首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B H Oh  E S Mooberry  J L Markley 《Biochemistry》1990,29(16):4004-4011
Multinuclear two-dimensional NMR techniques were used to assign nearly all diamagnetic 13C and 15N resonances of the plant-type 2Fe.2S* ferredoxin from Anabaena sp. strain PCC 7120. Since a 13C spin system directed strategy had been used to identify the 1H spin systems [Oh, B.-H., Westler, W. M., & Markley, J. L. (1989) J. Am. Chem. Soc. 111, 3083-3085], the sequence-specific 1H assignments [Oh, B.-H., & Markley, J. L. (1990) Biochemistry (first paper of three in this issue)] also provided sequence-specific 13C assignments. Several resonances from 1H-13C groups were assigned independently of the 1H assignments by considering the distances between these nuclei and the paramagnetic 2Fe.2S* center. A 13C-15N correlation data set was used to assign additional carbonyl carbons and to analyze overlapping regions of the 13C-13C correlation spectrum. Sequence-specific assignments of backbone and side-chain nitrogens were based on 1H-15N and 13C-15N correlations obtained from various two-dimensional NMR experiments.  相似文献   

2.
B H Oh  J L Markley 《Biochemistry》1990,29(16):4012-4017
All the nitrogen signals from the amino acid side chains and 80 of the total of 98 backbone nitrogen signals of the oxidized form of the 2Fe.2S* ferredoxin from Anabaena sp. strain PCC 7120 were assigned by means of a series of heteronuclear two-dimensional experiments [Oh, B.-H. Mooberry, E. S., & Markley, J. L. (1990) Biochemistry (second paper of three in this issue )]. Two additional nitrogen signals were observed in the one-dimensional 15N NMR spectrum and classified as backbone amide resonances from residues whose proton resonances experience paramagnetic broadening. The one-dimensional 15N NMR spectrum shows nine resonances that are hyperfine shifted and broadened. From this inventory of diamagnetic nitrogen signals and the available X-ray coordinates of a related ferredoxin [Tsukihara, T., Fukuyama, K., Nakamura, M., Katsube, Y., Tanaka, N., Kakudo, M., Wada, K., Hase, T., & Matsubara, H. (1981) J. Biochem. 90, 1763-1773], the resolved hyperfine-shifted 15N peaks were attributed to backbone amide nitrogens of the nine amino acids that share electrons with the 2Fe.2S* center or to backbone amide nitrogens of two other amino acids that are close to the 2Fe.2S* center. The seven 15N signals that are missing and unaccounted for probably are buried under the envelope of amide signals. 1H NMR signals from all the amide protons directly bonded to the seven missing and nine hyperfine-shifted nitrogens were too broad to be resolved in conventional 2D NMR spectra.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Escherichia coli glutaredoxin (85 amino acid residues, Mr = 9100), the glutathione-dependent hydrogen donor for ribonucleotide reductase, was purified from an inducible lambda PL, expression system both with a natural isotope content and with uniform 15N labelling. This material was used for obtaining sequence-specific 1H magnetic resonance assignments and the identification of regular secondary structures in the oxidized form of the protein, which contains the redox-active disulfide Cys11-Pro-Tyr-Cys14. Oxidized glutaredoxin contains a four-stranded beta-sheet, with the peripheral strand 32-37 arranged parallel to the strand 2-7, which further combines with the two additional strands 61-64 and 67-69 in an antiparallel fashion. The protein further contains three helices extending approximately from residues 13-28, 45-54 and 72-84.  相似文献   

