首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously showed that erythrocyte and brain spectrins bind phospholipid vesicles and monolayers prepared from phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (Review: A.F. Sikorski, B. Hanus-Lorenz, A. Jezierski, A. R. Dluzewski, Interaction of membrane skeletal proteins with membrane lipid domain, Acta Biochim. Polon. 47 (2000) 565). Here, we show how changes in the fluidity of the phospholipid monolayer affect spectrin-phospholipid interaction. The presence of up to 10%-20% cholesterol in the PE/PC monolayer facilitates the penetration of the monolayer by both types of spectrin. For monolayers constructed from mixtures of PI/PC and cholesterol, the effect of spectrins was characterised by the presence of two maxima (at 5 and 30% cholesterol) of surface pressure for erythroid spectrin, and a single maximum (at 20% cholesterol) for brain spectrin. The binding assay results indicated a small but easily detectable decrease in the affinity of erythrocyte spectrin for FAT-liposomes prepared from a PE/PC mixture containing cholesterol, and a 2- to 5-fold increase in maximal binding capacity (Bmax) depending on the cholesterol content. On the other hand, the results from experiments with a monolayer constructed from homogenous synthetic phospholipids indicated an increase in Δπ change with the increase in the fatty acyl chain length of the phospholipids used to prepare the monolayer. This was confirmed by the results of a pelleting experiment. Adding spectrins into the subphase of raft-like monolayers constructed from DOPC, SM and cholesterol (1/1/1) induced an increase in surface pressure. The Δπ change values were, however, much smaller than those observed in the case of a natural PE/PC (6/4) monolayer. An increased binding capacity for spectrins of liposomes prepared from a “raft-like” mixture of lipids could also be concluded from the pelleting assay. In conclusion, we suggest that the effect of membrane lipid fluidity on spectrin-phospholipid interactions is not simple but depends on how it is regulated, i.e., by cholesterol content or by the chemical structure of the membrane lipids.  相似文献   

2.
The self-assembled supramolecular structures of diacylphosphatidylcholine (diC(n)PC), diacylphosphatidylethanolamine (diC(n)PE), diacylphosphatidyglycerol (diC(n)PG), and diacylphosphatidylserine (diC(n)PS) were investigated by (31)P nuclear magnetic resonance (NMR) spectroscopy as a function of the hydrophobic acyl chain length. Short-chain homologs of these lipids formed micelles, and longer-chain homologs formed bilayers. The shortest acyl chain lengths that supported bilayer structures depended on the headgroup of the lipids. They increased in the order PE (C(6)) < PC (C(9)) < or = PS (C(9) or C(10)) < PG (C(11) or C(12)). This order correlated with the effective headgroup area, which is a function of the physical size, charge, hydration, and hydrogen-bonding capacity of the four headgroups. Electrostatic screening of the headgroup charge with NaCl reduced the effective headgroup area of PS and PG and thereby decreased the micelle-to-bilayer transition of these lipid classes to shorter chain lengths. The experimentally determined supramolecular structures were compared to the assembly states predicted by packing constraints that were calculated from the hydrocarbon-chain volume and effective headgroup area of each lipid. The model accurately predicted the chain-length threshold for bilayer formation if the relative displacement of the acyl chains of the phospholipid were taken into account. The model also predicted cylindrical rather than spherical micelles for all four diacylphospholipid classes and the (31)P-NMR spectra provided evidence for a tubular network that appeared as an intermediate phase at the micelle-to-bilayer transition. The free energy of micellization per methylene group was independent of the structure of the supramolecular assembly, but was -0.95 kJ/mol (-0.23 kcal/mol) for the PGs compared to -2.5 kJ/mol (-0.60 kcal/mol) for the PCs. The integral membrane protein OmpA did not change the bilayer structure of thin (diC(10)PC) bilayers.  相似文献   

