首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using brush-border membranes prepared from rabbit small intestine by Ca2+ precipitation and KSCN treatment, we have studied the kinetics and conformational changes of the glucose carrier. Na+ behaves as a competitive activator of glucose transport under zero-trans conditions. Phenyl isothiocyanate and fluorescein isothiocyanate (FITC) inhibit Na+-dependent transport in an irreversible but substrate-protectable manner. Vesicles pretreated with phenyl isothiocyanate in the presence of substrates were then selectively labeled at the glucose carrier with FITC. Competition experiments with Na+ and phlorizin or glucose indicated that FITC binds to the glucose site on the carrier. Carrier-bound FITC displays a saturable quenching of fluorescence in the presence of Na+. The K0.5 of the Na+-specific quench is 25 mM, which is similar to the apparent Km for Na+ activation of glucose transport. Two tyrosine group-specific reagents, N-acetylimidazole and tetranitromethane, inhibit glucose uptake and fluorescent quenching in a Na+-protectable fashion. FITC labeled a 75-kilodalton peptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a substrate-sensitive manner. We conclude that Na+ binds to the glucose symporter of intestinal brush borders, a 75-kilodalton peptide, and this induces a rapid conformation change in the transporter which increases its affinity for D-glucose.  相似文献   

2.
Kinetics of the intestinal brush border proline (Imino) carrier   总被引:2,自引:0,他引:2  
The kinetics of L-proline transport across intestinal brush borders via the Imino carrier were studied using membrane vesicles. The Imino carrier is defined as the agent responsible for L-alanine insensitive. Na+-dependent uptake of L-proline. Initial rate measurements were made under voltage clamped conditions (pD = 0) to investigate L-proline transport as a function of cis and trans Na+ and proline concentrations. Under zero-trans conditions, increasing cis Na+ activated proline uptake with a Hill coefficient of 1.7 and decreased the apparent Kt with no change in Jimax. The Jimax was approximately 60 pmol mg-1 s-1 and the apparent Kt ranged from 0.25 mM at cis Na = 100 to 1.0 mM at cis Na+ = 30 mM. Trans Na inhibited proline uptake via a reduction in Jimax. Trans proline had no significant effect in the absence of trans Na+, but it relieved the trans Na+ inhibition. Under equilibrium exchange conditions, the Jimax was twice that observed under zero-trans conditions. These kinetics of L-proline transport suggest a model in which uptake occurs by a rapid equilibrium iso-ordered ter ter system. Two Na+ ions bind first to the carrier on the cis face of the membrane to increase the affinity of the carrier for proline. The fully loaded complex then isomerizes to release the substrates to the trans side. The partially loaded Na+-only forms are unable to translocate across the membrane. A rate-limiting step appears to be the isomerization of unloaded carrier from the trans to the cis side of the membrane.  相似文献   

3.
It has been demonstrated previously that dicarboxylic anions are cotransported during ATP-dependent Ca2+ transport by skeletal muscle sarcoplasmic reticulum (SR) membranes, and that anion cotransport stimulates Ca2+ transport. In the current study, we present evidence that dicarboxylic anion cotransport and Ca2+ transport are kinetically distinct in SR, but both functions are mediated by the CaATPase protein. Preincubation of SR with 40 microM fluorescein isothiocyanate (FITC) (pH 7.0) inhibited essentially all of the Ca2+ ATPase activity, as well as active oxalate-supported and oxalate-independent 45Ca2+ accumulation. The addition of 1 mM beta, gamma-methyleneadenosine 5'-triphosphate (AMP-PCP) to the preincubation media fully protected the dicarboxylic anion-independent Ca2+ ATPase activity and the oxalate-independent active 45Ca2+ accumulation from the inhibitory effects of FITC; however, the ATP-associated [14C]oxalate accumulation, the oxalate-dependent 45Ca2+ accumulation, and the oxalate- and maleate-dependent stimulation of Ca2+ ATPase activity were not protected by AMP-PCP. Thus, the dicarboxylic anion accumulation and the stimulation of Ca2+ uptake by dicarboxylic anions could be functionally separated from the ATP-dependent, anion-independent Ca2+ translocation. FITC bound exclusively to the 100-kDa (CaATPase) and 92-kDa (phosphorylase) proteins in the SR membranes and to purified CaATPase in sodium dodecyl sulfate-polyacrylamide gel electrophoresis; 1 mM AMP-PCP inhibited 50-55% of the FITC fluorescence on the 100-kDa protein, but did not significantly alter fluorescence on the 92-kDa protein. Two-dimensional gel analysis demonstrated a single 100-kDa protein in longitudinal SR membranes. FITC appears to inhibit ATP-dependent Ca2+ transport, and dicarboxylic anion translocation through interaction at separate domains of the CaATPase protein.  相似文献   

