首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
粉尘螨消化系统的形态学观察   总被引:1,自引:0,他引:1  
光镜下观察了粉尘螨Dermatophagoides farinae消化系统结构,其组成包括:口前腔、前肠、中肠、后肠、肛门和唾液腺。口前腔由颚体围绕而成;前肠包括一个肌肉的咽和食道,食道从脑中穿过;中肠分为前中肠(包括一对盲肠)和后中肠,中肠的上皮细胞呈现多种形态; 后肠包括相对大的结肠和狭窄的直肠;消化腺为不规则形,位于脑前方。本文阐述了消化道的分支情况、显微结构及细胞形态。  相似文献   

2.
Proteinases and peptidases from the intestinal tract of fifth-instar larvae of Heliothis (= Helicoverpa) zea (Boddie) (Lepidoptera:Noctuidae) were characterized based on their substrate specificity, tissue of origin, and pH optimum. Activity corresponding to trypsin, chymotrypsin, carboxypeptidases A and B, and leucine aminopeptidase was detected in regurgitated fluids, midgut contents, and midgut wall. High levels of proteinase activity were detected in whole midgut homogenates, with much lower levels being observed in foregut and salivary gland homogenates. In addition, enzyme levels were determined from midgut lumen contents, midgut wall homogenates, and regurgitated fluids. Proteinase activities were highest in the regurgitated fluids and midgut lumen contents, with the exception of leucine aminopeptidase activity, which was found primarily in the midgut wall. Larvae fed their natural diet of soybean leaves had digestive proteinase levels that were similar to those of larvae fed artificial diet. No major differences in midgut proteinase activity were detected between larvae reared under axenic or xenic conditions, indicating that the larvae are capable of digesting proteins in the absence of gut microorganisms. The effect of pH on the activity of each proteinase was studied. The pH optima for the major proteinases were determined to be pH 8.0-8.5 for trypsin, when tosyl-L-arginine methyl ester was used as the substrate; and pH 7.5-8.0 for chymotrypsin, when benzoyl-L-tyrosine ethyl ester was used as the substrate.  相似文献   

3.
Larval midgut extracts from the noctuid Sesamia nonagrioides Lef. were assayed for protease activity. Total proteolytic activity, as measured by azocasein hydrolysis, showed a pH optimum in the range 10.0 to 11.5, suggesting a digestive system based largely on serine-like proteases. The ability of midgut extracts to hydrolyze specific synthetic substrates, the elucidation of the pH at which maximal hydrolysis occurs, and their sensitivity to protease inhibitors confirmed the presence of the serine endoproteases: trypsin, chymotrypsin, and elastase; and the exopeptidases: carboxypeptidase A, carboxypeptidase B, and leucine aminopeptidase. The distribution of these digestive proteases along the gut sections and among the different midgut regions was examined. All types of endoproteases and exopeptidases were mainly located in the midgut, with less than 5% of the activity in the foregut and hindgut. When the two halves of the midgut were compared, all proteolytic activities were higher in the anterior portion of the midgut. Trypsin, chymotrypsin, elastase, and carboxypeptidase B activities were mainly located in the endoperitrophic space of the midgut, with some activity in the ectoperitrophic space, whereas aminopeptidase and carboxypeptidase A activities were preferentially located in the midgut epithelium. © 1996 Wiley-Liss, Inc.  相似文献   

4.
本文比较了不同发育阶段黑水虻Hermetia illucens消化道的形态学差异,掌握了幼虫消化系统的组织学特征。利用体视镜观察黑水虻5龄幼虫、预蛹及成虫的消化道形态,利用光学显微镜和扫描电镜观察幼虫消化道各段(前肠、中肠、后肠)的显微及超微结构。结果表明:黑水虻幼虫及预蛹的消化道均由前肠(食道和前胃)、中肠及后肠组成,从幼虫到成虫,消化道的长度不断缩短。与幼虫和预蛹相比,成虫消化道形态变化明显,前胃消失,出现了嗉囊及胃盲囊,中肠进一步缩短,后肠分化为回肠、结肠和直肠。组织学观察结果显示,幼虫的唾液腺开口于口腔,由膨大的管状腺体和腺管组成。食道由特化为角质刺突的内膜层及发达的肌层组成,其末端延伸至前胃。前胃膨大为球状,包括三层组织结构。根据上皮细胞形态的差异,中肠可分为四个区段。后肠薄,肠腔内褶丰富,肠壁可见数量较多的杆状细菌。马氏管开口于中、后肠交界处,包括4支盲管,管内壁密布微绒毛。黑水虻消化道形态随发育阶段的变化,反映了各阶段摄食及消化生理的差异。幼虫消化道各段具有各自典型的组织学特征,其前、中、后肠可能分别承担了食物接纳与初步消化、消化与吸收以及重吸收功能。本研究结果为进一步了...  相似文献   