3.
Permeabilization of the phospholipid membrane, induced by the antibiotic peptides zervamicin IIB (ZER), ampullosporin A (AMP) and antiamoebin I (ANT) was investigated in a vesicular model system. Membrane-perturbing properties of these 15/16 residue peptides were examined by measuring the K+ transport across phosphatidyl choline (PC) membrane and by dissipation of the transmembrane potential. The membrane activities are found to decrease in the order ZER > AMP >> ANT, which correlates with the sequence of their binding affinities. To follow the insertion of the N-terminal Trp residue of ZER and AMP, the environmental sensitivity of its fluorescence was explored as well as the fluorescence quenching by water-soluble (iodide) and membrane-bound (5- and 16-doxyl stearic acids) quenchers. In contrast to AMP, the binding affinity of ZER as well as the depth of its Trp penetration is strongly influenced by the thickness of the membrane (diC16:1PC, diC18:1PC, C16:0/C18:1PC, diC20:1PC). In thin membranes, ZER shows a higher tendency to transmembrane alignment. In thick membranes, the in-plane surface association of these peptaibols results in a deeper insertion of the Trp residue of AMP which is in agreement with model calculations on the localization of both peptide molecules at the hydrophilic-hydrophobic interface. The observed differences between the membrane affinities/activities of the studied peptaibols are discussed in relation to their hydrophobic and amphipathic properties.  相似文献   

4.
In this work the interaction of Hydroxyzine, Promethazine and Thioridazine with Langmuir films of dipalmitoylphosphatidylcholine (dpPC) and dipalmitoylphosphatidic acid (dpPA), is studied. Temporal variations in lateral surface pressure (pi) were measured at different initial pi (pi(i)), subphase pH and drug-concentration. Drugs with the smallest (PRO) and largest (HYD) molecular size exhibited the lowest adsorption (k(a)) and the highest desorption (k(d)) rate constant values, respectively. The affinity binding constants (K(b)) obtained in monolayers followed the same profile (K(b,PRO) < K(b,HYD) < K(b,THI)) of the egg-PC/water partition coefficients (P) determined in bilayers. The drug concentration required to reach the half-maximal Deltapi at pi(i) = 14 mN/m (K(0.5)), was very sensitive to pH. The maximal increment in pi upon drug incorporation into the monolayer (deltapi(max)) will depend on the phospholipid collapse pressure (pi(c)), the monolayers's compressibility and drug's size, shape and charge. The higher pi(c) of dpPC lead to higher pi(cut-off) values (maximal pi allowing drug penetration), if compared with dpPA. In dpPC and dpPA pi(cut-off) decreased as a function of the molecular size of the uncharged drugs. In dpPA, protonated drugs became electrostatically trapped at the monolayer surface hence drug penetration, monolayer deformation and pi increase were impaired and the correlation between pi(cut-off) and drug molecular size was lost.  相似文献   

5.
Triacylglycerols are stored in eukaryotic cells within lipid droplets (LD). The LD core is enwrapped by a phospholipid monolayer with phosphatidylcholine (PC), the major phospholipid, and phosphatidylethanolamine (PE), a minor component. We demonstrate that the onset of LD formation is characterized by a change in cellular PC, PE, and phosphatidylserine (PS). With induction of differentiation of 3T3-L1 fibroblasts into adipocytes, the cellular PC/PE ratio decreased concomitant with LD formation, with the most pronounced decline between confluency and day 5. The mRNA for PS synthase-1 (forms PS from PC) and PS decarboxylase (forms PE from PS) increased after day 5. Activity and protein of PE N-methyltransferase (PEMT), which produces PC by methylation of PE, are absent in 3T3-L1 fibroblasts but were induced at day 5. High fat challenge induced PEMT expression in mouse adipose tissue. PE, produced via PS decarboxylase, was the preferred substrate for methylation to PC. A PEMT-GFP fusion protein decorated the periphery of LD. PEMT knockdown in 3T3-L1 adipocytes correlated with increased basal triacylglycerol hydrolysis. Pemt(-/-) mice developed desensitization against adenosine-mediated inhibition of basal hydrolysis in adipose tissue, and adipocyte hypotrophy was observed in Pemt(-/-) animals on a high fat diet. Knock-out of PEMT in adipose tissue down-regulated PS synthase-1 mRNA, suggesting coordination between PE supply and converting pathways during LD biosynthesis. We conclude that two consecutive processes not previously related to LD biogenesis, (i) PE production via PS and (ii) PE conversion via PEMT, are implicated in LD formation and stability.  相似文献   