4.
The structural gene for ferredoxin I, petF, from the cyanobacterium Anabaena sp. strain PCC 7120 has been isolated from a recombinant lambda library. Mixtures of tetradecanucleotides and heptadecanucleotides, each containing all possible DNA sequences corresponding to two separate regions of the ferredoxin amino acid sequence, were synthesized and used as hybridization probes to identify a genomic clone containing the coding sequence for the petF gene. The sequence of the entire petF coding region and portions of the 3'- and 5'-flanking regions was determined. The DNA sequence of petF suggests that, in contrast to the nucleus-encoded plant protein, cyanobacterial apoferredoxin is not synthesized as a higher-molecular-weight precursor. The Anabaena petF gene is a single-copy gene. During growth on complete medium it was transcribed into a monocistronic mRNA species of approximately 500 bases that initiated 100 base pairs upstream from the petF coding region.  相似文献   

5.
The molecular structure of the oxidized form of the [2Fe-2S] ferredoxin isolated from the cyanobacterium Anabaena species strain PCC 7120 has been determined by X-ray diffraction analysis to a nominal resolution of 2.5 A and refined to a crystallographic R factor of 18.7%. Crystals used in this investigation belong to the space group P2(1)2(1)2(1) with unit cell dimensions of a = 37.42 A, b = 38.12 A, and c = 147.12 A and two molecules in the asymmetric unit. The three-dimensional structure of this ferredoxin was solved by a method that combined X-ray data from one isomorphous heavy-atom derivative with noncrystallographic symmetry averaging and solvent flattening. As in other plant-type [2Fe-2S] ferredoxins, the iron-sulfur cluster is located toward the outer edge of the molecule, and the irons are tetrahedrally coordinated by both inorganic sulfurs and sulfurs provided by protein cysteine residues. The main secondary structural elements include four strands of beta-pleated sheet and three alpha-helical regions.  相似文献   

6.
The 1H-NMR spectrum of the snake toxin echistatin has been assigned using homonuclear two-dimensional methods. Consideration of the NOE patterns, coupling constants and putative hydrogen bonds enabled two regular features of secondary structure to be deduced: a beta-sheet/turn between residues 8 and 13 and a small anti-parallel beta-sheet and bulge linking residues 16-20 with residues 30-33. The recognition region of the protein containing the residues RGD lies in a loop joining the two strands of the beta-sheet. The beta-bulge and the loop containing the RGD sequence undergo pH-dependent conformational interconversion, modulated by the side chain of Asp29.  相似文献   

7.
Two-dimensional 1H-NMR methods have been used to obtain complete proton resonance assignments for the 49-residue protein echistatin from the viper Echis carinatus. The protein in solution contains only a small amount of regular secondary structure with four very short beta-strands. These beta-strands form two short segments of antiparallel beta-sheet, as evidenced by the observed cross-strand NOE. The first two strands are connected with a tight reverse turn, whereas the remaining two strands are linked together by an 11-residue loop forming a so-called hairpin. The tripeptide unit Arg-Gly-Asp, responsible for the binding of echistatin to the fibrinogen receptor glycoprotein GPIIb/IIIa, is located at the tip of this very hydrophilic loop.  相似文献   

8.
Mo H  Pochapsky SS  Pochapsky TC 《Biochemistry》1999,38(17):5666-5675
Terpredoxin (Tdx) is a 105-residue bacterial ferredoxin consisting of a single polypeptide chain and a single Fe2S2 prosthetic group. Tdx was first identified in a strain of Pseudomonas sp. capable of using alpha-terpineol as sole carbon source. The Tdx gene, previously cloned from the plasmid-encoded terp operon, that carries genes encoding for proteins involved in terpineol catabolism, has been subcloned and expressed as the holoprotein in E. coli. Physical characterization of the expressed Tdx has been performed, and a model for the solution structure of oxidized Tdx (Tdxo) has been determined. High-resolution homo- and heteronuclear NMR data have been used for structure determination in diamagnetic regions of the protein. The structure of the metal binding site (which cannot be determined directly by NMR methods due to paramagnetic broadening of resonances) was modeled using restraints obtained from a crystal structure of the homologous ferredoxin adrenodoxin (Adx) and loose restraints determined from paramagnetic broadening patterns in NMR spectra. Essentially complete 1H and 15N NMR resonance assignments have been made for the diamagnetic region of Tdxo (ca. 80% of the protein). A large five-stranded beta-sheet and a smaller two-stranded beta-sheet were identified, along with three alpha-helices. A high degree of structural homology was observed between Tdx and two other ferredoxins with sequence and functional homology to Tdx for which structures have been determined, Adx and putidaredoxin (Pdx), a homologous Pseudomonas protein. 1H/2H exchange rates for Tdx backbone NH groups were measured for both oxidation states and are rationalized in the context of the Tdx structure. In particular, an argument is made for the importance of the residue following the third ligand of the metal cluster (Arg49 in Tdx, His49 in Pdx, His56 in Adx) in modulating protein dynamics as a function of oxidation state. Some differences between Tdx and Pdx are detected by UV-visible spectroscopy, and structural differences at the C-terminal region were also observed. Tdx exhibits only 2% of the activity of Pdx in turnover assays performed using the reconstituted camphor hydroxylase system of which Pdx is the natural component.  相似文献   