4.
S H Lee  N S Cohen  A J Jacobs  A F Brodie 《Biochemistry》1979,18(11):2232-2239
Membrane vesicles from Mycobacterium phlei contain carrier proteins for proline, glutamine, and glutamic acid. The transport of proline is Na+ dependent and required substrate oxidation. A proline carrier protein was solubilized from the membrane vesicles by treatment with cholate and Triton X-100. Electron microscopic observation of the detergent-treated membrane vesicles showed that they are closed structures. The detergent-extracted proteins were purified by means of sucrose density gradient centrifugation, followed by gel filtration and isoelectric focusing. A single protein with a molecular weight of 20,000 +/- 1000 was found on polyacrylamide gel electrophoresis. Reconstitution of proline transport was demonstrated when the purified protein was incubated with the detergent-extracted membrane vesicles. This reconstituted transport system was specific for proline and required substrate oxidation and Na+. The purified protein was also incorporated into liposomes, and proline uptake was demonstrated when energy was supplied as a membrane potential introduced by K+ diffusion via valinomycin. The uptake of proline was Na+ dependent and was inhibited by uncoupler or by sulfhydryl reagents.  相似文献   

5.
A tyrosine group has been identified at, or near, the Na+-binding site of the Na+/glucose and Na+/proline cotransporters of rabbit intestinal brush-borders. Three tyrosine group-specific reagents, n-acetylimidazole, tetranitromethane, and p-nitrobenzene sulfonyl fluoride, were used to evaluate the role of tyrosyl groups in Na+-dependent glucose transport, Na+-dependent phlorizin binding, and the Na+-induced fluorescence quenching of fluorescein isothiocyanate bound to the glucose site of the carrier. All three reagents inhibited glucose transport, phlorizin binding, and fluorescein isothiocyanate quenching by 50-85% with Ki values in the range 7-50 microM. The presence of Na+ during the exposure of membranes to the reagents completely protected against inhibition, the Na+ concentration required to produce 50% protection was 14-36 mM. Fluorescent derivatives of n-acetylimidazole were synthesized to identify the tyrosyl residues on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A total of five polypeptide bands were labeled with eosin or fluorescein n-acetylimidazole in a Na+-sensitive manner. Two of these bands, previously identified as the glucose (75,000-dalton) and proline (100,000-dalton) binding sites of the glucose and proline carriers, account for 50% of the Na+-sensitive tyrosyl residues. On the basis of these studies, we believe that the Na+/glucose cotransporter contains both the Na+ and glucose active sites on the same polypeptide or that the cotransporter consists of two similar polypeptides, each containing one substrate binding site.  相似文献   

6.
The membrane carrier for L-proline (product of the putP gene) of Escherichia coli K12 was solubilized and functionally reconstituted with E. coli phospholipid by the cholate dilution method. The counterflow activity of the reconstituted system was studied by preloading the proteoliposomes with either L-proline or the proline analogues: L-azetidine-2-carboxylate or 3,4-dehydro-L-proline. The dilution of such preloaded proteoliposomes into a buffer containing [3H]proline resulted in the accumulation of this amino acid against a considerable concentration gradient. A second driving force for proline accumulation was an electrochemical potential difference for Na+ across the membrane. More than a 10-fold accumulation was seen with a sodium electrochemical gradient while no accumulation was found with proton motive force alone. The optimal pH for the L-proline carrier activities for both counterflow and sodium gradient-driven uptake was between pH 6.0 and 7.0. The stoichiometry of the co-transport system was approximately one Na+ for one proline. The effect of different phospholipids on the proline transport activity of the reconstituted carrier was also studied. Both phosphatidylethanolamine and phosphatidylglycerol stimulate the carrier activity while phosphatidylcholine and cardiolipin were almost inactive.  相似文献   