6.
Kim KH  Ahn T  Yun CH 《Biochemistry》2003,42(51):15377-15387
Human cytochrome P450 (CYP) 3A4, a membrane anchoring protein, is the major CYP enzyme present in both liver and small intestine. The enzyme plays a major role in the metabolism of many drugs and procarcinogens. The roles of individual phospholipids and membrane properties in the catalytic activity, membrane binding, and insertion into the membrane of CYP3A4 are poorly understood. Here we report that the catalytic activity of testosterone 6beta-hydroxylation, membrane binding, and membrane insertion of CYP3A4 increase as a function of anionic phospholipid concentration in the order phosphatidic acid (PA) > phosphatidylserine (PS) in a binary system of phosphatidylcholine (PC)/anionic phospholipid and as a function of phosphatidylethanolamine (PE) content in ternary systems of PC/PE/PA or PC/PE/PS having a fixed concentration of anionic phospholipids. These results suggest that PA and PE might help the binding of CYP3A4 to the membrane and the interaction with NPR. Cytochrome b(5) (b(5)) and apolipoprotein b(5) further enhanced the testosterone 6beta-hydroxylation activities of CYP3A4 in all tested phospholipids vesicles with various compositions. Phospholipid-dependent changes of the CYP3A4 conformation were also revealed by altered Trp fluorescence and CD spectra. We also found that PE induced the formation of anionic phospholipid-enriched domains in ternary systems using extrinsic fluorescent probes incorporated into lipid bilayers. Taken together, it can be suggested that the chemical and physical properties of membranes induced by anionic phospholipids and PE are critical for the membrane binding and catalytic activity of CYP3A4.  相似文献   

7.
The phospholipid analogue miltefosine or hexadecylphosphocholine (HePC) is a drug of high interest in the treatment for fatal visceral leishmaniasis (VL) due to Leishmania donovani particularly because of its activity by oral route. In this study, the interaction of HePC with a monolayer of β-palmitoyl-γ-oleyl-phosphatidylcholine (POPC) as membrane model or sterol (ergosterol or cholesterol) was investigated. At a constant pressure of 25 mN/m, the adsorption kinetics of HePC into the monolayers showed that HePC molecules are inserted into the monolayer of lipids as monomers until the critical micellar concentration (CMC). At HePC concentrations superior to the CMC, the micelles of HePC are deployed at the interface as groups of monomers into the POPC or sterol monolayer. The study of mixture of HePC/(POPC or sterol), spread at the air-water interface, shows that a simple miscibility between HePC and POPC is observed, whereas a high condensation appears between HePC and sterols showing a high affinity between HePC and sterols. In addition, HePC does not act as detergent disturbing membrane integrity.  相似文献   

8.
VP1, a putative alpha-helical antimicrobial peptide (alpha-AMP) inhibited growth of Bacillus subtilis and Escherichia coli at 500microM. The peptide induced stable surface pressure changes in monolayers formed from B. subtilis native lipid extract (circa 4.5mNm(-1)) but transient pressure changes in corresponding E. coli monolayers (circa 1.0mNm(-1)), which led to monolayer disintegration. Synthetic lipid monolayers mimetic of the extracts were used to generate compression isotherms. Thermodynamic analysis of B. subtilis isotherms indicated membrane stabilisation by VP1 (DeltaG(Mix)<0), via a mechanism dependent upon the phosphatidylglycerol to cardiolipin ratio. Corresponding analysis of E. coli isotherms indicated membrane destabilisation by the peptide (DeltaG(Mix)>0). Destabilisation correlated with PE levels present and appeared to involve a mechanism resembling those used by tilted peptides. These data emphasise that structure/function analysis of alpha-AMPs must consider not only their structural characteristics but also the lipid make-up of the target microbial membrane.  相似文献   

