首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fresh osteochondral allografts are used to repair osteoarticular defects of the knee. For post-traumatic defects recent advances in other techniques for cartilage repair and resurfacing have reduced the role of allograft tissue transplantation to defects larger than 3 cm in diameter and 1 cm in depth. A fresh osteochondral allograft that has been harvested from a donor within 24 h from death and preserved in 4°C for up to 4 days shows 100% viability of the cartilage. The avascular bone remains structurally intact and mechanically strong until it is replaced by host bone or until it is weakened or absorbed. The indications for fresh osteochondral allografts for reconstructive surgery of the articular surface of the knee do not justify the use of immunosuppressive drugs and we therefore believe that surgical vascularization of the grafts should not be carried out. This clinical approach can provide a reconstructive solution for younger higher demand patients where implants are not desirable and arthrodesis is not acceptable. A clinical follow-up study as early as 1975 showed successful early outcomes. More recently, survival analysis found 95% survival at 5 years, 71% at 10 years, and 66% at 20 years. It was learned that older patients, bipolar transplants, improper loading of the graft, and grafts for osteoarthritis and steroid-induced avascular necrosis do not lead to good long-term outcomes. We would like to describe here some of our long-term clinical experience concerning this surgery. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Allografts of articular cartilage are both used clinically for tissue-transplantation procedures and experimentally as model systems to study the physiological behavior of chondrocytes in their native extracellular matrix. Long-term maintenance of allograft tissue is challenging. Chemical mediators in poorly defined culture media can stimulate cells to quickly degrade their surrounding extracellular matrix. This is particularly true of juvenile cartilage which is generally more responsive to chemical stimuli than mature tissue. By carefully modulating the culture media, however, it may be possible to preserve allograft tissue over the long-term while maintaining its original mechanical and biochemical properties. In this study juvenile bovine cartilage explants (both chondral and osteochondral) were cultured in both chemically defined medium and serum-supplemented medium for up to 6 weeks. The mechanical properties and biochemical content of explants cultured in chemically defined medium were enhanced after 2 weeks in culture and thereafter remained stable with no loss of cell viability. In contrast, the mechanical properties of explants in serum-supplemented medium were degraded by ( approximately 70%) along with a concurrent loss of biochemical content (30-40% GAG). These results suggest that long-term maintenance of allografts can be extended significantly by the use of a chemically defined medium.  相似文献   

3.
In order to pre-clinically evaluate the performance and efficacy of novel osteochondral interventions, physiological and clinically relevant whole joint simulation models, capable of reproducing the complex loading and motions experienced in the natural knee environment are required. The aim of this study was to develop a method for the assessment of tribological performance of osteochondral grafts within an in vitro whole natural joint simulation model.The study assessed the effects of osteochondral allograft implantation (existing surgical intervention for the repair of osteochondral defects) on the wear, deformation and damage of the opposing articular surfaces. Tribological performance of osteochondral grafts was compared to the natural joint (negative control), an injury model (focal cartilage defects) and stainless steel pins (positive controls). A recently developed method using an optical profiler (Alicona Infinite Focus G5, Alicona Imaging GmbH, Austria) was used to quantify and characterise the wear, deformation and damage occurring on the opposing articular surfaces. Allografts inserted flush with the cartilage surface had the lowest levels of wear, deformation and damage following the 2 h test; increased levels of wear, deformation and damage were observed when allografts and stainless steel pins were inserted proud of the articular surface. The method developed will be applied in future studies to assess the tribological performance of novel early stage osteochondral interventions prior to in vivo studies, investigate variation in surgical precision and aid in the development of stratified interventions for the patient population.  相似文献   

4.
Osteochondral tissue engineering   总被引:12,自引:0,他引:12  
Osteochondral defects (i.e., defects which affect both the articular cartilage and underlying subchondral bone) are often associated with mechanical instability of the joint, and therefore with the risk of inducing osteoarthritic degenerative changes. Current surgical limits in the treatment of complex joint lesions could be overcome by grafting osteochondral composite tissues, engineered by combining the patient's own cells with three-dimensional (3D) porous biomaterials of pre-defined size and shape. Various strategies have been reported for the engineering of osteochondral composites, which result from the use of one or more cell types cultured into single-component or composite scaffolds in a broad spectrum of compositions and biomechanical properties. The variety of concepts and models proposed by different groups for the generation of osteochondral grafts reflects that understanding of the requirements to restore a normal joint function is still poor. In order to introduce the use of engineered osteochondral composites in the routine clinical practice, it will be necessary to comprehensively address a number of critical issues, including those related to the size and shape of the graft to be generated, the cell type(s) and properties of the scaffold(s) to be used, the potential physical conditioning to be applied, the degree of functionality required, and the strategy for a cost-effective manufacturing. The progress made in material science, cell biology, mechanobiology and bioreactor technology will be key to support advances in this challenging field.  相似文献   

