosidase. Complexes of bioactive compounds (chlorogenic and rosmarinic acid) were docked into the enzymatic cavity of α-glucosidase and subjected to molecular dynamic calculation, enzyme conformational stability, and flexibility analysis. T. dubius and T. farfara extracts showed remarkable antioxidant potentials. Ethyl acetate extracts of T. dubius and T. farfara were the most potent inhibitors of acetylcholinesterase and butyrylcholinesterase. T. dubius ethyl acetate extract and T. farfara methanolic extract showed noteworthy activity against α-glucosidase. High performance liquid chromatography analysis revealed the abundance of some phenolic compounds including chlorogenic and rosmarinic acids. Ethyl acetate extract of T. dubius showed notable antifungal activity against all strains. Docking studies showed best pose for chlorogenic acid was stabilized by a network of hydrogen bonds with residues Asp1157, Asp1279, whereas rosmarinic acid showed several hydrogen bonds with Asp1157, Asp1420, Asp1526, Lys1460 and Trp1369. This study further validates the use of T. dubius and T. farfara in traditional medicine, as well as act as a stimulus for further studies for future biomedicine development.

Communicated by Ramaswamy H. Sarma  相似文献   


5.
Artemisia annua L. (Asteraceae Family) is an important plant in Asia that has been used for treating different diseases, including fever due to malaria, wounds, tubercolisis, scabues, pain, convulsions, diabetes, and inflammation. In this study we aimed to evaluate the effects of different polarity extracts (hexane, dichloromethane, ethyl acetate, ethanol, ethanol/water (70 %) and water) from A. annua against the burden of inflammation and oxidative stress occurring in colon tissue exposed to LPS. In parallel, chemical composition, antiradical, and enzyme inhibition effects against α-amylase, α-glucosidase, tyrosinase, and cholinesterases were evaluated. The water extract contained the highest content of the total phenolic with 34.59 mg gallic acid equivalent (GAE)/g extract, while the hexane had the highest content of the total flavonoid (20.06 mg rutin equivalent (RE)/g extract). In antioxidant assays, the polar extracts (ethanol, ethanol/water and water) exhibited stronger radical scavenging and reducing power abilities when compared to non-polar extracts. The hexane extract showed the best AChE, tyrosinase and glucosidase inhibitory effects. All extracts revealed effective anti-inflammatory agents, as demonstrated by the blunting effects on COX-2 and TNFα gene expression. These effects seemed to be not related to the only phenolic content. However, it is worthy of interest to highlight how the higher potency against LPS-induced gene expression was shown by the water extract ; thus suggesting a potential phytotherapy application in the management of clinical symptoms related to inflammatory colon diseases, although future in vivo studies are needed to confirm such in vitro and ex vivo observations.  相似文献   

6.
Endophytic actinomycetes isolated from Datura stramonium L. was evaluated for its effects against in vitro α-glucosidase inhibition, antioxidant, and free radical scavenging activities. Based on microbial cultural characteristic and 16S rRNA sequencing, it was identified as Streptomyces sp. loyola UGC. The methanolic extract of endophytic actinomycetes (MeEA) shows remarkable inhibition of α-glucosidase (IC50 730.21 ± 1.33 μg/ml), scavenging activity on 2,2-diphenyl-picrylhydrazyl (DPPH) (IC50 435.31 ± 1.79 μg/ml), hydroxyl radical (IC50 350.21 ± 1.02 μg/ml), nitric oxide scavenging (IC50 800.12 ± 1.05 μg/ml), superoxide anion radical (IC50 220.31 ± 1.47 μg/ml), as well as a high and dose-dependent reducing power. The MeEA also showed a strong suppressive effect on rat liver lipid peroxidation. Antioxidants of β-carotene linoleate model system revels significantly lower than BHA. The total phenolic content of the extract was 176 mg of catechol equivalents/gram extract. Perusal of this study indicates MeEA can be used as natural resource of α-glucosidase inhibitor and antioxidants.  相似文献   