9.
The kinetics and thermodynamics of the transmembrane movement (flip-flop) of fluorescent analogs of phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) were investigated to determine the contributions of headgroup composition and acyl chain length to phospholipid flip-flop. The phospholipid derivatives containing n-octanoic, n-decanoic or n-dodecanoic acid in the sn-1 position and 9-(1-pyrenyl)nonanoic acid in the sn-2 position were incorporated at 3 mol% into sonicated single-bilayer vesicles of 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC). The kinetics of diffusion of the pyrene-labeled phospholipids from the outer and inner monolayers of the host vesicles to a large pool of POPC acceptor vesicles were monitored by the time-dependent decrease of pyrene excimer fluorescence. The observed kinetics of transfer were biexponential, with a fast component due to the spontaneous transfer of pyrenyl phospholipids in the outer monolayer of labeled vesicles and a slower component due to diffusion of pyrenyl phospholipid from the inner monolayer of the same vesicles. Intervesicular transfer rates decreased approx. 8-fold for every two carbons added to the first acyl chain. Correspondingly, the free energy of activation for transfer increased approx. 1.3 kcal/mol. With the exception of PE, the intervesicular transfer rates for the different headgroups within a homologous series were nearly the same, with the PC derivative being the fastest. Transfer rates for the PE derivatives were 5-to 7-fold slower than the rates observed for PC. Phospholipid flip-flop, in contrast, was strongly dependent on headgroup composition with a smaller dependence on acyl chain length. At pH 7.4, flip-flop rates increased in the order PC less than PG less than PA less than PE, where the rates for PE were at least 10-times greater than those of the homologous PC derivative. Activation energies for flip-flop were large, and ranged from 38 kcal/mol for the longest acyl chain derivative of PC to 25 kcal/mol for the PE derivatives. Titration of the PA headgroup at pH 4.0 produced an approx. 500-fold increase in the flip-flop rate of PA, while the activation energy decreased 10 kcal/mol. Increasing acyl chain length reduced phospholipid flip-flop rates, with the greatest change observed for the PC analogs, which exhibited an approx. 2-fold decrease in flip-flop rate for every two methylene carbons added to the acyl chain at the sn-1 position.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
We tested the effects of membrane phospholipids on the functionof high-conductance,Ca2+-activatedK+ channels from the basolateralcell membrane of rabbit distal colon epithelium by reconstituting thesechannels into planar bilayers consisting of different 1:1 mixtures ofphosphatidylethanolamine (PE), phosphatidylcholine (PC),phosphatidylserine (PS), and phosphatidylinositol (PI). At low ambientK+ concentrations single-channelconductance is higher in PE/PS and PE/PI bilayers than in PE/PCbilayers. At high K+concentrations this difference in channel conductance is abolished. Introducing the negatively charged SDS into PE/PC bilayersincreases channel conductance, whereas the positively chargeddodecyltrimethylammonium has the opposite effect. All these findingsare consistent with modulation of channel current by the charge of thelipid membrane surrounding the channel. But theK+ that permeates the channelsenses only a small fraction of the full membrane surface potential ofthe charged phospholipid bilayers, equivalent to separation of theconduction pathway from the charged phospholipid head groups by 20 Å. This distance appears to insulate the channel entrancefrom the bilayer surface potential, suggesting large dimensions of thechannel-forming protein. In addition, in PE/PC and PE/PI bilayers, butnot in PE/PS bilayers, the open-state probability of the channeldecreases with time ("channel rundown"), indicating thatphospholipid properties other than surface charge are required tomaintain channel fluctuations.