5.
The wheat bug Eurygaster maura (Hemiptera: Scutelleridae) is a potential pest of wheat and barley in Iran and other countries. Two major digestive enzymes of this insect, α‐d ‐glucosidase and β‐d ‐glucosidase, have been investigated. The midgut has four distinct regions including the first ventriculus (V1), second ventriculus (V2), third ventriculus (V3) and fourth ventriculus (V4). The study showed that the first three regions of the wheat bug midgut were acidic (pH 5.5–6), the fourth region of the midgut and hindgut pH were slightly acidic (pH 6.5–6.9) and the salivary gland (labial gland) pH was determined to be somewhat acidic (pH 5–5.5). Enzyme assay showed that α‐ and β‐glucosidase activity is present in both midgut and salivary glands of adult E. maura. The specific activities of midgut α‐ and β‐glucosidase were 11.2 and 10.8 mU/mg protein, respectively. The specific activities of these enzymes in salivary glands were 3.06 and 2.73 mU/mg protein, respectively. Optimum temperature and pH values for glucosidases were determined to be 30–35°C and 5, respectively. Glucosidases of the midgut were more stable than salivary glucosidases at 35°C. Evaluating enzymatic kinetic parameters showed that glucosidases of the midgut had more affinity as well as more velocity than that of salivary glands.  相似文献   

6.
1. Lysozyme is absent from tissues other than the midgut in the drug-feeding larvae of Musca domestica (Diptera, Cyclorrhapha, Muscidae) and in the fruit-feeding larvae of Anastrepha fraterculus (Diptera, Cyclorrhapha, Tephritidae), whereas in the detritus-feeding larvae of Trichosia pubescens (Diptera, Nematocera, Sciaridae) lysozyme is only found in the hemolymph and in the fat body. 2. A. fraterculus larvae have a midgut region with a luminal pH of 3.4, and display a pepstatin-inhibited acid proteolytic activity which has a spec. act. (7.2 U/mg protein) similar to that of M. domestica. 3. The midgut lysozyme from M. domestica and A. fraterculus is more active (high ionic strength) at pH 3.5 than at pH 6.0, the contrary being true for a midgut chitinase. 4. The results suggest that the adaptations to digest bacteria in insects are similar to those in vertebrate foregut fermenters, and that these characteristics were probably present in the Cyclorrhapha ancestor, but not in the Diptera ancestor.  相似文献   

7.
Activity of α-amylase was revealed in the midgut and salivary glands of the wheat and barley pentatomid pest, A. acuminata. The activity was determined in salivary gland more than those in midgut. Optimal activity of the enzyme occurred at 40°C. Optimal pH activity in salivary gland (pH = 6) was more than those in the midgut (pH = 4.5). pH stability analysis of the enzyme showed that the enzyme is more stable at slightly acidic pHs than those at acidic and alkaline pHs. However, α-amylase is more stable at acidic pH in long period of time. Temperature stability analysis determined the enzyme was remarkably active over a broad range of temperature (5–40°C). α-Amylase activity was decreased after addition of MgCl2, Tris, Triton X-100, CuSO4, SDS, urea and CaCl2. The salts NaCl and KCl increased the enzyme activity from midgut and salivary glands. Zymogram analysis of midgut and salivary gland extract showed at least two bands of amylase activity in the midgut and salivary glands.  相似文献   

8.
Proteolytic activity in the digestive system of the pistachio green stink bug, Brachynema germari, was investigated. The maximum total proteolytic activity in the midgut extract was observed at pH 5, suggesting the presence of cysteine proteases. Hydrolyzing the specific substrates for cysteine proteases revealed the presence of cathepsin B and cathepsin L activities in the midgut extract. The presence of cysteine proteases was confirmed by their noticeable inhibition and activation due to specific inhibitors and activators, respectively. The significant inhibition of chymotryptic activity by the inhibitors showed the presence of chymotrypsin in the midgut. No considerable tryptic activity was observed in the midgut extract. There was no detectable total proteolytic activity in the salivary gland extract. Tryptic activity of the salivary gland extract was also inhibited by the specific inhibitors. The substrates for cysteine proteases were also slightly hydrolyzed by the salivary gland extract. Zymogram analysis showed at least one distinct band due to cysteine protease activity in the midgut extract, and the cysteine protease inhibitor caused almost complete disappearance of the band. Cathepsin B and L activities were mainly detected in midgut divisions m1 and m3, respectively, and maximum chymotrypsin and trypsin activities were observed in m3. In general, the results revealed the significant presence of cathepsin B, cathepsin L, and chymotrypsin proteases in the midgut extract. The major proteolytic activity in the salivary glands seems to be conducted by trypsin-like proteases.  相似文献   

