首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNase P mediated cleavage of the tRNA(His) precursor does not rely on the formation of the "+73/294 interaction" to give the correct cleavage product, i.e. cleavage at -1, while other tRNA precursors that are cleaved at the canonical site +1 do. A previous model, here referred to as the "2'OH-model", predicts that the 2'OH at the canonical cleavage site would affect cleavage at -1. Here we used model RNA hairpin substrates mimicking the structural architecture of the tRNA(His) precursor cleavage site to investigate the role of 2'OH with respect to ground state binding and rate of cleavage in the presence and absence of the +73/294 interaction. Our data emphasize the importance of the 2'OH in the immediate vicinity of the scissile bond. Moreover, introduction of 2'H at the cleavage site did not affect cleavage at an alternative cleavage site to any significant extent. Our findings are therefore inconsistent with the 2'OH model. We favor a model where the 2'OH at the cleavage site influence Mg2+ binding in its vicinity, however we do not exclude the possibility that the 2'OH at the cleavage site interacts with RNase P RNA. Studying the importance of the 2'OH at different cleavage sites also indicated a higher dependence on the 2'OH at the cleavage site in the absence of the +73/294 interaction than in its presence. Finally, we provide data suggesting that N3 of U at position -1 in the substrate is most likely not involved in an interaction with RNase P RNA.  相似文献   

2.
We have studied an interaction, the "73/294-interaction", between residues 294 in M1 RNA (the catalytic subunit of Escherichia coli RNase P) and +73 in the tRNA precursor substrate. The 73/294-interaction is part of the "RCCA-RNase P RNA interaction", which anchors the 3' R(+73)CCA-motif of the substrate to M1 RNA (interacting residues underlined). Considering that in a large fraction of tRNA precursors residue +73 is base-paired to nucleotide -1 immediately 5' of the cleavage site, formation of the 73/294-interaction results in exposure of the cleavage site. We show that the nature/orientation of the 73/294-interaction is important for cleavage site recognition and cleavage efficiency. Our data further suggest that this interaction is part of a metal ion-binding site and that specific chemical groups are likely to act as ligands in binding of Mg(2+) or other divalent cations important for function. We argue that this Mg(2+) is involved in metal ion cooperativity in M1 RNA-mediated cleavage. Moreover, we suggest that the 73/294-interaction operates in concert with displacement of residue -1 in the substrate to ensure efficient and correct cleavage. The possibility that the residue at -1 binds to a specific binding surface/pocket in M1 RNA is discussed. Our data finally rationalize why the preferred residue at position 294 in M1 RNA is U.  相似文献   

3.
Most tRNAs carry a G at their 5' termini, i.e. at position +1. This position corresponds to the position immediately downstream of the site of cleavage in tRNA precursors. Here we studied RNase P RNA-mediated cleavage of substrates carrying substitutions/modifications at position +1 in the absence of the RNase P protein, C5, to investigate the role of G at the RNase P cleavage site. We present data suggesting that the exocyclic amine (2NH2) of G+1 contributes to cleavage site recognition, ground state binding and catalysis by affecting the rate of cleavage. This is in contrast to O6, N7 and 2'OH that are suggested to affect ground state binding and rate of cleavage to significantly lesser extent. We also provide evidence that the effects caused by the absence of 2NH2 at position +1 influenced the charge distribution and conceivably Mg2+ binding at the RNase P cleavage site. These findings are consistent with models where the 2NH2 at the cleavage site (when present) interacts with RNase P RNA and/or influences the positioning of Mg2+ in the vicinity of the cleavage site. Moreover, our data suggest that the presence of the base at +1 is not essential for cleavage but its presence suppresses miscleavage and dramatically increases the rate of cleavage. Together our findings provide reasons why most tRNAs carry a guanosine at their 5' end.  相似文献   

4.
RNase P RNA mediated cleavage: substrate recognition and catalysis   总被引:1,自引:0,他引:1  
Kirsebom LA 《Biochimie》2007,89(10):1183-1194
The universally conserved endoribonuclease P consists of one RNA subunit and, depending on its origin, a variable number of protein subunits. RNase P is involved in the processing of a large variety of substrates in the cell, the preferred substrate being tRNA precursors. Cleavage activity does not require the presence of the protein subunit(s) in vitro. This is true for both prokaryotic and eukaryotic RNase P RNA suggesting that the RNA based catalytic activity has been preserved during evolution. Progress has been made in our understanding of the contribution of residues and chemical groups both in the substrate as well as in RNase P RNA to substrate binding and catalysis. Moreover, we have access to two crystal structures of bacterial RNase P RNA but we still lack the structure of RNase P RNA in complex with its substrate and/or the protein subunit. Nevertheless, these recent advancements put us in a new position to study the way and nature of interactions between in particular RNase P RNA and its substrate. In this review I will discuss various aspects of the RNA component of RNase P with an emphasis on our current understanding of the interaction between RNase P RNA and its substrate.  相似文献   