  相似文献   

11.
Ahn T  Yun CH  Oh DB 《Biochemistry》2005,44(25):9188-9196
The effect of nonlamellar-prone lipids, diacylglycerol (DG) and phosphatidylethanolamine (PE), on the stability of human cytochrome P450 1A2 (CYP1A2) was examined. When 100% phosphatidylcholine (PC) in standard vesicles was gradually replaced with either DG or PE, the stability of CYP1A2 increased; the incubation time-dependent destruction of spectrally detectable P450, decrease of catalytic activity, reduction of intrinsic fluorescence, and increased sensitivity to trypsin digestion were significantly alleviated. The ternary system of PC/PE/DG increased the stability of CYP1A2 more, even at lower concentrations of each nonlamellar-prone lipid, than that of the binary lipid mixture (PC/nonlamellar lipid). By incorporating the nonlamellar-prone lipids, the CYP1A2-induced increase of the surface pressure of the lipid monolayer was much higher compared to that for 100% PC. Increased surface pressure indicates a deep insertion of the protein into lipid monolayers. Nonlamellar lipids also increased the transition temperature of CYP1A2 in thermal unfolding and reduced the incubation time-dependent detachment of membrane-bound CYP1A2 from vesicles. Taken together, these results suggest that nonlamellar lipids per se and/or the phase properties of the membrane containing these lipids are important in the enhanced stability of CYP1A2 and the concomitant maintenance of catalytic activity of the protein.  相似文献   

12.
The release of cytochrome c from mitochondria to the cytosol is a crucial step of apoptosis that involves interactions of Bax and tBid proteins with the mitochondrial membrane. We investigated Bax and tBid interactions with (i) phosphatidylcholine (PC) monolayer as the main component of the outer leaflet of the outer membrane, (ii) with phosphatidylethanolamine (PE) and phosphatidylserine (PS) that are present in the inner leaflet and (iii) with a mixed PC/PE/Cardiolipin (CL) monolayer of the contact sites between the outer and inner membranes. These interactions were studied by measuring the increase of the lipidic monolayer surface pressure induced by the proteins. Our measurements suggest that tBid interacts strongly with the POPC/DOPE/CL, whereas Bax interaction with this monolayer is about 12 times weaker. Both tBid and Bax interact moderately half as strongly with negatively charged DOPS and non-lamellar DOPE monolayers. TBid also slightly interacts with DOPC. Our results suggest that tBid but not Bax interacts with the PC-containing outer membrane. Subsequent insertion of these proteins may occur at the PC/PE/CL sites of contact between the outer and inner membranes. It was also shown that Bax and tBid being mixed in solution inhibit their insertion into POPC/DOPE/CL monolayer. The known 3-D structures of Bax and Bid allowed us to propose a structural interpretation of these experimental results.  相似文献   

13.
Macroautophagy (hereafter autophagy) is a regulated intracellular process during which cytoplasmic cargo engulfed by double-membrane autophagosomes is delivered to the vacuole or lysosome for degradation and recycling. Atg8 that is conjugated to phosphatidylethanolamine (PE) during autophagy plays an important role not only in autophagosome biogenesis but also in cargo recruitment. Conjugation of PE to Atg8 requires processing of the C-terminal conserved glycine residue in Atg8 by the Atg4 cysteine protease. The Arabidopsis plant genome contains 9 Atg8 (AtATG8a to AtATG8i) and 2 Atg4 (AtATG4a and AtATG4b) family members. To understand AtATG4’s specificity toward different AtATG8 substrates, we generated a unique synthetic substrate C-AtATG8-ShR (citrine-AtATG8-Renilla luciferase SuperhRLUC). In vitro analyses indicated that AtATG4a is catalytically more active and has broad AtATG8 substrate specificity compared with AtATG4b. Arabidopsis transgenic plants expressing the synthetic substrate C-AtAtg8a-ShR is efficiently processed by endogenous AtATG4s and targeted to the vacuole during nitrogen starvation. These results indicate that the synthetic substrate mimics endogenous AtATG8, and its processing can be monitored in vivo by a bioluminescence resonance energy transfer (BRET) assay. The synthetic Atg8 substrates provide an easy and versatile method to study plant autophagy during different biological processes.  相似文献   