9.
We describe a phospholipase A2 (PLA2) associated with the salivary glands of tobacco hornworms, Manduca sexta. This enzyme is able to hydrolyze arachidonic acid from the sn-2 position of PLs. Addition of the calcium chelator, EGTA, or calcium, to the Tris reaction buffer impaired the PLA2 activity, from which we infer the enzyme requires very low concentrations of calcium or perhaps other ions for optimal activity. PLA2 activity was sensitive to protein concentration (highest activity at 25 microg protein per microl), reaction time (optimal at 30 min), buffer pH (optimal at pH 8-10), and reaction temperature (optimal range 18-38 degrees C). The salivary gland PLA2 was sensitive to the site-specific inhibitor, oleyloxyethylphosphorylcholine and stable to freezing at -80 degrees C, but not -20 degrees C. The biological significance of this enzyme may relate to hydrolysis of fatty acid moieties from dietary PLs for absorption by midgut epithelia. This salivary gland enzyme may also be responsible for killing food-borne bacteria.  相似文献   

10.
Lysozyme (E.C. 3.2.1.17) activity is reported from the malaria vector Anopheles stephensi. The activity was detected in the salivary gland and midgut using bacteriolytic radial diffusion assay. Spectrophotometric analysis indicated that higher level of lysozyme activity was maintained in both midgut and salivary gland tissues. The activity reached the highest level in 4-8 days old mosquitoes. Genomic PCR amplification revealed the presence of at least two putative lysozyme genes in the mosquito genome. Preliminary analysis of one of the 413 bp genomic fragments showed 56% identity to the lysozyme of mosquito A. gambiae. However, the nature and origin of the putative cloned lysozyme gene remains elusive.  相似文献   

11.
Insect c‐type lysozymes are antibacterial proteins that are synthesized in different organs with high activity against Gram‐positive bacteria. Because lysozymes possess muramidase activity, they also play an important role in the digestion of bacteria in Diptera. Triatomines express lysozyme‐encoding genes constitutively in the anterior region (cardia and stomach) of the midgut and the fat body after injection of bacteria into the haemocoel. The present study describes the overexpression of the Triatoma brasiliensis lysozyme 1 (lys1) in Escherichia coli. Recombinant T. brasiliensis Lys1 (TbLys1) is purified after solubilization of the inclusion bodies. The protein refolds successfully, showing muramidase activity against Micrococcus lysodeikticus lyophilized cells, after enterokinase cleavage of its thioredoxin fusion protein. In in‐gel zymograms and turbidimetric liquid assays TbLys1 is broadly active under alkaline and acid conditions, indicating a possible digestive function in the two physiologically different midgut regions of the bug: the stomach and small intestine. Muramidase activity is shown in the stomach and small intestine content of unfed bugs and bugs at different days after feeding, respectively. Western blot analysis identifies TbLys1 as lysozyme.  相似文献   

12.
A morphological study of the midgut and salivary glands of second and third instars of Gasterophilus intestinalis (De Geer) (Diptera: Oestridae) was conducted by light, scanning and transmission electron microscopy. The midgut is anteriorly delimited by a proventriculus, without caeca, and is composed of posterior foregut and anterior midgut tissue from which a double‐layered peritrophic matrix is produced. The midgut can be divided into anterior, median and posterior regions on the basis of the structural and physiological variations of the columnar cells which occur along its length. Two other types of cell were identified: regenerative cells scattered throughout the columnar cells, and, more rarely, endocrine cells of two structural types (closed and open). Different secretion mechanisms (merocrine, apocrine and microapocrine) occur along the midgut epithelium. Abundant microorganisms are observed in the endoperitrophic space of the anterior midgut. The origin and nature of these microorganisms remain unknown. No structural differences are observed between the second and third instar midguts. The salivary glands of G. intestinalis second and third instars consist of a pair of elongated tubular structures connected to efferent ducts which unite to form a single deferent duct linked dorsally to the pharynx. Several intermediate cells, without cuticle, make the junction with the salivary gland epithelium layer. Cytological characteristics of the gland epithelial cells demonstrate high cellular activity and some structural variations are noticed between the two larval stages.  相似文献   

