首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In thyroid cells (rat or hog), actin has been detected by immunofluorescence with an antiactin antibody and, in electron microscopy by decoration “in situ” with heavy meromyosin. The antibody as the heavy meromyosin method have shown that actin microfilaments are especially localized at the apical pole of the cells, in a region where thin filaments are usually observed by conventional methods of electron microscopy. These microfilaments are attached to the apical membrane at the ends of the microvilli and form dense bundles at their cores. They are polarized towards the interior of the cell. Decorated filaments are also organized in a clear network, parallel to the apical membrane; they are associated with microvillar bundles, but also with small apical vesicles and lateral membranes, in tight or gap junctions.  相似文献   

2.
Isolation and characterization of actin from Entamoeba histolytica   总被引:6,自引:0,他引:6  
Actin has been identified and purified partially from trophozoites of Entamoeba histolytica HMI-IMSS by a procedure that minimizes proteolysis. In cellular extracts, Entamoeba actin would copolymerize with muscle actin, but would not bind to DNase I or form microfilaments. Fractionation of the extracts by DEAE-cellulose and Sephadex G-150 chromatography yielded a purified actin that would copolymerize with rabbit skeletal muscle actin or polymerize alone into long filaments at 24 degrees C upon addition of 100 mM KC1 and 2 mM MgCl2. These filaments are not cold-stable and will depolymerize at 4 degrees C in 1 or 2 h. Entamoeba actin filaments bind phallotoxin with the same affinity as muscle actin and decorate with rabbit skeletal muscle heavy meromyosin. Entamoeba actin filaments activate the Mg2+ ATPase of heavy meromyosin to the same Vmax as muscle actin, but the Kapp is 2.8 times higher. Entamoeba actin is a single species with a slightly higher molecular weight than muscle actin (45,000) and a more acidic pI (5.4). The purified actin does not bind to DNase I, produce inhibition of the enzymatic activity, or block the binding of muscle actin. Comparison of the peptides obtained by limit digest with protease V8 from Staphylococcus aureus shows sequences with common mobility between alpha-actin and Entamoeba actin, but additional peptides are present which may account for the different properties of the Entamoeba actin. Finally, in vitro translation of mRNA from trophozoites produces a single polypeptide equivalent to the molecule purified from Entamoeba extracts.  相似文献   

3.
Tungsten is a widely used inhibitor of nitrate reductase, applied to diminish the nitric oxide levels in plants. It was recently shown that tungsten also has heavy metal attributes. Since information about the toxic effects of tungsten on actin is limited, and considering that actin microfilaments are involved in the entry of tungsten inside plant cells, the effects of tungsten on them were studied in Zea mays seedlings. Treatments with sodium tungstate for 3, 6, 12 or 24 h were performed on intact seedlings and seedlings with truncated roots. Afterwards, actin microfilaments in meristematic root and leaf tissues were stained with fluorescent phalloidin, and the specimens were examined by confocal laser scanning microscopy. While the actin microfilament network was well organized in untreated seedlings, in tungstate-treated ones it was disrupted in a time-dependent manner. In protodermal root cells, the effects of tungsten were stronger as cortical microfilaments were almost completely depolymerized and the intracellular ones appeared highly bundled. Fluorescence intensity measurements confirmed the above results. In the meristematic leaf tissue of intact seedlings, no depolymerization of actin microfilaments was noticed. However, when root tips were severed prior to tungstate application, both cortical and endoplasmic actin networks of leaf cells were disrupted and bundled after 24 h of treatment. The differential response of root and leaf tissues to tungsten toxicity may be due to differential penetration and absorption, while the effects on actin microfilaments could not be attributed to the nitric oxide depletion by tungsten.  相似文献   