5.
Heart transplantation continues to be the gold standard clinical intervention to treat patients with end-stage heart failure. However, there are major complications associated with this surgical procedure that reduce the survival prognosis of heart transplant patients, including allograft rejection, malignancies, infections, and other complications that arise from the use of broad-spectrum immunosuppression drugs. Recent studies have demonstrated the use of mesenchymal stem cells (MSCs) against allotransplantation rejection in both in vitro and in vivo settings due to their immunomodulatory properties. Therefore, utilization of MSCs provides new and exciting strategies to improve heart transplantation and potentially reduce the use of broad-spectrum immunosuppression drugs while alleviating allograft rejection. In this review, we will discuss the current research on the mechanisms of cardiac allograft rejection, the physiological and immunological characteristics of MSCs, the effects of MSCs on the immune system, and immunomodulation of heart transplantation by MSCs.  相似文献   

6.
Osteochondral defect management and repair remain a significant challenge in orthopedic surgery. Osteochondral defects contain damage to both the articular cartilage as well as the underlying subchondral bone. In order to repair an osteochondral defect the needs of the bone, cartilage and the bone-cartilage interface must be taken into account. Current clinical treatments for the repair of osteochondral defects have only been palliative, not curative. Tissue engineering has emerged as a potential alternative as it can be effectively used to regenerate bone, cartilage and the bone-cartilage interface. Several scaffold strategies, such as single phase, layered, and recently graded structures have been developed and evaluated for osteochondral defect repair. Also, as a potential cell source, tissue specific cells and progenitor cells are widely studied in cell culture models, as well with the osteochondral scaffolds in vitro and in vivo. Novel factor strategies being developed, including single factor, multi-factor, or controlled factor release in a graded fashion, not only assist bone and cartilage regeneration, but also establish osteochondral interface formation. The field of tissue engineering has made great strides, however further research needs to be carried out to make this strategy a clinical reality. In this review, we summarize current tissue engineering strategies, including scaffold design, bioreactor use, as well as cell and factor based approaches and recent developments for osteochondral defect repair. In addition, we discuss various challenges that need to be addressed in years to come.  相似文献   

7.
Articular cartilage repair is still a challenge in orthopaedic surgery. Although many treatment options have been developed in the last decade, true regeneration of hyaline articular cartilage is yet to be accomplished. In vitro experiments are useful for evaluating cell-matrix interactions under controlled parameters. When introducing new treatment options into clinical routine, adequate animal models are capable of closing the gap between in vitro experiments and the clinical use in human beings. We developed an animal model in the G?ttingen minipig (GMP) to evaluate the healing of osteochondral or full-thickness cartilage defects. The defects were located in the middle third of the medial portion of the patellofemoral joint at both distal femurs. Chondral defects were 6.3 mm, osteochondral defects either 5.4 or 6.3 mm in diameter and 8 or 10 mm deep. In both defects the endogenous repair response showed incomplete repair tissue formation up to 12 months postoperatively. Based on its limited capability for endogenous repair of chondral and osteochondral defects, the GMP is a useful model for critical assessment of new treatment strategies in articular cartilage tissue engineering.  相似文献   

8.
There is currently renewed interest in articular resurfacing for the treatment of damaged hip-joint cartilage. In contrast to these implants, which involve endoprosthetic replacement of both articulating surfaces, we present a new joint-preserving technique that allows treatment of local osteochondral defects of the femoral head by partial hemi-resurfacing. In this study we describe the operative and technical aspects and problems for partial hemi-resurfacing of the hip joint and critically discuss indications for this procedure in one case. To guarantee an adequate view of the situs, we recommend a surgical approach involving trochanter flip osteotomy, followed by surgical dislocation of the hip joint. Besides partial hemi-resurfacing of the osteochondral defect, this approach allows treatment of associated labral tears and cartilage defects of the hip joint at the same time. For adequate implant fixation, good bone quality is required. Furthermore, osteochondral defects of limited extent and excellent patient compliance are essential for clinical success. In particular, prominence of the implant has to be avoided, which can lead to an irregular joint surface and may induce further cartilage destruction. Long-term studies on statistical populations will show if partial articular hemi-resurfacing is a bone-preserving and useful therapeutic alternative to hemi-resurfacing caps in the treatment of osteochondral hip-joint defects, especially in young patients.  相似文献   