9.
10.
The [2Fe-2S] ferredoxin produced in the heterocyst cells of Anabaena 7120 plays a key role in nitrogen fixation, where it serves as an electron acceptor from various sources and an electron donor to nitrogenase. Crystals of recombinant heterocyst ferredoxin, coded for by the fdx H gene from Anabaena 7120 and overproduced in Escherichia coli, have been grown from ammonium sulfate solutions and are suitable for high resolution X-ray crystallographic analysis. They belong to the hexagonal space group P6(1) or P6(5) with unit cell dimensions of a = b = 44.2 A and c = 80.6 A. The crystals contain one molecule per asymmetric unit and diffract to a nominal resolution of 1.6 A. The molecular structure of this heterocyst ferredoxin is of special interest in that 4 of the 22 amino acid positions thought to be absolutely conserved in nonhalophilic ferredoxins are different and, based on amino acid sequence alignments, three of these positions are located in the metal-cluster binding loop. Consequently, a high-resolution X-ray analysis of this [2Fe-2S] ferredoxin, and subsequent three-dimensional comparisons with other known ferredoxin models, will provide new insight into structure/function relationships for this class of redox proteins.  相似文献   

11.
The nucleotide sequence of a region located downstream of the nifB gene, both in the cyanobacterium Anabaena sp. strain PCC 7120 and in Rhizobium meliloti, has been determined. This region contains a gene (fdxN) whose predicted polypeptide product strongly resembles typical bacterial ferredoxins. Cyanobacteria have not previously been shown to contain bacterial-type ferredoxins. The presence of this gene suggests that nitrogen-fixing cyanobacteria have at least four distinct ferredoxins.  相似文献   

12.
Summary All the backbone 1H and 15N magnetic resonances (except for Pro residues) of the GDP-bound form of a truncated human c-Ha-ras proto-oncogene product (171 amino acid residues, the Ras protein) were assigned by 15N-edited two-dimensional NMR experiments on selectively 15N-labeled Ras proteins in combination with three-dimensional NMR experiments on the uniformly 15N-labeled protein. The sequence-specific assignments were made on the basis of the nuclear Overhauser effect (NOE) connectivities of amide protons with preceding amide and/or Cprotons. In addition to sequential NOEs, vicinal spin coupling constants for amide protons and C protons and deuterium exchange rates of amide protons were used to characterize the secondary structure of the GDP-bound Ras protein; six strands and five helices were identified and the topology of these elements was determined. The secondary structure of the Ras protein in solution was mainly consistent with that in crystal as determined by X-ray analyses. The deuterium exchange rates of amide protons were examined to elucidate the dynamic properties of the secondary structure elements of the Ras protein in solution. In solution, the -sheet structure in the Ras protein is rigid, while the second helix (A66-R73) is much more flexible, and the first and fifth helices (S17-124 and V152-L171) are more rigid than other helices. Secondary structure elements at or near the ends of the effector-region loop were found to be much more flexible in solution than in the crystalline state.  相似文献   