5.
In this study, we have used various tRNA(Tyr)Su3 precursor (pSu3) derivatives that are processed less efficiently by RNase P to investigate if the 5' leader is a target for RNase E. We present data that suggest that RNase E cleaves the 5' leader of pSu3 both in vivo and in vitro. The site of cleavage in the 5' leader corresponds to the cleavage site for a previously identified endonuclease activity referred to as RNase P2/O. Thus, our findings suggest that RNase P2/O and RNase E activities are of the same origin. These data are in keeping with the suggestion that the structure of the 5' leader influences tRNA expression by affecting tRNA processing and indicate the involvement of RNase E in the regulation of cellular tRNA levels.  相似文献   

6.
7.
The ubiquitous occurrence of ribonuclease P (RNase P) as a ribonucleoprotein and the catalytic properties of bacterial RNase P RNAs indicate that RNA fulfills an ancient and important role in the function of this enzyme. This review focuses on efforts to determine the structure of the bacterial RNase P RNA ribozyme. Phylogenetic comparative analysis of a library of bacterial RNase P RNA sequences has resulted in a well-developed secondary structure model and allowed identification of some elements of tertiary structure. The native structure has been redesigned by circular permutation to facilitate intra- and inter-molecular crosslinking experiments in order to gain further structural information. The crosslinking constraints, together with the constraints provided by comparative analyses, have been incorporated into a first-order model of the structure of the ribozyme-substrate complex. The developing structural perspective allows the design of self-cleaving pre-tRNA-RNase P RNA conjugates which are useful tools for additional structure-probing experiments.Abbreviations cpRNA circularly permuted RNA  相似文献   

8.
Ribonuclease P (RNase P) catalyzes the metal-dependent 5′ end maturation of precursor tRNAs (pre-tRNAs). In Bacteria, RNase P is composed of a catalytic RNA (PRNA) and a protein subunit (P protein) necessary for function in vivo. The P protein enhances pre-tRNA affinity, selectivity, and cleavage efficiency, as well as modulates the cation requirement for RNase P function. Bacterial P proteins share little sequence conservation although the protein structures are homologous. Here we combine site-directed mutagenesis, affinity measurements, and single turnover kinetics to demonstrate that two residues (R60 and R62) in the most highly conserved region of the P protein, the RNR motif (R60–R68 in Bacillus subtilis), stabilize PRNA complexes with both P protein (PRNA•P protein) and pre-tRNA (PRNA•P protein•pre-tRNA). Additionally, these data indicate that the RNR motif enhances a metal-stabilized conformational change in RNase P that accompanies substrate binding and is essential for efficient catalysis. Stabilization of this conformational change contributes to both the decreased metal requirement and the enhanced substrate recognition of the RNase P holoenzyme, illuminating the role of the most highly conserved region of P protein in the RNase P reaction pathway.  相似文献   

9.
Based on a computational analysis of the 5' regions of tRNA-encoding genes, the average length of the 5' leaders in tRNA precursors in Escherichia coli appears to be 17-18 residues long. An in vivo assay based on tRNA nonsense suppression was developed and used to investigate the function of the 5' leader of the tRNA precursors on tRNA processing and bacterial growth. Our data indicate that the 5' leader influences bacterial growth but is surprisingly not absolutely necessary for growth. These findings are consistent with previous in vitro data where it was demonstrated that the 5' leader plays a role in the interaction with RNase P, the endoribonuclease responsible for removing the 5' leader in the cell. We discuss the plausible role of the 5' leader in processing and tRNA gene expression.  相似文献   

10.
Molecular investigations in mitochondria of higher plants have to take in account the complicated genomic structure of these organelles and their complex mode of gene expression. Recently tRNA processing activities and particulary RNase P-like activities have been described for mitochondria of mono- and dicot plants. The determined biochemical characteristics of these plant mitochondrial tRNA processing enzymes now allow a comparison to the bacterial prototype from which they evolved. The substrate specifity of the plant mitochondrial RNase P in particular has unique selection parameters distinct from theE. coli RNase P.  相似文献   