7.
Streptomyces antibioticus possesses an energy-dependent, carrier mediated transport system for the uptake of L-glutamate and L-proline. Amino acid transport was found to have a temperature optimum of 35 degrees C and a pH optimum from 7.0 to 8.0 for glutamate and 6.5 to 7.5 for proline uptake. Uptake did not depend upon Mg2+, Ca2+, Zn2+, Na+, or Fe2+ ions. Reversible p-hydroxymercuribenzoate inhibition of uptake indicated the involvement of an active sulfhydryl group. L-Glutamate uptake was mediated by a glutamate-inducible, nonspecific transport system, which was extremely stable and was not subject to substrate inhibition by L-proline. On the other hand, L-proline transport was mediated by at least two systems. The L-glutamate-inducible nonspecific system can account for uptake of proline by the mycelium grown in glutamate. In addition, a proline-specific, constitutive transport system was found to be present in the mycelium grown in organic and inorganic nitrogen sources other than L-glutamate. Shift experiments revealed that proline transport is not as stable as glutamate transport when the glutamate-inducible nonspecific system is utilized.  相似文献   

8.
The ability of rabbit jejunal brush borders to transport inhibitors of the imino carrier was investigated in membrane vesicles by measuring their ability to depolarize the membrane potential. Membrane potentials were monitored using a voltage-sensitive cyanine dye. Piperidine and pyrrolidine carboxylic acids, which are potent inhibitors of Na+-dependent proline transport (Ki less than 0.5 mM) depolarize the potential in a Na+-dependent, saturable manner indicating transport. On the other hand, N-methylated amino acids, which are fair inhibitors (Ki 2-10 mM), do not depolarize the membrane to any significant extent, but they competitively inhibit the L-proline transport signal. This indicates that these analogs are nontransported inhibitors of the imino carrier. The poor inhibitors niacin and pipolinic acid (Ki greater than 60 mM) depolarize the membrane about twice as much as proline and with low Kf values. This suggests separate carriers for these substrates.  相似文献   

9.
The interaction of 3'-O-(4-benzoyl)benzoyl-ATP (BzATP) with the renal (Na+ + K+)-ATPase, the sarcoplasmic reticulum Ca-transport ATPase, and the gastric (H+ + K+)-ATPase has been investigated in order to determine whether BzATP is a suitable probe for the labeling and identification of a peptide from the ATP binding sites of these ion pumps. After ultraviolet irradiation BzATP inhibited the enzymatic hydrolysis of ATP by each of the ion pumps, and also was covalently incorporated into the 100 000 dalton polypeptides of each protein. The presence of excess ATP in the reaction solution did not prevent either the inactivation of ATPase activity or the labeling of the catalytic polypeptides by BzATP. Prior modification of the ATPases with fluorescein-5'-isothiocyanate (FITC), however, prevented much of the labeling of the 100 000 dalton polypeptides by BzATP. BzATP competitively inhibited the high-affinity binding of ATP to the ion pumps, but ATP did not block the high-affinity binding of BzATP by the enzymes. BzATP binds to the membrane-bound ATPases at a high-affinity site with a Kd of 0.8-1.2 microM and a Bmax of 2-3 nmol/mg, and also binds to at least one low-affinity, high-capacity site on the membranes. HPLC separation of the soluble peptides from a tryptic digest of BzATP-labeled (Na+ + K+)-ATPase revealed the presence of several labeled peptides, none of which was protected by either ATP or FITC. Although BzATP can displace ATP from a high-affinity binding site on the ion pumps, it appears, therefore, that inactivation of enzymatic activity is the result of reactions between BzATP and the proteins at locations outside this site. Thus, it is concluded from these experiments that BzATP is not likely to be a useful probe for the ATP binding sites on the ion transport ATPases.  相似文献   

10.
Amino acid transport in right-side-out membrane vesicles of Acinetobacter johnsonii 210A was studied. L-Alanine, L-lysine, and L-proline were actively transported when a proton motive force of -76 mV was generated by the oxidation of glucose via the membrane-bound glucose dehydrogenase. Kinetic analysis of amino acid uptake at concentrations of up to 80 microM revealed the presence of a single transport system for each of these amino acids with a Kt of less than 4 microM. The mode of energy coupling to solute uptake was analyzed by imposition of artificial ion diffusion gradients. The uptake of alanine and lysine was driven by a membrane potential and a transmembrane pH gradient. In contrast, the uptake of proline was driven by a membrane potential and a transmembrane chemical gradient of sodium ions. The mechanistic stoichiometry for the solute and the coupling ion was close to unity for all three amino acids. The Na+ dependence of the proline carrier was studied in greater detail. Membrane potential-driven uptake of proline was stimulated by Na+, with a half-maximal Na+ concentration of 26 microM. At Na+ concentrations above 250 microM, proline uptake was strongly inhibited. Generation of a sodium motive force and maintenance of a low internal Na+ concentration are most likely mediated by a sodium/proton antiporter, the presence of which was suggested by the Na(+)-dependent alkalinization of the intravesicular pH in inside-out membrane vesicles. The results show that both H+ and Na+ can function as coupling ions in amino acid transport in Acinetobacter spp.  相似文献   