4.
The conformational elasticity of the actin cytoskeleton is essential for its versatile biological functions. Increasing evidence supports that the interplay between the structural and functional properties of actin filaments is finely regulated by actin-binding proteins; however, the underlying mechanisms and biological consequences are not completely understood. Previous studies showed that the binding of formins to the barbed end induces conformational transitions in actin filaments by making them more flexible through long range allosteric interactions. These conformational changes are accompanied by altered functional properties of the filaments. To get insight into the conformational regulation of formin-nucleated actin structures, in the present work we investigated in detail how binding partners of formin-generated actin structures, myosin and tropomyosin, affect the conformation of the formin-nucleated actin filaments using fluorescence spectroscopic approaches. Time-dependent fluorescence anisotropy and temperature-dependent Förster-type resonance energy transfer measurements revealed that heavy meromyosin, similarly to tropomyosin, restores the formin-induced effects and stabilizes the conformation of actin filaments. The stabilizing effect of heavy meromyosin is cooperative. The kinetic analysis revealed that despite the qualitatively similar effects of heavy meromyosin and tropomyosin on the conformational dynamics of actin filaments the mechanisms of the conformational transition are different for the two proteins. Heavy meromyosin stabilizes the formin-nucleated actin filaments in an apparently single step reaction upon binding, whereas the stabilization by tropomyosin occurs after complex formation. These observations support the idea that actin-binding proteins are key elements of the molecular mechanisms that regulate the conformational and functional diversity of actin filaments in living cells.  相似文献   

5.
The presence of actin filaments around mitochondria during vertebrate spermiogenesis was demonstrated by immunofluorescence and immuno-electron microscopy and by heavy meromyosin decoration. The presence of actin is supposed to be related to mitochondrial rearrangements occurring in the spermatid stage.  相似文献   

6.
Summary The ultrastructural organization of actin filaments was studied in the neurohypophysial system of the rat after heavy meromyosin (HMM) labeling. This structural pattern is characterized by (1) a straight arrangement of the filaments parallel to the axonal axis in the proximal nondilated parts of axons, (2) a central location within axonal dilatations, and (3) a higher concentration within axonal endings where the filaments form a complex three-dimensional network. The relationships of the filaments to other axonal structures and organelles was further studied by use of electron microscopic stereoscopy. The actin filaments frequently appear anchored to the axolemma with either polar arrangements of the arrowhead decoration (i) at structurally undifferentiated sites, and (ii) more particularly within perivascular endings, at sites with electron-dense thickenings. In all axonal divisions actin filaments are also found to bind to filamentous material surrounding the microtubules and to various organelles. Within the terminal portions of the axons actin filaments exhibit close relationships to neurosecretory granules and to the numerous smooth microvesicles found in this region. Such preferential relationships are particularly observed both in axon terminals and in pituicytes, with coated vesicles frequently binding actin filaments. In water-deprived rats, the concentration of actin filaments is conspicuously increased along the axons and more clearly in the axonal swellings and endings, where they form a more complex and interconnected network. These data are discussed in the light of a possible involvement of contractile proteins in the mechanisms of axonal transport and terminal release of neurosecretory products.  相似文献   

7.
The structure of acto-heavy meromyosin has been examined by electron microscopy. When heavy meromyosin is mixed with actin at ~ 2 mg/ml a gel is formed. At lower actin concentrations more ordered assemblies are formed in which the actin filaments are in “rafts” about 300 Å apart cross-linked by heavy meromyosin. These results indicate that in solution the two heads of a heavy meromyosin molecule can bind to different actin filaments.  相似文献   

8.
Electron microscopic evidence demonstrated that dimethyl sulfoxide (DMSO) induces formation of giant intranuclear microfilament bundles in the interphase nucleus of a cellular slime mold, Dictyostelium. These giant bundles are approximately giant bundles are approximately 3 micrometer long, 0.85 micrometer wide, and composed of microfilaments 6 nm in diameter. Studies in which glycerinated cells were used showed that these microfilaments bind rabbit skeletal muscle heavy meromyosin, forming typical decorated "arrowhead" structures, and that this binding can be reverted by Mg-adenosine triphosphate. These data verify that the intranuclear microfilaments are the contractile protein actin, and that DMSO affects intranuclear actin, inducing the formation of such giant bundles. The intranuclear actin bundles appear at any developmental stage in two different species of cellular slime molds after treatment with DMSO. The native form of the intranuclear actin molecules and their possible functions are discussed, and it is proposed that the contractile protein has essential functions in the cell nucleus.  相似文献   