7.
The novel flavonoid, leucocyanidin-3-O-β-D-glucoside, possessing a 4,2″-glycosidic linkage was isolated from green mature acerola (Malpighia emarginata DC.) puree and given the trivial name “aceronidin.” To examine the functions of aceronidin, its antioxidative activity and both its α-glucosidase and α-amylase inhibition activities, as a potential inhibitor of the sugar catabolic enzyme, were evaluated against those of taxifolin, catechin, isoquercitrin and quercitrin which each have a similar structure. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical quenching activity of aceronidin was stronger than that of α-tocopherol and comparable to that of flavonoids. In the yeast α-glucosidase inhibitory assay, aceronidin showed significantly greater inhibition than the other flavonoids tested. In the human salivary α-amylase inhibitory assay, aceronidin showed inhibition activity. Taken together, these results indicate aceronidin to be a potent antioxidant that may be valuable as an inhibitor of sugar catabolic enzymes.  相似文献   

8.
In recent years, diabetes and obesity have become a major problem in global health care because of changes in lifestyle, food habits, and age-related metabolic disorders. Diabetes mellitus is one of the most common diseases, affecting millions of people worldwide. Currently, herbal drugs are used to control obesity and diabetes. The present study investigates the anti-obesity, antidiabetic, and antioxidant activities of Samanea saman leaf extract. A methanolic extract of S. saman leaves was prepared by a maceration method. The S. saman leaf extract was studied for its inhibitory effect on glucose utilization using specific in vitro procedures to analyze its antioxidant, anti-obesity, and antidiabetic activities via different assays, such as α-amylase and α-glucosidase inhibition assay, glucose uptake by yeast cells, nonenzymatic glycosylation assay followed by glucose diffusion assay. The outcome of the study showed that the methanolic extract strongly inhibited the pancreatic lipase, α-amylase, and glucosidase activities, compared with the standard drug. The results showed that the extract possessed considerable antioxidant and antidiabetic activities, and further studies are needed to confirm the results using an in vivo model. Thus, it is proposed that S. saman can be used as a therapeutic agent.  相似文献   

9.
Abstract

The α-Amylase and α-glucosidase are two main enzymes involved in carbohydrate metabolism. This study was aimed at detecting alpha-amylase inhibitory activity from edible mushroom mycelia. Oyster mushroom was collected from a natural source, from Indian Institute of Technology (Banaras Hindu University) campus and was maintained in vitro in mycelial form. Chloroform, acetone, methanol, and water were used separately for extraction of an active constituent from mycelial cells grown, for 7?days, in potato dextrose broth. The extracts were tested for alpha-amylase inhibitory activity. Chloroform, acetone, and methanol extracts were found to have alpha-amylase inhibitory activity, with IC50 values of 1.71, 224, and 383?μg/mL, respectively. Aqueous extract had no enzyme inhibitory activity. The acetone extract inhibited α-amylase non-competitively whereas chloroform extract showed competitive inhibition. Acetone extraction yielded highest total phenolic content (TPC) of 0.524?mM of gallic acid equivalent, whereas chloroform extraction resulted in lowest TPC of 0.006?mM. The HPLC and absorbance maxima of acetone and chloroform extracts suggest that the bioactive component responsible for enzyme inhibition could be glycoproteins in chloroform extract and catechins (flavonoids) in acetone extract. Thus, the mushroom mycelia under study may be exploited for production and purification of a lead compound for the development of the α-amylase inhibitory drug.  相似文献   

10.
Silymarin, a known standardized extract obtained from seeds of Silybum marianum is widely used in treatment of several diseases of varying origin. In the present paper, we clarified the antioxidant activity of silymarin by employing various in vitro antioxidant assay such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH·) scavenging, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, total reducing ability determination by Fe3+ ? Fe2+ transformation method and Cuprac assay, superoxide anion radical scavenging by riboflavin/methionine/illuminate system, hydrogen peroxide scavenging and ferrous ions (Fe2+) chelating activities. Silymarin inhibited 82.7% lipid peroxidation of linoleic acid emulsion at 30 μg/mL concentration; butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and trolox indicated inhibition of 83.3, 82.1, 68.1 and 81.3% on peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, silymarin had an effective DPPH· scavenging, ABTS√+ scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power by Fe3+ ? Fe2+ transformation, cupric ions (Cu2+) reducing ability by Cuprac method, and ferrous ions (Fe2+) chelating activities. Also, BHA, BHT, α-tocopherol and trolox, were used as the reference antioxidant and radical scavenger compounds. Moreover, this study, which clarifies antioxidant mechanism of silymarin, brings new information on the antioxidant properties of silymarin. According to the present study, silymarin had effective in vitro antioxidant and radical scavenging activity. It could be used in the pharmacological and food industry because of its antioxidant properties.  相似文献   

