首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of homoglutathione (hGSH) by several plants of the tribe Phaseoleae is shown to be catalysed by a β-alanine-specific hGSH synthetase, Properties of the enzyme from Phaseolus coccineus L. cv. Preisgewinner were studied, using ammonium sulfate precipitates of primary leaf extracts. The hGSH synthetase showed a broad pH optimum at pH 8–9, an absolute requirement for Mg2+, a stimulation by K+, and a high affinity for γ-glutamylcysteine [Km(app.) 73 μ M ]. The enzyme exhibited a high specificity for β-alanine [Km(app.) 1.34 m M ] compared to glycine [Km(app.) 98 m M ]. Chloroplasts, isolated from the leaves of Phaseolus coccineus , contained about 17% of the hGSH synthetase activity in the leaf cells.  相似文献   

2.
Plant morphology in the field in Virginia, USA, and growth responses to applied NaCl in a glasshouse were determined for two populations of Opuntia humifusa (Rafinesque) Rafinesque, one from an inland site and the other from the marine strand, which differed in potential exposure to salinity. Cladode dimensions, plant height and rooting depth varied significantly between the populations. Application of NaCl in 50 m M increments up to 400 m M every 3 days for 6 weeks caused the cladodes to decrease up to 30% in thickness, the decrease being about 20% more at 50 to 150 m M NaCl for plants from the inland site than from the marine strand. Inhibition by 150 m M NaCl of the maximum rate of net CO2 uptake and of the total CO2 uptake over a 24-h period was greater for the inland population. Growth, especially of roots, was inhibited by applied NaCl, with a decrease in biomass above 200 m M NaCl for plants from the inland site and not until 400 m M for those from the marine strand. Although the root Na+ level was the same for plants from the two populations, reaching a maximum of about 8 mg (g dry weight)−1 at 200 m M NaCl, the cladode Na+ level was two-fold higher for plants from the marine strand than from the inland site. Thus, exclusion of Na+ from the cladodes is not the reason for the greater NaCl tolerance of O. humifusa from the marine strand, which is a habitat that can experience periodic episodes of high salinity.  相似文献   

3.
A procedure for the partial purification of a non-specific alkaline phosphatase (EC 3.1.3.1.) from the embryonic axes of chick-pea seeds is described. Ammonium sulphate precipitation, DEAE-cellulase chromatography, Sephacryl S-200 chroma-tography and polyacrylamide gel electrophoresis are the most important steps. The molecular weight of this non-specific enzyme, as determined by Sephacryl S–200 gel filtration and SDS–polyacrylamide gel electrophoresis, was estimated as being 68 and 78 kDa respectively; the optimum pH for p-nitrophenylphosphate hydrolysis was 7.5, and the Km for this artificial substrate was 0.5 mM. The enzyme catalyzes the hydrolysis of a variety of organic phosphate esters. The best substrates are: phos-phoenolpymvate (Km= 2.4 m M ), NADP+ (Km= 4.0 m M ), 5'-AMP (Km= 4.5 m M ), 5'-ADP (Km= 6.1 m M ) and ribose-5P (Km= 5.8 m M ); but it is unable to hydrolyze 5'-ATP, phosphocreatine and tripolyphosptiate. Phospate was a competitive inhibitor. Zn2+, K+, Hg2+ and Mo6+ were strong inhibitors, whereas F and Ca2+ inhibited weakly; Co2+ and Ni2+ were activators.  相似文献   

4.
Plantago species differ in their strategy towards salt stress, a major difference being the uptake and distribution of Na+ ions. A salt-sensitive ( Plantago media L.) and a salt-tolerant ( P. maritima L.) species were compared with respect to Na+/H+ antiport activities at the tonoplast. After exposure of the plants to 50 m M NaCl for 6 days isolated tonoplast vesicles of P. maritima showed Na+/H+ antiport activity with saturation kinetics and a Km of 2.4 m M Na+, NaCl-grown P. media and the control plants of both species showed no antiport activity. Selectivity of the antiport system for Na+ was high and was determined by adding different chloride salts after formation of a Δ pH in the vesicles. Specific tonoplast ATPase activities were similar in the two species and did not alter after exposure to NaCl stress.  相似文献   