9.
Heavy meromyosin (HMM) decoration of actin filaments was used to detect the polarity of microfilaments in interphase and cleaving rat kangaroo (PtK2) cells. Ethanol at -20 degrees C was used to make the cells permeable to HMM followed by tannic acid-glutaraldehyde fixation for electron microscopy. Uniform polarity of actin filaments was observed at cell junctions and central attachment plaques with the HMM arrowheads always pointing away from the junction or plaque. Stress fibers were banded in appearance with their component microfilaments exhibiting both parallel and antiparallel orientation with respect to one another. Identical banding of microfilament bundles was also seen in cleavage furrows with the same variation in filament polarity as found in stress fibers. Similarly banded fibers were not seen outside the cleavage furrow in mitotic cells. By the time that a mid-body was present, the actin filaments in the cleavage furrow were no longer in banded fibers. The alternating dark and light bands of both the stress fibers and cleavage furrow fibers are approximately equal in length, each measuring approximately 0.16 micrometer. Actin filaments were present in both bands, and individual decorated filaments could sometimes be traced through four band lengths. Undecorated filaments, 10 nm in diameter, could often be seen within the light bands. A model is proposed to explain the arrangement of filaments in stress fibers and cleavage furrows based on the striations observed with tannic acid and the polarity of the actin filaments.  相似文献   

10.
Cooperative interaction between myosin and actin filaments has been detected by a number of different methods, and has been suggested to have some role in force generation by the actomyosin motor. In this study, we observed the binding of myosin to actin filaments directly using fluorescence microscopy to analyze the mechanism of the cooperative interaction in more detail. For this purpose, we prepared fluorescently labeled heavy meromyosin (HMM) of rabbit skeletal muscle myosin and Dictyostelium myosin II. Both types of HMMs formed fluorescent clusters along actin filaments when added at substoichiometric amounts. Quantitative analysis of the fluorescence intensity of the HMM clusters revealed that there are two distinct types of cooperative binding. The stronger form was observed along Ca2+-actin filaments with substoichiometric amounts of bound phalloidin, in which the density of HMM molecules in the clusters was comparable to full decoration. The novel, weaker form was observed along Mg2+-actin filaments with and without stoichiometric amounts of phalloidin. HMM density in the clusters of the weaker form was several-fold lower than full decoration. The weak cooperative binding required sub-micromolar ATP, and did not occur in the absence of nucleotides or in the presence of ADP and ADP-Vi. The G680V mutant of Dictyostelium HMM, which over-occupies the ADP-Pi bound state in the presence of actin filaments and ATP, also formed clusters along Mg2+-actin filaments, suggesting that the weak cooperative binding of HMM to actin filaments occurs or initiates at an intermediate state of the actomyosin-ADP-Pi complex other than that attained by adding ADP-Vi.  相似文献   

11.
Studies were made of the ultracytochemical changes in the cell membrane and microfilaments of colonic epithelial cells during tumorigenesis induced by 1,2-dimethylhydrazine (DMH) in mice fed a high fat diet. The tumor cells showed reduced membrane ATPase activity and loss of contact with neighboring cells. Microfilaments in tumor cells showed an irregular intensity of fluorescent staining. Their actin filaments bound with heavy meromyosin (HMM) had an arrowhead pattern as in normal cells, but these complexes were shortened and detached from the cell membrane. The arrowheads were directed toward the interior in the terminal web of tumor cells. Microfilaments with long rootlets extended to the apical surface of some tumor cells. These results indicate that during development of colonic tumors, the structures of the cell membrane and microfilaments of the cells changes.  相似文献   

12.
Cytoplasmic microfilaments are regular constituents of the cortical cytoplasm of rat mast cells. Heavy meromyosin binding to the microfilaments in glycerinated mast cells indicates that they represent actin filaments. Many of the actin filaments were found to be attached to spots of increased density of the plasma membrane. The actin filaments, possibly as part of an actomyosin system, may be involved in exocytosis of mast cell granules.  相似文献   

13.
The effect of calcium ions on conformational changes of F-actin initiated by decoration of thin filaments with phosphorylated and dephosphorylated heavy meromyosin from smooth muscles was studied by fluorescence polarization spectroscopy. It is shown that heavy meromyosin with phosphorylated regulatory light chains (pHMM) promotes structural changes of F-actin which are typical for the "strong" binding of actin to the myosin heads. Heavy meromyosin with dephosphorylated regulatory light chains (dpHMM) causes conformational changes of F-actin which are typical for the "weak" binding of actin to the myosin heads. The presence of calcium enhances the pHMM effect and attenuates the dpHMM effect. We propose that a Ca2+-dependent mechanism exists in smooth muscles which modulates the regulation of actin--myosin interaction occurring via phosphorylation of myosin regulatory light chains.  相似文献   