11.
12.
Last December marked the 20th anniversary of the Nobel Prize in Chemistry to Sidney Altman and Thomas Cech for their discovery of RNA catalysts in bacterial ribonuclease P (an enzyme catalyzing 5′ maturation of tRNAs) and a self-splicing rRNA of Tetrahymena, respectively. Coinciding with the publication of a treatise on RNase P,1 this review provides a historical narrative, a brief report on our current knowledge, and a discussion of some research prospects on RNase P.
the great thing about science is that you can actually solve a problem. You can take something which is confused, a mess, and not only find a solution, but prove it's the right one.”2
-Sydney Brenner
“In research the front line is almost always in a fog.”3
-Francis Crick
  相似文献   

13.
RNase P recognizes many different precursor tRNAs as well as other substrates and cleaves all of them accurately at the expected position. RNase P recognizes the tRNA structure of the precursor tRNA by a set of interactions between the catalytic RNA subunit and the T- and acceptor-stems mainly, although residues in the 5-leader sequence as well as the 3-terminal CCA are important. These conclusions have been reached by several studies on mutant precursor tRNAs as well as cross-linking studies between RNase P RNA and precursor tRNAs. The protein subunit of RNase P seems also to affect the way that the substrate is recognized as well as the range of substrates that can be used by RNase P, although the protein does not seem to interact directly with the substrates. The interaction between the protein and RNA subunits of RNase P has been extensively studiedin vitro. The protein subunit sequence is not highly conserved among bacteria, however different proteins are functionally equivalent as heterologous reconstitution of the RNase P holoenzyme can be achieved in many cases.Abbreviations C5 protein protein subunit fromE. coli RNase P - EGS external guide sequence - M1 RNA RNA subunit formE. coli RNase P - ptRNA precursor tRNA - RNase P ribonuclease P  相似文献   

14.
Fidelity in tRNA processing by the RNase P RNA from Escherichia coli depends, in part, on interactions with the nucleobase and 2' hydroxyl group of N(-1), the nucleotide immediately upstream of the site of RNA strand cleavage. Here, we report a series of biochemical and structure-function studies designed to address how these interactions contribute to cleavage site selection. We find that simultaneous disruption of cleavage site nucleobase and 2' hydroxyl interactions results in parallel reactions leading to correct cleavage and mis-cleavage one nucleotide upstream (5') of the correct site. Changes in Mg(2+) concentration and pH can influence the fraction of product that is incorrectly processed, with pH effects attributable to differences in the rate-limiting steps for the correct and mis-cleavage reaction pathways. Additionally, we provide evidence that interactions with the 2' hydroxyl group adjacent to the reactive phosphate group also contribute to catalysis at the mis-cleavage site. Finally, disruption of the adjacent 2'-hydroxyl contact has a greater effect on catalysis when pairing between the ribozyme and N(-1) is also disrupted, and the effects of simultaneously disrupting these contacts on binding are also non-additive. One implication of these results is that mis-cleavage will result from any combination of active site modifications that decrease the rate of correct cleavage beyond a certain threshold. Indeed, we find that inhibition of correct cleavage and corresponding mis-cleavage also results from disruption of any combination of active site contacts including metal ion interactions and conserved pairing interactions with the 3' RCCA sequence. Such redundancy in interactions needed for maintaining fidelity may reflect the necessity for multiple substrate recognition in vivo. These studies provide a framework for interpreting effects of substrate modifications on RNase P cleavage fidelity and provide evidence for interactions with the nucleobase and 2' hydroxyl group adjacent to the reactive phosphate group in the transition state.  相似文献   

15.
Nuclear ribonuclease (RNase) P is a ubiquitous essential ribonucleoprotein complex, one of only two known RNA-based enzymes found in all three domains of life. The RNA component is the catalytic moiety of RNases P across all phylogenetic domains; it contains a well-conserved core, whereas peripheral structural elements are diverse. RNA components of eukaryotic RNases P tend to be less complex than their bacterial counterparts, a simplification that is accompanied by a dramatic reduction of their catalytic ability in the absence of protein. The size and complexity of the protein moieties increase dramatically from bacterial to archaeal to eukaryotic enzymes, apparently reflecting the delegation of some structural functions from RNA to proteins and, perhaps, in response to the increased complexity of the cellular environment in the more evolutionarily advanced organisms; the reasons for the increased dependence on proteins are not clear. We review current information on RNase P and the closely related universal eukaryotic enzyme RNase MRP, focusing on their functions and structural organization.  相似文献   