14.
The principal difficulty in experimental exploration of the folding and stability of membrane proteins (MPs) is their aggregation outside of the native environment of the lipid bilayer. To circumvent this problem, we recently applied fluorinated nondetergent surfactants that act as chemical chaperones. The ideal chaperone surfactant would 1), maintain the MP in solution; 2), minimally perturb the MP's structure; 3), dissociate from the MP during membrane insertion; and 4), not partition into the lipid bilayer. Here, we compare how surfactants with hemifluorinated (HFTAC) and completely fluorinated (FTAC) hydrophobic chains of different length compare to this ideal. Using fluorescence correlation spectroscopy of dye-labeled FTAC and HFTAC, we demonstrate that neither type of surfactant will bind lipid vesicles. Thus, unlike detergents, fluorinated surfactants do not compromise vesicle integrity even at concentrations far in excess of their critical micelle concentration. We examined the interaction of surfactants with a model MP, DTT, using a variety of spectroscopic techniques. Site-selective labeling of DTT with fluorescent dyes indicates that the surfactants do not interact with DTT uniformly, instead concentrating in the most hydrophobic patches. Circular dichroism measurements suggest that the presence of surfactants does not alter the structure of DTT. However, the cooperativity of the thermal unfolding transition is reduced by the presence of surfactants, especially above the critical micelle concentration (a feature of regular detergents, too). The linear dependence of DTT's enthalpy of unfolding on the surfactant concentration is encouraging for future application of (H)FTACs to determine the stability of the membrane-competent conformations of other MPs. The observed reduction in the efficiency of Förster resonance energy transfer between donor-labeled (H)FTACs and acceptor-labeled DTT upon addition of lipid vesicles indicates that the protein sheds the layer of surfactant during its bilayer insertion. We discuss the advantages of fluorinated surfactants over other types of solubilizing agents, with a specific emphasis on their possible applications in thermodynamic measurements.  相似文献   

15.
The binding of inorganic mercury Hg(II) to phospholipid headgroups has been investigated by phosphorus-31 nuclear magnetic resonance of phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylcholine (PC) in water micellar and multilamellar phases. HgCl2 triggers the aggregation of phospholipid micelles, leading to a lipid-mercury precipitate that is no longer detectable by high-resolution31P-NMR. The remaining signal area corresponds to micelles in the soluble fraction and is a non-linear function of the initial mercury-to-lipid molar ratio. Kinetics of micelle aggregation are exponential for the first 15 min and show a plateau tendency after 120 min. Apparent Hg(H) affinities for phospholipid headgroups are in the order: PE > PS > PC. The same binding specificity is observed when HgCl2 is added to (1:1) mixtures of different micelles (PE + PC; PS + PC). However, mercury binding to mixed micelles prepared with two lipids (PE/PC or PS/PC) induces the aggregation of both lipids. Hg(II) also leads to a31P-NMR chemical shift anisotropy decrease of PC, PS and mixed (1:1) PE/PC multilamellar vesicles and markedly broadens PS spectra. This indicates that HgCl2 binding forces phospholipid headgroups to reorient and that the concomitant network formation leads to a slowing down of PS membrane collective motions. Formation of a gel-like lamellar phase characterized by a broad NMR linewidth is also observed upon HgCl2 binding to PE samples both in fluid (L) or hexagonal (HII) phases. The PE hexagonal phase is no longer detected in the presence of HgCl2. Mixed PE/PC dispersions remain in the fluid phase upon mercury addition, indicating that no phase separation occurs. Addition of excess NaCl leads to the appearance of the non-reactive species HgCl inf4 sup2– and induces the reversal of all the above effects.Abbreviations A(t) time-dependence of peak area - A40 peak area at t=40 min - 1/ rate of peak area decrease - isotropic chemical shift - isotropic chemical shift change - chemical shift anisotropy - DPPC dipalmitoylphosphatidylcholine - Hg(II) inorganic mercury - NMR nuclear magnetic resonance - pCl –log [Cl] - PC phosphatidylcholine - PE phosphatidylethanolamine - PL phospholipid - PS phosphatidylserine - Ri mercury-to-lipid molar ratio - MLV multilamellar vesicles - SUV small unilamellar vesicles  相似文献   