14.
Summary Treatment of cultured goldfish xanthophores by hormone (ACTH) or c-AMP induces not only pigment dispersion, but subsequent outgrowth of processes, and pigment translocation into these processes. These latter effects are shown to proceed as follows: First the edge of the cytoplasmic lamellae takes on a scalloped contour with numerous protrusions. These presumably serve as nucleation centers where short microfilament bundles are assembled, Later, the microfilament bundles elongate (grow), often resulting in an extension of the protrusions to become filopodia while the proximal end of the microfilaments penetrates into the thicker portion of the cellular process which now houses the pigment, i.e., the carotenoid droplets. Carotenoid droplets appear to migrate along the microfilament bundles, or cytoplasmic channels associated with them, into the filopodia. Finally, some of the filopodia become broader, thicker and laden with carotenoid droplets and are then recognized by light microscopy as pigmented cellular processes. The microfilaments have been shown to be actin filaments by their thickness, the size of their subunits, and decoration by heavy meromyosin. Evidence is presented which suggests that the growth of these actin filaments may come about by recruitment from short F-actin strands found in random orientation in adjacent areas.  相似文献   

15.
Polymerization of Actin from Maize Pollen   总被引:3,自引:0,他引:3       下载免费PDF全文
Yen LF  Liu X  Cai S 《Plant physiology》1995,107(1):73-76
Here we describe the in vitro polymerization of actin from maize (Zea mays) pollen. The purified actin from maize pollen reported in our previous paper (X. Liu, L.F. Yen [1992] Plant Physiol 99: 1151-1155) is biologically active. In the presence of ATP, KCl, and MgCl2 the purified pollen actin polymerized into filaments. During polymerization the spectra of absorbance at 232 nm increased gradually. Polymerization of pollen actin was evidently accompanied by an increase in viscosity of the pollen actin solution. Also, the specific viscosity of pollen F-actin increased in a concentration-dependent manner. The ultraviolet difference spectrum of pollen actin is very similar to that of rabbit muscle actin. The activity of myosin ATPase from rabbit muscle was activated 7-fold by the polymerized pollen actin (F-actin). The actin filaments were visualized under the electron microscope as doubly wound strands of 7 nm diameter. If cytochalasin B was added before staining, no actin filaments were observed. When actin filaments were treated with rabbit heavy meromyosin, the actin filaments were decorated with an arrowhead structure. These results imply that there is much similarity between pollen and muscle actin.  相似文献   

16.
Fluorescein-labeled heavy meromyosin subfragment-1 (F-S-1) has been purified by ion exchange chromatography and characterized in terms of its ability to bind specifically to actin. F-S-1 activates the Mg++-adenosine triphosphatase activity of rabbit skeletal muscle actin and decorates actin as shown by negative stains and thin sections of rabbit actin and rat embryo cell microfilament bundles, respectively. Binding of F-S-1 to cellular structures is prevented by pyrophosphate and by competition with excess unlabeled S-1. The F-S-1 is used in light microscope studies to determine the distribution of actin-containing structures in wnterphase and mitotic rat embryo and rat kangaroo cells. Interphase cells display the familiar pattern of fluorescent stress fibers. Chromosome-to-pole fibers are fluorescent in mitotic cells. The glycerol extraction procedures employed provide an opportunity to examine cells prepared in an identical manner by light and electron microscopy. The latter technique reveals that actin-like microfilaments are identifiable in spindles of glycerinated cells before and after addition of S-1 or HMM. In some cases, microfilaments appear to be closely associated with spindle microtubles. Comparison of the light and electron microscope results aids in the evaluation of the fluorescent myosin fragment technique and provides further evidence for possible structural and functional roles of actin in the mitotic apparatus.  相似文献   