13.
The activity of lysozyme, the enzyme that hydrolyzes peptidoglycan in G+ bacterial cell walls, was detected in whole mite extracts (WME) and in spent growth medium extracts (SGME) of 14 species of synanthropic mites (Acari: Acaridida). The adaptation of lysozyme for digestive activity and bacteriophagy was based on: (i) high lysozyme activity in SGME, and (ii) the correlation of maximum lysozyme activity at acidic pH values, corresponding to pH in the ventriculus and caeca. We show that the digestion of fluorescein-labeled Micrococcus lysodeikticus cells began in ventriculus and continued during the passage of a food bolus through the gut. The fluorescein was absorbed by midgut cells and penetrated to parenchymal tissues. Eight species showed a higher rate of population growth on a M. lysodeikticus diet than on a control diet. The lysozyme activity in SGME was positively correlated to the standardized rate (r s) of population growth, although no correlation was found between r s and lysozyme activity in WME. The lysozyme activity in WME was negatively correlated to that in SGME. The highest activity of digestive lysozyme was found in Lepidoglyphus destructor, Chortoglyphus arcuatus and Dermatophagoides farinae. All of these findings indicate that lysozyme in acaridid mites possesses both defensive and digestive functions. The enzymatic properties of mite lysozyme are similar to those of the lysozymes present in the ruminant stomach and in the insect midgut.  相似文献   

14.
15.
Abstract. Species of Helicoradomenia are constantly found at hydrothermal vent sites of the eastern and western Pacific Ocean. The digestive tract of 2 species of the genus was investigated with special focus on the ultrastructure and histochemistry of epithelia and glandular organs. The preoral cavity and foregut epithelia are composed of microvillous main cells, secretory cells producing protein-rich substances, and sensory cells with specialized cilia. The foregut bears a pair of glands with 3 types of extremely long-necked glandular cells surrounded by musculature. Each glandular cell opens directly into the radula pocket without a gland duct. The large radula apparatus consists of pairs of denticulated bars resting on a flexible radular membrane without elaboration of a subradular membrane. The midgut has a narrow, mid-dorsal tract of ciliary cells, but most of the epithelium is composed of digestive cells with a highly developed lysosomal system. The hindgut is lined by ciliated cells and free of glands. The foregut and radula seem to be highly efficient in the capture of relatively large, motile prey. Food contents within the midgut lumen and within some of the large secondary lysosomes indicate a triploblastic metazoan prey of non-cnidarian origin. The digestive tract is not adapted to microvory and there is no indication of a symbiosis with chemoautotrophic bacteria.  相似文献   

16.
The relictual Mastotermes darwiniensis is one of the world's most destructive termites. Like all phylogenetically basal termites, it possesses protozoa in its hindgut, which are believed to help it digest wood. L. Li, J. Frohlich, P. Pfeiffer, and H. Konig (Eukaryot. Cell 2:1091-1098, 2003) recently cloned the genes encoding cellulases from the protozoa of M. darwiniensis; however, they claimed that these genes are essentially inactive, not contributing significantly to cellulose digestion. Instead, they suggested that the protozoa sequester enzymes produced by the termite in its salivary glands and use these to degrade cellulose in the hindgut. We tested this idea by performing gel filtration of enzymes in extracts of the hindgut, as well as in a combination of the salivary glands, foregut, and midgut. Three major cellulases were found in the hindgut, each of which had a larger molecular size than termite-derived salivary gland enzymes. N-terminal amino acid sequencing of one of the hindgut-derived enzymes showed that it was identical to the putative amino acid sequence of one mRNA sequence isolated by Li et al. (Eukaryot. Cell 2:1091-1098, 2003). The overall activity of the hindgut cellulases was found to be of approximately equal magnitude to the termite-derived cellulases detected in the mixture of salivary gland, foregut, and midguts. Based on these results, we conclude that, contrary to Li et al. (Eukaryot. Cell 2:1091-1098, 2003), the hindgut protozoan fauna of M. darwiniensis actively produce cellulases, which play an important role in cellulose digestion of the host termite.  相似文献   