16.
The continuous turnover of membrane phospholipids requires a steady supply of biosynthetic precursors. We evaluated the effects of decreasing extracellular Na+ concentration on phospholipid metabolism in cultured neuroblastoma (N1E 115) cells. Incubating cultures with 145 to 0 mM NaCl caused a concentration-dependent inhibition of [32P]phosphate uptake into the water-soluble intracellular pool and incorporation into phospholipid. Phospholipid classes were differentially affected; [32P]phosphate incorporated into phosphati-dylethanolamine (PE) and phosphatidylcholine (PC) was consistently less than into phosphatidylinositol (PI) and phosphatidylserine (PS). This could not be attributed to decreased phospholipid synthesis since under identical conditions, there was no effect on arachidonic acid or ethanolamine incorporation, and choline utilization for PC synthesis was increased. The effect of Na+ was highly specific since reducing phosphate uptake to a similar extent by incubating cultures in a phosphate-deficient medium containing Na+ did not alter the relative distribution of [32P]phosphate in phospholipid. Of several cations tested only Li+ could partially (50%) replace Na+. Incubation in the presence of ouabain or amiloride had no effect on [32P]phosphate incorporation into phospholipid. The differential effects of low Na+ on [32P]phosphate incorporation into PI relative to PC and PE suggests preferential compartmentation of [32P]phosphate into ATP in pools used for phosphatidic acid synthesis and relatively less in ATP pools used for synthesis of phosphocholine and phosphoethanolamine, precursors of PC and PE, respectively. This suggestion of heterogeneous and distinct pools of ATP for phospholipid biosynthesis, and of potential modulation by Na+ ion, has important implications for understanding intracellular regulation of metabolism.  相似文献   

17.
Niu SL  Litman BJ 《Biophysical journal》2002,83(6):3408-3415
Lateral domain or raft formation in biological membranes is often discussed in terms of cholesterol-lipid interactions. Preferential interactions of cholesterol with lipids, varying in headgroup and acyl chain unsaturation, were studied by measuring the partition coefficient for cholesterol in unilamellar vesicles. A novel vesicle-cyclodextrin system was used, which precludes the possibility of cross-contamination between donor-acceptor vesicles or the need to modify one of the vesicle populations. Variation in phospholipid headgroup resulted in cholesterol partitioning in the order of sphingomyelin (SM) > phosphatidylserine > phosphatidylcholine (PC) > phosphatidylenthanolamine (PE), spanning a range of partition DeltaG of -1181 cal/mol to +683 cal/mol for SM and PE, respectively. Among the acyl chains examined, the order of cholesterol partitioning was 18:0(stearic acid),18:1n-9(oleic acid) PC > di18:1n-9PC > di18:1n-12(petroselenic acid) PC > di18:2n-6(linoleic acid) PC > 16:0(palmitic acid),22:6n-3(DHA) PC > di18:3n-3(alpha-linolenic acid) PC > di22:6n-3PC with a range in partition DeltaG of 913 cal/mol. Our results suggest that the large differences observed in cholesterol-lipid interactions contribute to the forces responsible for lateral domain formation in plasma membranes. These differences may also be responsible for the heterogeneous cholesterol distribution in cellular membranes, where cholesterol is highly enriched in plasma membranes and relatively depleted in intracellular membranes.  相似文献   