17.
Structural differences between various myosins were investigated by means of antibodies to heavy meromyosin, a tryptic subfragment of myosin. Heavy meromyosin was purified from rabbit white skeletal and from pig and human cardiac muscles by gel filtration, and antisera were produced in guinea pigs. Analyses, carried out with the quantitative micro-complement fixation technique, indicated that the antibodies were specific to heavy meromyosin and myosin and not to other contractile proteins. For each muscle type, the corresponding intact myosin reacted, and the degree of dixation was always lower than with heavy meromyosin (50 and 70% fixation respectively). This vertical shift was the same for the three muscle types, indicating that the heavy meromyosin represent corresponding fragments of the myosin molecule from one muscle to the other. Antisera to pig or human cardiac heavy meromyosin clearly distinguished antigens (heavy meromyosins, myosins, or crude extracts) from the ventricles of various heterologous species. Relative to pig, the immunological distances were 50 for the rabbit, 73 for the rat and greater than 100 for human and mice. Relative to human, these values were 20 for the rat, 60 for the rabbit, 72 for the pig. These data provide direct evidence that mammalian cardiac myosin is species-specific.  相似文献   

18.
In this study isolated cortical regions of both penetrated and nonpenetrated Syrian hamster eggs were examined in whole mounts and platinum replicas of detergent-extracted cortical patches. Two types of cytoskeletal organization were observed in the egg cortex: Loose networks (LN regions) with integrated localized dense networks (LDN regions). Decoration with heavy meromyosin and labeling with antiactin/protein G gold both indicate that the cortical cytoskeleton consists mainly of a LN of actin microfilaments and several types of nonactin filaments, whereas LDN regions dispersed within the LN were comprised of nonactin filaments. Cortical patches and replicas of eggs incubated with sperm for 10-15 min provide evidence that cortical microfilaments may be intimately associated with penetrating spermatozoa. The results of this investigation provide the first high resolution view of the cortical cytoskeletal domain of a mammalian egg and suggest that actin microfilaments might play a role in sperm penetration of the egg cortex.  相似文献   

19.
Actin from Saccharomyces cerevisiae.   总被引:17,自引:1,他引:16       下载免费PDF全文
Inhibition of DNase I activity has been used as an assay to purify actin from Saccharomyces cerevisiae (yeast actin). The final fraction, obtained after a 300-fold purification, is approximately 97% pure as judged by sodium dodecyl sulfate-gel electrophoresis. Like rabbit skeletal muscle actin, yeast actin has a molecular weight of about 43,000, forms 7-nm-diameter filaments when polymerization is induced by KCl or Mg2+, and can be decorated with a proteolytic fragment of muscle myosin (heavy meromyosin). Although heavy meromyosin ATPase activity is stimulated by rabbit muscle and yeast actins to approximately the same Vmax (2 mmol of Pi per min per mumol of heavy meromyosin), half-maximal activation (Kapp) is obtained with 14 micro M muscle actin, but requires approximately 135 micro M yeast actin. This difference suggests a low affinity of yeast actin for muscle myosin. Yeast and muscle filamentous actin respond similarly to cytochalasin and phalloidin, although the drugs have no effect on S. cerevisiae cell growth.  相似文献   

20.
Contractile activity of myosin II in smooth muscle and non-muscle cells requires phosphorylation of myosin by myosin light chain kinase. In addition, these cells have the potential for regulation at the thin filament level by caldesmon and calponin, both of which bind calmodulin. We have investigated this regulation using in vitro motility assays. Caldesmon completely inhibited the movement of actin filaments by either phosphorylated smooth muscle myosin or rabbit skeletal muscle heavy meromyosin. The amount of caldesmon required for inhibition was decreased when tropomyosin is present. Similarly, calponin binding to actin resulted in inhibition of actin filament movement by both smooth muscle myosin and skeletal muscle heavy meromyosin. Tropomyosin had no effect on the amount of calponin needed for inhibition. High concentrations of calmodulin (10 microM) in the presence of calcium completely reversed the inhibition. The nature of the inhibition by the two proteins was markedly different. Increasing caldesmon concentrations resulted in graded inhibition of the movement of actin filaments until complete inhibition of movement was obtained. Calponin inhibited actin sliding in a more "all or none" fashion. As the calponin concentration was increased the number of actin filaments moving was markedly decreased, but the velocity of movement remained near control values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号