11.
The respiratory NADH:quinone oxidoreductase (complex I) (NDH-1) is a multisubunit enzyme that translocates protons (or in some cases Na+) across energy-conserving membranes from bacteria or mitochondria. We studied the reaction of the Na+-translocating complex I from the enterobacterium Klebsiella pneumoniae with N,N'-dicyclohexylcarbodiimide (DCCD), with the aim of identifying a subunit critical for Na+ binding. At low Na+ concentrations (0.6 mM), DCCD inhibited both quinone reduction and Na+ transport by NDH-1 concurrent with the covalent modification of a 30-kDa polypeptide. In the presence of 50 mM Na+, NDH-1 was protected from inhibition by DCCD, and the modification of the 30-kDa polypeptide with [14C]DCCD was prevented, indicating that Na+ and DCCD competed for the binding to a critical carboxyl group in NDH-1. The 30-kDa polypeptide was assigned to NuoH, the homologue of the ND1 subunit from mitochondrial complex I. It is proposed that Na+ binds to the NuoH subunit during NADH-driven Na+ transport by NDH-1.  相似文献   

12.
A Klip  E Gagalang  W J Logan 《FEBS letters》1983,152(2):171-174
Membrane vesicles of L6 myoblasts were prepared in order to study the amino acid transport system A. The role of the membrane in the adaptive response of transport to amino acid-supplementation was assessed. The membranes, prepared by N2 cavitation, displayed Na+ (but not K+)-dependent L-proline uptake. An overshoot of L-[3H]proline uptake was observed after exposure of the vesicles to an inward Na+ gradient. Isolated membrane vesicles loaded with 50 microM proline displayed countertransport (stimulation of proline uptake). It is concluded that the adaptive decrease of proline uptake observed in amino acid-supplemented cells cannot be accounted for by trans-inhibition of transport.  相似文献   

13.
We previously constructed a bifunctionally active membrane-bound fusion protein, in which Escherichia coli proline carrier (the product of the putP gene) was linked with beta-galactosidase (the product of the lacZ gene) through a collagen linker (Hanada, K., Yamato, I., and Anraku, Y. (1987) J. Biol. Chem. 262, 14100-14104). The proline carrier was purified from this site specifically cleavable fusion protein. Cytoplasmic membranes overproducing the fusion protein were solubilized with dodecylmaltoside, and the solubilized fraction was subjected to anti-beta-galactosidase IgG-Sepharose chromatography. The fusion protein was specifically adsorbed to the immunoaffinity resin and then treated with collagenase for splitting the proline carrier moiety of the fusion protein from the beta-galactosidase moiety. The collagenase used for the collagenolysis was then removed by anti-collagenase IgG-Sepharose chromatography. In this way, the proline carrier was purified to more than 95% homogeneity of the protein. Proline transport in proteoliposomes reconstituted with the purified carrier was dependent on the membrane potential and the chemical gradient of Na+ across the membrane with apparent Michaelis constants for proline and for Na+ stimulation of 3.6 microM and 31 microM, respectively. These results indicated that the proline carrier mediates electrogenic Na+/proline symport.  相似文献   

14.
Evidence is presented in this report for the presence of two sets of dithiols associated with proline transport activity in Escherichia coli. One set is located at the outer surface, the other at the inner surface of the cytoplasmic membrane. Treatment of right-side-out membrane vesicles from E. coli ML 308-225 with the membrane-impermeable oxidant ferricyanide resulted in inhibition of L-proline uptake without having significant effect on the magnitude of the delta approximately mu H+. Subsequent addition of reducing agents restored proline transport activity. The membrane-impermeable SH-reagent glutathione hexane maleimide inhibited proline transport in right-side-out membrane vesicles irreversibly. Pretreatment of the vesicles with ferricyanide protected the carrier against inactivation by glutathione hexane maleimide. Electron transfer in the respiratory chain of right-side-out vesicles led to the generation of a delta approximately mu H+, interior negative and alkaline, and the conversion of a disulphide to a dithiol in the proline carrier as is shown by the increased inhibition of proline transport by the membrane impermeable dithiol reagent 4-(2-arsonophenyl)azo-3-hydroxy-2,7-naphthalene disulphonic acid (thorin). The inhibition exerted by thorin was completely reversed by dithiothreitol. Pretreatment of the vesicles with thorin protected against glutathione hexane maleimide inhibition, indicating that both reagents react with the same group. Treatment of inside-out membrane vesicles with ferricyanide inactivated the proline transport system reversibly. The oxidizing effect of ferricyanide in inside-out vesicles resulted in protection against inhibition by glutathione hexane maleimide. Imposition in these vesicles of a delta approximately mu H+, interior positive and acid, also protected the proline carrier against glutathione hexane maleimide inactivation, indicating that a dithiol is converted to a disulphide upon energization.  相似文献   