18.
The Escherichia coli outer membrane beta-barrel enzyme PagP and its homologues are unique in that the eight-stranded barrel is tilted by about 25 degrees with respect to the membrane normal and is preceded by a 19-residue amphipathic alpha-helix. To investigate the role of this helix in the folding and stability of PagP, mutants were generated in which the helix was deleted (Delta(1-19)), or in which residues predicted to be involved in helix-barrel interactions were altered (W17A or R59L). The ability of the variants to insert into detergent micelles or liposomes was studied in vitro using circular dichroism, fluorescence, Fourier transform infrared spectroscopy, electrophoretic mobility and gain of enzyme activity. The data show that PagP, initially unfolded in 5% (w/v) perfluoro-octanoic acid or 6 M guanidinium chloride, inserts spontaneously and folds quantitatively to an active conformation into detergent micelles of cyclofos-7 or into large vesicles of diC(12:0)-phosphatidylcholine (diC(12:0)PC), respectively, the latter in the presence of 7 M urea. Successful refolding of all variants into both micelles and liposomes ruled out an essential role for the helix or helix-barrel interactions in folding and membrane insertion. Measurements of thermal stability indicated that the variants R59L, W17A/R59L and Delta(1-19) were destabilised substantially compared with wild-type PagP. However, in contrast to the other variants, destabilisation of the W17A variant relative to wild-type PagP was much greater in liposomes than in micelles. Analysis of the kinetics of folding and unfolding of all variants in diC(12:0)PC liposomes suggested that this destabilisation arises predominantly from an increased dissociation of the refolded variant proteins from the lipid-inserted state. The data support the view that the helix of PagP is not required for folding and assembly, but instead acts as a clamp, stabilising membrane-inserted PagP after folding and docking with the membrane are complete.  相似文献   

19.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and is estimated to be present in about 15% of the domain Bacteria. Usually, PC can be synthesized in bacteria by either of two pathways, the phospholipid N-methylation (Pmt) pathway or the phosphatidylcholine synthase (Pcs) pathway. The three subsequent enzymatic methylations of phosphatidylethanolamine are performed by a single phospholipid N-methyltransferase in some bacteria whereas other bacteria possess multiple phospholipid N-methyltransferases each one performing one or several distinct methylation steps. Phosphatidylcholine synthase condenses choline directly with CDP-diacylglycerol to form CMP and PC. Like in eukaryotes, bacterial PC also functions as a biosynthetic intermediate during the formation of other biomolecules such as choline, diacylglycerol, or diacylglycerol-based phosphorus-free membrane lipids. Bacterial PC may serve as a specific recognition molecule but it affects the physicochemical properties of bacterial membranes as well. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   

20.
Salt treatment strongly affected cell growth by decreasing dry weight. Exposure of Catharanthus roseus cell suspensions to increasing salinity significantly enhanced total lipid (TL) content. The observed increase is mainly due to high level of phospholipids (PL). Hundred mM NaCl treatment increased phospholipid species phosphatidylcholine (PC) and phosphatidylethanolamine (PE), whereas it reduced glycolipid ones monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) but not sulfoquinovosyldiacylglycerol (SQDG). Moreover, fatty acid composition was clearly modified when cells were cultured in the presence of 100 mM NaCl, whereas only few changes occurred at 50 mM. Salt treatment decreased palmitic acid (16:0) level and increased that of linolenic acid (18:2). Such effect was observed in phospholipid species PC and PE and in glycolipid DGDG. Double bond index (DBI) was enhanced more than 2-fold in fatty acids of either glycolipids or phospholipids from cells submitted to 100 mM NaCl. Free sterol content was also significantly enhanced, especially at 100 mM NaCl, whereas free sterols/phospholipids (St/PL) ratio was slightly decreased. All these salt-induced changes in membrane lipids suggest an increase in membrane fluidity of C. roseus cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号