11.
BackgroundIncreasing resistance to available drugs and their associated side-effects have drawn wide attention towards designing alternative therapeutic strategies for control of hyperglycemia and oxidative stress. The roles of the sizes and shapes of the nanomaterials used in the treatment and management of Type 2 Diabetes Mellitus (T2DM) in preventing chronic hyperglycaemia and oxidative stress are investigated. We report specifically on the effects of doping silver (Ag) into the ZnO nanorods (ZnO:Ag NR’s) as a rational drug designing strategy.MethodsInhibition of porcine pancreatic α-amylase, murine pancreatic amylase, α-glucosidase, murine intestinal glucosidase and amyloglucosidase are checked for evaluation of antidiabetic potential. In addition, the radical scavenging activities of ZnO:Ag NR’s against nitric oxide, DDPH and superoxide radicals are evaluated.ResultsQuantitative radical scavenging and metabolic enzyme inhibition activities of ZnO:Ag NR’s at a concentration of 100 μg/mL were found to depend on the amount of Ag doped in up to a threshold level (3–4 %). Circular dichroism analysis revealed that the interaction of the NR’s with the enzymes altered their secondary conformation. This alteration is the underlying mechanism for the potent enzyme inhibition.ConclusionsEnhanced inhibition of enzymes and scavenging of free radicals primarily responsible for reactive oxygen species (ROS) mediated damage, provide a strong scientific rationale for considering ZnO:Ag NR’s as a candidate nanomedicine for controlling postprandial hyperglycaemia and the associated oxidative stress.  相似文献   

12.
Diabetes is a worldwide public health disease. Currently, the most effective way to treat diabetes is to mitigate postprandial hyperglycemia by inhibiting carbohydrate hydrolysis enzymes in the digestive system. Plant extracts are rich in bioactive compounds, which can be used in diabetes treatment. This study aims to evaluate the polyphenols content in ethanolic extracts of avocado fruit and leaves (Persea americana Mill.). Additionally, their antioxidant activity using DPPH, while the inhibition ability of α-amylase was examined by reacting different amounts of the extracts with α-amylase compared to acarbose as standard inhibitor. The active compounds were detected in the extracts by LC/MS. The obtained results showed that the leaf extract recorded a significant content of total phenolic compounds compared to the fruit extract (178.95 and 145.7 mg GAE /g dry weight, respectively). The total flavonoid values ??ranged from 32.5 to 70.08 mg QE/g dry weight of fruit and leaves extracts, respectively. Twenty-six phytogenic compounds were detected in leaf and fruit extract by LC/MS. These compounds belong to fatty acids, sterols, triterpenes, phenolic acids, and flavonoids. The antioxidant activity of the extracts is due to the exist of phytogenic compounds, i.e., polyphenols and flavonoids. The antioxidant activity increased in a concentration dependant manner. Avocado fruit extract (1000 µg/mL) scavenged 95% of DPP? while leaf extract rummaged 91.03% of free radicals compared with Vit C and BHT. Additionally, higher α-amylase inhibitory activity was observed in fruit extract than the leaf extract, where the fruit and leaf extract (1000 μg/ml) inhibited the enzyme by 92.13% and 88.95%, respectively. The obtained results showed that the ethanolic extracts of avocado could have a significant impact on human health due to their high content of polyphenols.  相似文献   