9.
The transplantation of stored shell osteochondral allografts is a potentially useful alternative to total joint replacements for the treatment of joint ailments. The maintenance of normal cartilage properties of the osteochondral allografts during storage is important for the allograft to function properly and survive in the host joint. Since articular cartilage is normally under large physiological stresses, this study was conducted to investigate the biomechanical behavior under large strain conditions of cartilage tissue stored for various time periods (i.e., 3, 7, 28, and 60 days) in tissue culture media. A biphasic large strain theory developed for soft hydrated connective tissues was used to describe and determine the biomechanical properties of the stored cartilage. It was found that articular cartilage stored for up to 60 days maintained the ability to sustain large compressive strains of up to 40 percent or more, like normal articular cartilage. Moreover, the equilibrium stress-strain behavior and compressive modulus of the stored articular cartilage were unchanged after up to 60 days of storage.  相似文献   

10.
MHC-mismatched DBA/2 renal allografts are spontaneously accepted by C57BL/6 mice by poorly understood mechanisms, but both immune regulation and graft acceptance develop without exogenous immune modulation. Previous studies have shown that this model of spontaneous renal allograft acceptance is associated with TGF-beta-dependent immune regulation, suggesting a role for T regulatory cells. The current study shows that TGF-beta immune regulation develops 30 days posttransplant, but is lost by 150 days posttransplant. Despite loss of detectable TGF-beta immune regulation, renal allografts continue to function normally for >200 days posttransplantation. Because of its recently described immunoregulatory capabilities, we studied IDO expression in this model, and found that intragraft IDO gene expression progressively increases over time, and that IDO in "regulatory" dendritic cells (RDC) may contribute to regulation associated with long-term maintenance of renal allografts. Immunohistochemistry evaluation confirms the presence of both Foxp3+ T cells and IDO+ DCs in accepted renal allografts, and localization of both cell types within accepted allografts suggests the possibility of synergistic involvement in allograft acceptance. Interestingly, at the time when RDCs become detectable in spleens of allograft acceptors, approximately 30% of these mice challenged with donor-matched skin allografts accept these skin grafts, demonstrating progression to "true" tolerance. Together, these data suggest that spontaneous renal allograft acceptance evolves through a series of transient mechanisms, beginning with TGF-beta and T regulatory cells, which together may stimulate development of more robust regulation associated with RDC and IDO.  相似文献   

11.
The deaths of otherwise healthy patients that are attributable to contaminated allografts have heightened concerns about the screening, processing, and use of such tissues. We present one tertiary care institution’s experience with musculoskeletal allografts and determine the frequency of postoperative Clostridium infection. We used an institutional microbiology database to identify all records of culture-confirmed Clostridium infection from January 1990 through July 2006. A comprehensive musculoskeletal database was cross-referenced to include all possible allograft samples surgically collected or implanted from January 1990 through July 2004 to determine the frequency of Clostridium infection associated with use of allograft musculoskeletal tissue. Musculoskeletal allografts were implanted in 16,314 patients during the study period. After a minimum follow-up of 2 years, no patient had development of a definite Clostridium infection that was attributable to the use of musculoskeletal allograft tissue. These outcomes can be achieved with established screening and processing techniques for donor tissue.  相似文献   

12.
Adipose tissue-derived mesenchymal stem cells (ADSC) exhibit immunosuppressive capabilities both in vitro and in vivo. Their use for therapy in the transplant field is attractive as they could render the use of immunosuppressive drugs unnecessary. The aim of this study was to investigate the effect of ADSC therapy on prolonging skin allograft survival. Animals that were treated with a single injection of donor allogeneic ADSC one day after transplantation showed an increase in donor skin graft survival by approximately one week. This improvement was associated with preserved histological morphology, an expansion of CD4+ regulatory T cells (Treg) in draining lymph nodes, as well as heightened IL-10 expression and down-regulated IL-17 expression. In vitro, ADSC inhibit naïve CD4+ T cell proliferation and constrain Th-1 and Th-17 polarization. In summary, infusion of ADSC one day post-transplantation dramatically increases skin allograft survival by inhibiting the Th-17 pathogenic immune response and enhancing the protective Treg immune response. Finally, these data suggest that ADSC therapy will open new opportunities for promoting drug-free allograft survival in clinical transplantation.  相似文献   