15.
We studied the effect of the carboxyl group-specific reagent N,N'-dicyclohexylcarbodiimide on the Na+/H+ exchanger present in microvillus membrane vesicles isolated from rabbit renal cortices. Pretreatment of membrane vesicles with dicyclohexylcarbodiimide resulted in irreversible inhibition of Na+/H+ exchange which was not due to vesicle disruption or collapse of imposed pH gradients. Inhibition by dicyclohexylcarbodiimide followed pseudo-first-order kinetics, resulted primarily from a decrease in binding affinity for substrate, was pH-dependent in a manner consistent with reaction with carboxyl groups, and was greater than inhibition by hydrophilic carbodiimides. Substrates Na+ and Li+ and the competitive inhibitor amiloride protected against inhibition by dicyclohexylcarbodiimide in a pH-dependent fashion. Finally, we demonstrated amiloride-sensitive covalent binding of radiolabeled dicyclohexylcarbodiimide to a 100-kDa protein. In conclusion, a catalytically important carboxyl group is located in a relatively hydrophobic microenvironment at or near the external transport site of the renal Na+/H+ exchanger; and the transporter itself, or a subunit thereof, may be a 100-kDa protein.  相似文献   

16.
The aim of this study was to identify and purify the Na+-H+ exchanger from rabbit renal brush border membranes by use of affinity chromatography. Triton-solubilized membranes were equilibrated with an affinity matrix consisting of the amiloride analogue A35 (5-N-(3-aminophenyl)amiloride) covalently coupled to Sepharose CL-4B beads through a triglycine spacer arm. The matrix was then washed extensively with buffer and sequentially eluted with buffer, buffer containing 5 mM amiloride, and 1% sodium dodecyl sulfate (SDS). Eluates were concentrated and subjected to SDS-polyacrylamide gel electrophoresis. The silver-stained gel revealed a 25-kDa protein that was not visible in the initial solubilized brush border membrane extract, was not eluted from the affinity matrix by buffer alone, but was eluted with 5 mM amiloride. A subsequent elution with 1% SDS did not release any more of the 25-kDa protein, indicating that it had been completely eluted from the affinity matrix by amiloride. The presence of 5 mM amiloride during equilibration of the solubilized brush border extract with the affinity matrix completely blocked adsorption of the 25-kDa protein. The relative abundance of this protein correlated closely with Na+-H+ exchange activity when preparations of cortical brush border membrane vesicles, outer medullary brush border membrane vesicles, and cortical basolateral membrane vesicles were compared. Moreover, binding of the protein to the affinity matrix was inhibited by amiloride and amiloride analogues with a rank order identical to that for inhibition of Na+-H+ exchange activity. These findings strongly suggest that the 25-kDa protein is a structural component of the Na+-H+ exchanger.  相似文献   

17.
L-Proline enhanced the growth of Staphylococcus aureus in high-osmotic-strength medium, i.e., it acted as an osmoprotectant. Study of the kinetics of L-[14C]proline uptake by S. aureus NCTC 8325 revealed high-affinity (Km = 1.7 microM; maximum rate of transport [Vmax] = 1.1 nmol/min/mg [dry weight]) and low-affinity (Km = 132 microM; Vmax = 22 nmol/min/mg [dry weight]) transport systems. Both systems were present in a proline prototrophic variant grown in the absence of proline, although the Vmax of the high-affinity system was three to five times higher than that of the high-affinity system in strain 8325. Both systems were dependent on Na+ for activity, and the high-affinity system was stimulated by lower concentrations of Na+ more than the low-affinity system. The proline transport activity of the low-affinity system was stimulated by increased osmotic strength. The high-affinity system was highly specific for L-proline, whereas the low-affinity system showed a broader substrate specificity. Glycine betaine did not compete with proline for uptake through either system. Inhibitor studies confirmed that proline uptake occurred via Na(+)-dependent systems and suggested the involvement of the proton motive force in creating an Na+ gradient. Hyperosmotic stress (upshock) of growing cultures led to a rapid and large uptake of L-[14C]proline that was not dependent on new protein synthesis. It is suggested that the low-affinity system is involved in adjusting to increased environmental osmolarity and that the high-affinity system may be involved in scavenging low concentrations of proline.  相似文献   