13.
Inhibition of α-glucosidase and α-amylase delays the digestion of starch and disaccharides to absorbable monosaccharides, resulting in a reduction of postprandial hyperglycemia. Finding effective mammalian α-glucosidase inhibitors from natural sources can be beneficial in the prevention and treatment of diabetes mellitus. We investigated the inhibitory activity of cinnamic acid derivatives against rat intestinal α-glucosidase and porcine pancreatic α-amylase in vitro. Among 11 cinnamic acid derivatives, caffeic acid, ferulic acid, and isoferulic acid were the most potent inhibitors against intestinal maltase with IC50 values of 0.74?±?0.01, 0.79?±?0.04, and 0.76?±?0.03?mM, respectively, whereas ferulic acid (IC50?=?0.45?±?0.01?mM) and isoferulic acid (IC50?=?0.45?±?0.01?mM) were effective intestinal sucrase inhibitors. However, all cinnamic acid derivatives were found to be inactive in pancreatic α-amylase inhibition. Kinetic analysis revealed that intestinal maltase was inhibited by caffeic acid, ferulic acid, and isoferulic acid in a mixed-inhibition manner. In addition, ferulic acid and isoferulic acid inhibited intestinal sucrase in a mixed type manner, whereas caffeic acid was a non-competitive inhibitor. The combination of isoferulic acid and acarbose showed an additive inhibition on intestinal sucrase. This study could provide a new insight into naturally occurring intestinal α-glucosidase inhibitors that could be useful for treatment of diabetes and its complications.  相似文献   

14.
Water-soluble corn silk polysaccharides (CSPS) were chemically modified to obtain their sulfated, acetylated and carboxymethylated derivatives. Chemical characterization and bioactivities of CSPS and its derivatives were comparatively investigated by chemical methods, gas chromatography, gel filtration chromatography, scanning electron microscope, infrared spectroscopy and circular dichroism spectroscopy, scavenging DPPH free radical assay, scavenging hydroxyl radical assay, ferric reducing power assay, lipid peroxidation inhibition assay and α-amylase activity inhibitory assay, respectively. Among the three derivatives, carboxylmethylated polysaccharide (C-CSPS) demonstrated higher solubility, narrower molecular weight distribution, lower intrinsic viscosity, a hyperbranched conformation, significantly higher antioxidant and α-amylase inhibitory abilities compared with the native polysaccharide and other derivatives. C-CSPS might be used as a novel nutraceutical agent for human consumption.  相似文献   

15.

Phytofabricated green synthesis of zinc oxide (ZnO) nanoparticles using different plant extracts of Azadirachta indica, Hibiscus rosa-sinensis, Murraya koenigii, Moringa oleifera, and Tamarindus indica for biological applications has been reported. ZnO nanoparticles were also synthesized by chemical method to compare the efficiency of the green synthesized nanoparticles. FT-IR spectra confirmed the functional groups involved in the green synthesis of ZnO nanoparticles and the powder XRD patterns of the ZnO nanoparticles revealed pure wurtzite structure with preferred orientation at (100) reflection plane. SEM and TEM analysis revealed the spherical shape of the synthesized ZnO nanoparticles with the particle size between 54 and 27 nm. The antioxidant activity was evaluated by five different free radical scavenging assays. The present study also intends to screen α-amylase and α-glucosidase activity of ZnO nanoparticles synthesized using natural sources, which may minimize the toxicity and side effects of the inhibitors used to control diabetes. The ZnO nanoparticles synthesized using T. indica extract displayed remarkable antioxidant and antidiabetic activities.

  相似文献   

16.
In vitro antioxidant activity of Diospyros malabarica Kostel bark   总被引:1,自引:0,他引:1  
Antioxidant activity of defatted methanol extract of D. malabarica bark was studied for its free radical scavenging property on different in vitro models e.g. 1,1-diphenyl-2-picryl hydrazyl (DPPH), nitric oxide, superoxide, hydroxyl radical and lipid peroxide radical model. The extract showed good dose-dependent free radical scavenging property in all the models except in hydroxyl radical inhibition assay. IC50 values were found to be 9.16, 13.21, 25.27 and 17.33 microg/ml respectively in DPPH, nitric oxide, superoxide and lipid peroxidation inhibition assays. In hydroxyl radical inhibition assay 1000 microg/ml extract showed only 10% inhibition with respect to the control. Measurement of total phenolic compounds by Folin-Ciocalteu's phenol reagent indicated that 1 mg of the extract contained 120.7 microg equivalent of pyrocatechol. The results indicate that the antioxidant property of the extract may be due to the high content of phenolic compounds. However, the underlying mechanism may not involve hydroxyl radical scavenging property.  相似文献   