13.
Musculo-skeletal allografts sterilized and deep frozen are among the most common human tissue to be preserved and utilized in modern medicine. The effects of a long deep freezing period on cortical bone has already been evaluated and found to be insignificant. However, there are no reports about the influences of a protracted deep freezing period on osteochondral allografts. One hundred osteochondral cylinders were taken from a fresh specimen and humeral heads of 1 year, 2 years, 3 years and 4 year old bones. Twenty chips from each period, with a minimum of 3 chips per humeral head. Each was mechanically tested by 3 point compression. The fresh osteochondral allografts were significantly mechanically better than the deep frozen osteochondral allografts. There was no statistical significant time dependent difference between the deep frozen groups in relation to the freezing period. Therefore, we conclude that, from the mechanical point of view deep freezing of osteochondral allografts over a period of 4 years, is safe without further deterioration of the biomechanical properties of the osteochondral allografts.  相似文献   

14.
Creation of stable hemopoietic chimerism has been considered to be a prerequisite for allograft tolerance after bone marrow transplantation (BMT). In this study, we demonstrated that allogeneic BMT with bone marrow cells (BMC) prepared from either knockout mice deficient in both CD4 and CD8 T cells or CD3E-transgenic mice lacking both T cells and NK cells maintained a high degree of chimerism, but failed to induce tolerance to donor-specific wild-type skin grafts. Lymphocytes from mice reconstituted with T cell-deficient BMC proliferated when they were injected into irradiated donor strain mice, whereas lymphocytes from mice reconstituted with wild-type BMC were unresponsive to donor alloantigens. Donor-specific allograft tolerance was restored when donor-type T cells were adoptively transferred to recipient mice given T cell-deficient BMC. These results show that donor T cell engraftment is required for induction of allograft tolerance, but not for creation of continuous hemopoietic chimerism after allogeneic BMT, and that a high degree of chimerism is not necessarily associated with specific allograft tolerance.  相似文献   

15.
Both humoral and cellular immune responses are involved in renal allograft rejection. Interleukin (IL)-6 is a regulatory cytokine for both B and Foxp3 (forkhead box P3)-expressing regulatory T (Treg) cells. This study was designed to investigate the impact of donor IL-6 production on renal allograft survival. Donor kidneys from IL-6 knockout (KO) vs. wild-type (WT) C57BL/6 mice (H-2(b)) were orthotopically transplanted to nephrotomized BALB/c mice (H-2(d)). Alloantibodies and Treg cells were examined by fluorescence-activated cell sorting analysis. Graft survival was determined by the time to graft failure. Here, we showed that a deficiency in IL-6 expression in donor kidneys significantly prolonged renal allograft survival compared with WT controls. IL-6 protein was upregulated in renal tubules and endothelium of renal allografts following rejection, which correlated with an increase in serum IL-6 compared with that in those receiving KO grafts or naive controls. The absence of graft-producing IL-6 or lower levels of serum IL-6 in the recipients receiving IL-6 KO allografts was associated with decreased circulating anti-graft alloantibodies and increased the percentage of intragraft CD4(+)CD25(+)Foxp3(+) Treg cells compared with those with WT allografts. In conclusion, the lack of graft-producing IL-6 significantly prolongs renal allograft survival, which is associated with reduced alloantibody production and/or increased intragraft Treg cell population, implying that targeting donor IL-6 may effectively prevent both humoral and cellular rejection of kidney transplants.  相似文献   

16.
The use of bone allograft in orthopaedic surgery has been predicted to increase, particularly in joint revision surgery. This has led to a potential problem with supply. Questionnaires were distributed to all 146 Consultant Orthopaedic surgeons working in Scotland in 2000. They were asked to indicate their current usage of bone and tissue allograft, any problems encountered with supply and if alternatives to allograft, such as processed bone, might be used. The questions asked were very similar to those asked in a previous study in 1995 to enable comparisons to be made. Replies were received from 125 Consultants (87%) of whom 93 reported using bone allograft. Forty-one consultants (46%) predicted an increase in their requirement for bone allograft, and 23 (26%) felt they could currently use more bone if this was available. Sixty percent of surgeons would consider using processed bone as an alternative. In comparison with figures from 1995, an increasing number of surgeons are prepared to use processed bone as an alternative to fresh frozen allograft. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
软骨的修复是当前医学界十分棘手的难题,人们采取若干手段均收效甚微。由于软骨缺损时,其下的软骨下骨常出现硬化、退变,而新生软骨是无法与病变的软骨下骨进行整合的,所以在修复软骨的同时,必须重视软骨下骨的修复。近十几年来,人们开始发明和利用各种骨软骨复合支架,进行同时修复软骨与软骨下骨的动物实验研究。在正常骨软骨组织中,软骨与软骨下骨被钙化层所相连,此外钙化层也将软骨与软骨下骨分隔在不同的生存环境中。根据仿生学原理,人们又设计出一种带有隔离层的新型骨软骨复合支架,并取得了较为理想的实验结果。本文就国内外骨软骨复合支架的研完进展作一综述。  相似文献   