18.
A novel imino-acid carrier in the enterocyte basolateral membrane   总被引:1,自引:0,他引:1  
Basolateral membrane vesicles prepared from rat small intestinal epithelial cells were used to study the sodium-independent transport of L-proline. The uptake of L-proline was unaffected by the presence of sodium and showed saturation kinetics (Kt = 0.5 mM and Vmax = 23.3 pmol/mg protein per s). Competition experiments indicated that other amino acids had an affinity for the carrier system with L-leucine greater than L-alanine greater than sarcosine greater than glycine greater than L-lysine greater than OH-proline greater than taurine greater than beta-alanine greater than D-alanine greater than D-proline greater than L-serine greater than phenylalanine greater than valine greater than D-serine greater than phenylalanine greater than valine greater than D-serine greater than MeAIB greater than methionine greater than threonine. This pathway does not resemble those previously described either in the brush-border membrane of intestinal epithelial cells or the plasma membrane of other cell types. The lack of effect of methionine and threonine indicate that proline is not using the L-type system, while the very low affinity for MeAIB and the Na+ independence suggest that this is a novel system for imino acids. The relatively high capacity of this system and its low Kt, which is almost identical to the proline system in the brush-border membrane, strongly suggest that this is an important pathway in the final step for proline absorption by the small intestine.  相似文献   

19.
The gastric H,K-ATPase is an active transport protein that is responsible for the maintenance of a large pH gradient across the secretory canaliculus of the mammalian parietal cell. Acid secretion across these epithelial cell membranes is coupled to the potassium-stimulated hydrolysis of ATP catalyzed by H,K-ATPase, but the mechanism of coupling between ion transport and ATP hydrolysis is unknown. In order to investigate the enzymatic mechanism of this coupling, a peptide derived from the ATP binding site of H,K-ATPase has been purified and its amino acid sequence has been determined. The peptide was identified by the incorporation of a fluorescent probe, fluorescein 5'-isothiocyanate (FITC), into the active site before trypsin digestion of the protein. The labeling of the enzyme by FITC was associated with the irreversible inhibition of enzymatic activity, and both the labeling of the tryptic peptide and inhibition of activity were prevented when the reaction was performed in the presence of ATP. At 100% inhibition of activity, 3.5 +/- 1.6 nmol of FITC were incorporated per mg of protein. The amino acid sequence of the active site peptide is His-Val-Leu-Val-Met-Lys-Gly-Ala-Pro-Glu-Gln-Leu-Ser-Ile-Arg, and FITC reacts with the lysine. This sequence is very similar to sequences of fluorescein-labeled peptides from the ATP binding sites of Na,K-ATPase and Ca2+-ATPase, and suggests that the active site structures of these ion transport ATPases are similar.  相似文献   

20.
The substrate binding reaction of the proline carrier was investigated in nonenergized conditions using cytoplasmic membrane vesicles prepared from the proline carrier-overproducing strain MinS/ pLC4 -45 of Escherichia coli K12. The binding activity specifically required both alkaline cations (X+), Na+ and Li+, and protons. The Na+-dependent binding activity was dependent on the proline carrier, which is the product of the putP gene, and was not affected by ionophores and energy transduction inhibitors. The parameters of proline binding were determined by double reciprocal plots in reaction media with various combinations of Na+ and H+ concentrations. The apparent dissociation constant was greatly affected by the Na+ and H+ concentrations of the medium and could be expressed as a combination of the reciprocals of the Na+ and H+ concentrations, while the maximum number of binding sites remained constant. The characteristics of proline binding to the carrier can be explained by a mechanism in which the unloaded carrier forms a carrier/H+/X+ (CH+X+) complex by a random equilibrium and only the CH+X+ complex binds substrate in nonenergized conditions, as proposed for the Na+/H+/glutamate symport carrier of E. coli B ( Fujimura , T., Yamato , I., and Anraku , Y. (1983) Biochemistry 22, 1954-1959).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号