17.
Washingtonia filifera seeds have revealed to possess antioxidant properties, butyrylcholinesterase and xanthine oxidase inhibition activities. The literature has indicated a relationship between Alzheimer’s disease (AD) and type-2 diabetes (T2D). Keeping this in mind, we have now evaluated the inhibitory properties of W. filifera seed extracts on α-amylase, α-glucosidase enzyme activity and the Islet Amyloid Polypeptide (IAPP) fibrils formation.Three extracts from seeds of W. filifera were evaluated for their enzyme inhibitory effect and IC50 values were calculated for all the extracts. The inhibition mode was investigated by Lineweaver-Burk plot analysis and the inhibition of IAPP aggregate formation was monitored.W. filifera methanol seed extract appears as the most potent inhibitor of α-amylase, α-glucosidase, and for the IAPP fibril formation.Current findings indicate new potential of this extract that could be used for the identification or development of novel potential agents for T2D and AD.  相似文献   

18.
Subcritical water extraction was used to extract bioactive phenolic compounds from Vaccinium dunalianum Wight leaves. The optimal extraction conditions were determined as an extraction temperature of 150 °C, an extraction time of 40 min, and a liquid-solid ratio of 35 : 1 mL/g. The total phenolic content reached 21.35 mg gallic acid /g, which was 16 % higher than that by hot water extraction. The subcritical water extraction extract exhibited strong scavenging activity of DPPH free radical and ABTS+ free radical, as well as significant tyrosinase inhibitory activity. The study suggests that subcritical water extraction can alter the composition of the extracts, leading to the production of various phenolic compounds, effective antioxidants, and tyrosinase inhibitors from Vaccinium dulciana Wight leaves. These findings confirm the potential of Vaccinium dunalianum Wight as a natural antioxidant molecule source for the medicine and food industries, and for the therapy of skin pigmentation disorders.  相似文献   

19.
Camu-camu (Myriciaria dubia Mc. Vaugh) is a tropical fruit rich in phenolic antioxidants with diverse human health benefits. The aim of this study was to improve phenolic antioxidant–linked functionalities of camu–camu relevant for dietary management of early stages of type 2 diabetes (T2D) and associated hypertension using lactic acid bacterial (LAB) fermentation. Dried camu–camu powder combined with soymilk was fermented using two LAB strains, Lactobacillus plantarum & Lactobacillus helveticus individually and evaluated for total soluble phenolic content, total antioxidant activity, α-amylase, α-glucosidase, and angiotensin-I-converting enzyme (ACE) inhibitory activities using in vitro assay models. Overall, fermentation of camu–camu and soymilk combination with both LAB strains resulted in higher α-amylase, and α-glucosidase inhibitory activities, while total soluble phenolic content and antioxidant activity did not change significantly with fermentation. Improvement of ACE enzyme inhibitory activity was also observed when camu–camu (0.5 & 1%) and soymilk combination was fermented with L. plantarum. Therefore such safe and value added fermentation strategy with LAB can be used to improve human health relevant phenolic antioxidant profile in camu–camu and has relevance for designing innovative probiotic beverage to target improved food designs for dietary support for T2D and associated hypertension management.  相似文献   

20.
The aim of the study was to investigate chemical composition, antioxidant, antibacterial and antifungal activities of the essential oil (EO), polar and nonpolar sub-fractions of methanolic extract of Ferulago bernardii. The chemical constituent of the EO was identified by means of GC–MS. The antimicrobial activities of the EO, polar and nonpolar extracts were evaluated by micro-dilution and agar disc diffusion assays. The antioxidant activity was measured by 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) free radical scavenging activity assay. The main components of the EO were α-pinene (35.03%), z-β-ocimene (14.24%) and bornyl acetate (11.64%). Bacillus cereus and Salmonella typhimurium were the most susceptible and resistant to the antibacterial activity of the essential oil and extract, respectively. The free radical scavenging activities of all extracts and the essential oil were in the order: polar > non-polar > EO. Our findings indicate that F. bernardii essential oil and methanolic extract has a potential to be applied as antimicrobial and antioxidant agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号