18.
Storage of Porcine Articular Cartilage at High Subzero Temperatures   总被引:3,自引:0,他引:3  
Objective: Transplantation of osteochondral allograft tissue can treat large joint defects but is limited by tissue availability, surgical timing, and infectious disease transmission. Fresh allografts perform the best but requirements for infectious disease testing delay the procedure with subsequent decrease in cell viability and function. Hypothermic storage at lower temperatures can extend tissue banking time without loss of cell viability and, therefore, increase the supply of allograft tissue. This study investigated the effects of different cryoprotectant solutions on intact AC at various subzero temperatures. Design: 10 mm porcine osteochondral dowels were immersed for 30 minutes in various combinations of solutions [(XVIVO, propylene glycol (51% w/w), sucrose (46% w/w)] cooled to various subzero temperatures (−10, −15, and −20 °C), and held for 30 min. After warming, 70 μm slices were stained with membrane integrity dyes, viewed under fluorescence microscopy and cell recovery calculated relative to fresh controls. Results: Results demonstrated excellent cell recovery (>75%) at −10°C provided ice did not form. Excellent cell recovery (>70%) occurred at −15°C in solutions containing 51% propylene glycol but formation of extra-matrix ice in other solutions resulted in significant cell loss. All groups had <6% cell recovery at −20°C and propylene glycol did not provide a protective effect even though extra-matrix ice did not form Conclusions: These results suggest that extra-matrix ice plays an important role in cell damage during cryopreservation. Excellent cell recovery can be obtained after storage at subzero temperatures if ice does not form. Hypothermic preservation at high subzero temperatures may extend AC storage time in tissue banks compared to current techniques.  相似文献   

19.
The effect of oral supplementation with glycosaminoglycans (GAG) and radical scavengers (vitamin E/selenium) on the regeneration of osteochondral defects was investigated in rabbits. After introduction of defined osteochondral defects in the knee joint, groups of ten animals were given a GAG/vitamin E/selenium mixture or a placebo (milk sugar) for 6 weeks. Following sacrifice, histological and histochemical analysis was performed. The amount of synovial fluid was increased in the placebo group, while the viscosity of the synovial fluid was significantly enhanced in the GAG group. The amount of sulfated GAG in the osteochondral regenerates (8.8 +/- 3.6 % vs. 6.0 +/- 5.6 %; p <0.03) was significantly higher in the GAG group. In both groups, the GAG amount in the cartilage of the operated knee was significantly higher than in the non-involved knee (p <0.05). Histological analysis of the regenerates in the GAG group was superior in comparison with the placebo group. For the first time, a biological effect following oral supplementation with GAG was demonstrated in healing of osteochondral defects in vivo. These findings support the known positive clinical results.  相似文献   

20.
Osteogenesis and the production of composite osteochondral tissues were investigated using human adult adipose‐derived stem cells and polyglycolic acid (PGA) mesh scaffolds under dynamic culture conditions. For osteogenesis, cells were expanded with or without osteoinduction factors and cultured in control or osteogenic medium for 2 weeks. Osteogenic medium enhanced osteopontin and osteocalcin gene expression when applied after but not during cell expansion. Osteogenesis was induced and mineralized deposits were present in tissues produced using PGA culture in osteogenic medium. For development of osteochondral constructs, scaffolds seeded with stem cells were precultured in either chondrogenic or osteogenic medium, sutured together, and cultured in dual‐chamber stirred bioreactors containing chondrogenic and osteogenic media in separate compartments. After 2 weeks, total collagen synthesis was 2.1‐fold greater in the chondroinduced sections of the composite tissues compared with the osteoinduced sections; differentiation markers for cartilage and bone were produced in both sections of the constructs. The results from the dual‐chamber bioreactor highlight the challenges associated with achieving simultaneous chondrogenic and osteogenic differentiation in tissue engineering applications using a single stem‐cell source. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号