16.
Ribonuclease P (RNase P) is involved in the processing of the 5′ leader sequence of precursor tRNA (pre-tRNA). We have found that RNase P RNA (PhopRNA) and five proteins (PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38) reconstitute RNase P activity with enzymatic properties similar to those of the authentic ribozyme from the hyperthermophilic archaeon Pyrococcus horikoshii OT3. We report here that nucleotides A40, A41, and U44 at helix P4, and G269 and G270 located at L15/16 in PhopRNA, are, like the corresponding residues in Esherichia coli RNase P RNA (M1RNA), involved in hydrolysis by coordinating catalytic Mg2+ ions, and in the recognition of the acceptor end (CCA) of pre-tRNA by base-pairing, respectively. The information reported here strongly suggests that PhopRNA catalyzes the hydrolysis of pre-tRNA in approximately the same manner as eubacterial RNase P RNAs, even though it has no enzymatic activity in the absence of the proteins.  相似文献   

17.
Li D  Willkomm DK  Schön A  Hartmann RK 《Biochimie》2007,89(12):1528-1538
Ribonuclease P (RNase P) is a ribonucleoprotein enzyme that generates the mature 5' ends of tRNAs. Ubiquitous across all three kingdoms of life, the composition and functional contributions of the RNA and protein components of RNase P differ between the kingdoms. RNA-alone catalytic activity has been reported throughout bacteria, but only for some archaea, and only as trace activity for eukarya. Available information for RNase P from photosynthetic organelles points to large differences to bacterial as well as to eukaryotic RNase P: for spinach chloroplasts, protein-alone activity has been discussed; for RNase P from the cyanelle of the glaucophyte Cyanophora paradoxa, a type of organelle sharing properties of both cyanobacteria and chloroplasts, the proportion of protein was found to be around 80% rather than the usual 10% in bacteria. Furthermore, the latter RNase P was previously found catalytically inactive in the absence of protein under a variety of conditions; however, the RNA could be activated by a cyanobacterial protein, but not by the bacterial RNase P protein from Escherichia coli. Here we demonstrate that, under very high enzyme concentrations, the RNase P RNA from the cyanelle of C. paradoxa displays RNA-alone activity well above the detection level. Moreover, the RNA can be complemented to a functional holoenzyme by the E. coli RNase P protein, further supporting its overall bacterial-like architecture. Mutational analysis and domain swaps revealed that this A,U-rich cyanelle RNase P RNA is globally optimized but conformationally unstable, since changes as little as a single point mutation or a base pair identity switch at positions that are not part of the universally conserved catalytic core led to a complete loss of RNA-alone activity. Likely related to this low robustness, extensive structural changes towards an E. coli-type P5-7/P15-17 subdomain as a canonical interaction site for tRNA 3'-CCA termini could not be coaxed into increased ribozyme activity.  相似文献   

18.
HCMV是一种广泛存在的疱疹病毒,在免疫抑制和免疫功能低下人群中,HCMV感染可引起严重疾病。RNaseP是细胞内催化tRNA5’末端成熟的酶,当EGSs与靶mRNA互补结合并形成类似tNRA的复合物时,大肠杆菌RNaseP催化亚基M1RNA可具备对靶mRNA特异的催化切割活性。为研究抗病毒制剂,针对HCMVDNA多聚酶UL54mRNA设计并构建特异性的EGS—C6,通过对觇舅基因亚克隆片段转录产物体外切割研究,证实该EGS具备引导M1RNA对UL54mRNA特异切割的能力,可发展成一种新型抗病毒制剂。  相似文献   

19.
20.
The ribonucleoprotein enzyme ribonuclease P (RNase P) processes tRNAs by cleavage of precursor-tRNAs. RNase P is a ribozyme: The RNA component catalyzes tRNA maturation in vitro without proteins. Remarkable features of RNase P include multiple turnovers in vivo and ability to process diverse substrates. Structures of the bacterial RNase P, including full-length RNAs and a ternary complex with substrate, have been determined by X-ray crystallography. However, crystal structures of free RNA are significantly different from the ternary complex, and the solution structure of the RNA is unknown. Here, we report solution structures of three phylogenetically distinct bacterial RNase P RNAs from Escherichia coli, Agrobacterium tumefaciens, and Bacillus stearothermophilus, determined using small angle X-ray scattering (SAXS) and selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) analysis. A combination of homology modeling, normal mode analysis, and molecular dynamics was used to refine the structural models against the empirical data of these RNAs in solution under the high ionic strength required for catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号