13.
Summary Sequence-specific 1H and 15N resonance assignments have been made for 137 of the 146 nonprolyl residues in oxidized Desulfovibrio desulfuricans [Essex 6] flavodoxin. Assignments were obtained by a concerted analysis of the heteronuclear three-dimensional 1H-15N NOESY-HMQC and TOCSY-HMQC data sets, recorded on uniformly 15N-enriched protein at 300 K. Numerous side-chain resonances have been partially or fully assigned. Residues with overlapping 1HN chemical shifts were resolved by a three-dimensional 1H-15N HMQC-NOESY-HMQC spectrum. Medium-and long-range NOEs, 3JNH coupling constants, and 1HN exchange data indicate a secondary structure consisting of five parallel -strands and four -helices with a topology similar to that of Desulfovibrio vulgaris [Hidenborough] flavodoxin. Prolines at positions 106 and 134, which are not conserved in D. vulgaris flavodoxin, contort the two C-terminal -helices.Abbreviations CSI chemical shift index - DQF-COSY double-quantum-filtered correlation spectroscopy - DIPSI decoupling in the presence of scalar interactions - FMN flavin mononucleotide - GARP globally optimized alternating phase rectangular pulse - HMQC heteronuclear multiple-quantum coherence - HSQC heteronuclear single-quantum coherence - NOE nuclear Overhauser effect - NOESY nuclear Overhauser enhancement spectroscopy - TOCSY total correlation spectroscopy - TPPI time-proportional phase increments - TSP 3-(trimethylsilyl)propionic-2,2,3,3-d 4 acid, sodium salt  相似文献   

14.
The 1H resonances of the high-potential [4Fe-4S]2+ ferredoxin from Chromatium vinosum have been assigned through conventional sequential methodology applied to 2D NMR spectra. Almost 80% of the residues were identified using standard 2D COSY, HOHAHA, and NOESY pulse sequences. These residues correspond to four segments of the primary structure that do not interact strongly with the iron-sulfur cluster. A minor correction to the amino acid sequence is strongly suggested by these NMR data. Additional protons more sensitive to the proximity of the cluster were assigned by a combination of NOESY experiments with fast repetition rates and short mixing times and of HOHAHA spectra recorded with reduced spin-lock duration aimed at compensating for the short relaxation rates. Hence, the contributions of 79 residues out of 85 were identified in NMR spectra, among which the assignments of 64 residues were completed. Even the fastest relaxing protons, like those of the cysteine ligands, could be correlated, partly because the strong hyperfine shifts isolate them from the crowded diamagnetic region. However, other protons, in particular those involved in NH-S hydrogen bonds with the iron-sulfur cluster, were more difficult to identify, most probably because their relatively broad signals overlapped with those of protons not or less perturbed by the active site. The availability of the major part of the 1H NMR assignments has enabled the detection and identification of many interresidue NOESY cross peaks. These data are in full agreement with the elements of secondary structure previously revealed by X-ray crystallographic analysis of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
A second nitrogen fixation (nif) operon in the cyanobacterium (blue-green alga) Anabaena (Nostoc) sp. strain PCC 7120 has been identified and sequenced. It is located just upstream of the nifHDK operon and consists of four genes in the order nifB, fdxN, nifS, and nifU. The three nif genes were identified on the basis of their similarity with the corresponding genes from other diazotrophs. The fourth gene, fdxN, codes for a bacterial type ferredoxin (Mulligan, M. E., Buikema, W. J., and Haselkorn, R. (1988) J. Bacteriol. 167, 4406-4410). The four genes are probably transcribed as a single operon, but are expressed at a lower level than the nifHDK operon, and only after a developmentally induced DNA rearrangement occurs that excises a 55-kilobase pair element from within the fdxN gene (Golden, J. W., Mulligan, M. E., and Haselkorn, R. (1987) Nature 327, 526-529; Golden, J. W., Carrasco, C. D., Mulligan, M. E., Schneider, G. J., and Haselkorn, R. (1988) J. Bacteriol. 170, 5034-5041). The promoter for the nifB operon was located by primer extension. Comparison of the nifB 5'-flanking sequence with the nifH 5'-flanking sequence did not reveal any consensus base pairs that would define a nif promoter for Anabaena. The operon contains two instances of 7-base pair directly repeated sequences: seven copies of the repeated sequence are found between the nifB and fdxN genes and six copies are found between the nifS and nifU genes. The function of these repeats is unknown.  相似文献   