17.
The alimentary tract of barnacles is made up of cuticle-lined foregut and hindgut with an intervening U-shaped midgut associated anteriorly with a pair of pancreatic glands and perhaps midgut caeca. Epithelial salivary glands secrete acid mucopolysaccharide, glycoprotein or both. Cells of all the midgut regions are capable of absorption which is carried out mainly by the anterior midgut and caeca. Midgut cells of Balanus balanoides (L.) show a seasonal variation in the distribution of intracellular lipid droplets. Midgut cells rest on an elastic basal lamina and secrete a peritrophic membrane which contains mucopolysaccharide and protein. Cells of the stratum perintestinale connect with the midgut epithelial cells via cell processes which probably translocate absorbed materials. Glycoprotein globules and lipid droplets accumulate in the body parenchyma of B. balanoides and are transported to the ovaries to form yolk (glycolipovitellin). The pancreatic gland cells of all barnacles are active secretory cells secreting proteinaceous material (probably digestive enzymes).  相似文献   

18.
Microscopic anatomy of the digestive system in embryos and larvae of the terrestrial isopod crustacean Porcellio scaber was investigated by light bright field, fluorescence and electron microscopy. During marsupial ontogenetic development the event-dependent staging was used to discriminate the various embryonic stages. At the late embryo stage the differentiation of the ectodermal part of the gut into the complex filtering foregut and the hindgut with absorptive and transporting functions is accomplished. The gut of the marsupial manca larva is fully developed and similar to that of the adult. In early embryos the endodermal midgut gland primordia are filled with yolk and lipid globules. In late embryos the epithelium of paired midgut gland tubes is composed of two cell types; one of them exhibits orange autofluorescence. The endodermal cells located between the foregut and the midgut glands of late embryos form the prospective midgut. The cells have electron dense cytoplasm, abundant glycogen fields, endoplasmic reticulum, dictyosomes and numerous vesicles. In the adults the endodermal cells of the midgut remain only in the midgut gland ducts which connect the midgut glands and the foregut. Details of the cellular ultrastructure and morphogenesis of the ectodermal and endodermal parts of the digestive system during embryonic development of Porcellio scaber provide data for further phylogenetic and comparative studies in peracaridan crustaceans and other arthropods.  相似文献   

19.
Digestion in Tenebrio molitor larvae occurs in the midgut, where there is a sharp pH gradient from 5.6 in the anterior midgut (AM) to 7.9 in the posterior midgut (PM). Accordingly, digestive enzymes are compartmentalized to the AM or PM. Enzymes in the AM are soluble and have acidic or neutral pH optima, while PM enzymes have alkaline pH optima. The main peptidases in the AM are cysteine endopeptidases presented by two to six subfractions of anionic proteins. The major activity belongs to cathepsin L, which has been purified and characterized. Serine post‐proline cleaving peptidase with pH optimum 5.3 was also found in the AM. Typical serine digestive endopeptidases, trypsin‐like and chymotrypsin‐like, are compartmentalized to the PM. Trypsin‐like activity is due to one cationic and three anionic proteinases. Chymotrypsin‐like activity consists of one cationic and four anionic proteinases, four with an extended binding site. The major cationic trypsin and chymotrypsin have been purified and thoroughly characterized. The predicted amino acid sequences are available for purified cathepsin L, trypsin and chymotrypsin. Additional sequences for putative digestive cathepsins L, trypsins and chymotrypsins are available, implying multigene families for these enzymes. Exopeptidases are found in the PM and are presented by a single membrane aminopeptidase N‐like peptidase and carboxypeptidase A, although multiple cDNAs for carboxypeptidase A were found in the AM, but not in the PM. The possibility of the use of two endopeptidases from the AM – cathepsin L and post‐proline cleaving peptidase – in the treatment of celiac disease is discussed.  相似文献   

20.
The tarnished plant bug, Lygus hesperus Knight, is a pest that causes considerable economic losses to vegetables, cotton, canola, and alfalfa. Detailed knowledge of its digestive physiology will provide new opportunities for a sustainable pest management approach to control this insect. Little is known about the different protease class contributions to the overall digestion of a specific protein. To this end, the proteolytic activities in female adult L. hesperus salivary gland and midgut homogenates were quantified over a range of pH's and time points, and the contribution of different classes of proteases to the degradation of FITC-casein was determined. In the salivary gland, serine proteases were the predominant class responsible for caseinolytic activity, with the rate of activity increasing with increasing pH. In contrast, both aspartic and serine proteases contributed to caseinolytic activity in the midgut. Aspartic protease activity predominated at pH 5.0 and occurred immediately after incubation, whereas serine protease activity predominated at pH 7.5 after a 9h delay and was resistant to aprotinin. The salivary serine proteases were distinctly different from midgut serine proteases, based on the tissue-specific differential susceptibility to aprotinin and differing pH optima. Collectively, the caseinolytic activities complement one another, expanding the location and pH range over which digestion can occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号