17.
Staphylococcal nuclease H124L is a recombinant protein produced in Escherichia coli whose sequence is identical with that of the nuclease produced by the V8 variant of Staphylococcus aureus. The enzyme-metal ion activator-nucleotide inhibitor ternary complex, nuclease H124L-thymidine 3',5'-bisphosphate-Ca2+, was investigated by two-dimensional (2D) NMR techniques. Efficient overproduction of the enzyme facilitated the production of random fractionally deuterated protein, which proved essential for detailed NMR analysis. 1H NMR spin systems were analyzed by conventional 2D 1H[1H] methods: COSY, relayed COSY, HOHAHA, and NOESY. Assignments obtained by 1H NMR experiments were confirmed and extended by 1H-13C and 1H-15N heteronuclear NMR experiments [Wang, J., Hinck, A. P., Loh, S. N., & Markley, J. L. (1990) Biochemistry (following paper in this issue)]. Spectra of the ternary complexes prepared with protein at natural abundance and at 50% random fractional deuteration provided the information needed for sequence-specific assignments of 121 of the 149 amino acid residues. Short- and intermediate-range NOE connectivities allowed the determination of secondary structural features of the ternary complex: three alpha-helical domains and three antiparallel beta-pleated sheets with several reverse turns. A number of nonsequential long-range HN-HN and H alpha-HN connectivities revealed additional information about the spatial arrangement of these secondary structural elements. The solution structure of this ternary complex shows a close correspondence to the crystal structure of the nuclease wt-thymidine 3',5'-bisphosphate-Ca2+ ternary complex [Cotton, F. A., Hazen, E. E., & Legg, M. J. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 2551-2555].  相似文献   

18.
The complete sequence-specific assignments of resonances in the1H-NMR spectrum of huwentoxin-I from the Chinese bird spider,Selenocosmia huwena, is described. A combination of two-dimensional NMR experiments including 2D-COSY, 2D-NOESY, and 2D-TOCSY has been employed on samples of the toxin dissolved in D2O and in H2O for assignment purposes. Protons belonging to spin systems for each of the 33 amino acids were identified. The sequence-specific assignments were facilitated by the identification ofd αN connectivities on the fingerprint regions of the COSY and NOESY spectra and were supported by the identification ofd NN andd αN connectivities in the TOCSY and NOESY spectra. These studies provide a basis for the determination of the solution-phase conformation of this toxin.  相似文献   

19.
20.
J Orban  P Alexander  P Bryan 《Biochemistry》1992,31(14):3604-3611
Two-dimensional NMR spectroscopy has been used to obtain sequence-specific 1H NMR assignments for the IgG-binding B2-domain of streptococcal protein G. Secondary structure elements were identified from analysis of characteristic backbone-backbone NOE patterns and amide proton exchange data. The B2-domain contains a four-stranded beta-sheet region in which the two inner strands form a parallel beta-sheet with each other and antiparallel beta-sheets with the outer strands. The outer strands are connected via a 16-residue alpha-helix and short loops on both ends of the helix. The alpha-helix and beta-sheet structures contain well-defined polar and apolar sides, and numerous long-range NOEs from the apolar helix to apolar sheet regions were used to derive a model for the global fold of the B2-domain. While the overall fold is similar to that obtained for B1-type domains, differences in amide proton exchange rates and hydrophobic packing are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号