5.
Enzyme activities of assimilatory sulfate reduction were measured in leaves of Pisum sativum L., cv. Vatters Frühbusch, during their ontogenetic development, and during treatment with H2S and cyst(e)ine. Ribulose bisphosphate (RuBP) carboxylase (EC 4.1.1.39) and ferredoxin-dependent nitrite reductase (Fd-NiR, EC 1.7.7.1) were measured for comparison. In etiolated pea leaves, ATP-sulfurylase (ATPase, EC 2.7.7.4), adenosine 5'-phosphosulfate sulfotransferase (APSSTase), ferredoxin-dependent sulfite reductase (Fd-SiR, EC 1.8.7.1) and O-acetyl-L-serine sulfhydrylase (OASSase, EC 4.2.99.8) activities were measured in appreciable rates, while neither RuBP carboxylase nor Fd-NiR activities could be detected.
During the first 2–7 days after transfer into the light all enzyme activities increased. After reaching maximal activities, ATPase, APSSTase, and Fd-SiR activities decreased in all leaves to low or indetectable levels during the following 3–6 days. RuBP carboxylase, Fd-NiR and OASSase, on the other hand, decreased slowly and were still at high levels of activity at the end of the experiment.
Fumigation of pea plants with 1.5 μl l−1 H2S delayed the initial increase and the subsequent decrease of ATPase activity by 1–3 days. APSSTase activity decreased for 1–2 days, increased rapidly during the next 4–6 days and retained a high level of activity until the end of the experiment as did Fd-SiR. One to two days after the beginning of fumigation the leaves started to accumulate high amounts of cyst(e)ine.
When pea plants with excised roots were placed on a nutrient solution containing cyst(e)ine, APSSTase activity decreased more on 0.2 and 0.5 m M than on 1.0 m M. Fd-SiR activity was only slightly decreased on 1.0 m M cyst(e)ine. Neither Fd-NiR nor RuBP carboxylase activities were affected.  相似文献   

6.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) from fir ( Abies alba Mill.) and spruce ( Picea abies [L.] Karst.) needles was purified to homogeneity. The enzyme was isolated from crude extracts through quantitative precipitation in 40-55% and 40-60% (NH4)2SO4 for fir and spruce. respectively, followed by linear sucrose gradient centrifugation. Using two dimensional gel electrophoresis, the isoelectric points were determined. For the large subunit (LSU) it was 6.7 for both species, and for the small subunit (SSU) it was 7.1 and 7.7 for fir and spruce, respectively. Very few differences in tryptic peptides and amino acid composition of Rubisco LSU were observed between fir and spruce. By contrast, marked differences characterized the same analyses for the Rubisco SSU of the two species. Moreover, substitution of residues was observed in the sequenced N-terminal region when comparing fir and spruce SSU. The Ouchterlony technique showed no immu-nochemical difference between Rubisco of fir and spruce when a rabbit antiserum to spinach Rubisco was used. The Eadie-Hofstee plots of carboxylase activity indicated that the apparent Km(CO2) were 31 and 36 μ M for the fir and spruce enzymes, respectively.  相似文献   

7.
Chloroplast glutathione reductase: Purification and properties   总被引:4,自引:0,他引:4  
Glutathione reductase was partially purified from isolated pea chloroplasts ( Pisum sativum L. cv. Progress #9). A 1600-fold purification was obtained and the purified enzyme had a specific activity of 26 μmol NADPH oxidized (mg protein)−1 min−1. The enzyme had a native molecular weight of approximately 156 kdalton and consisted of two each of two subunits of about 41 and 42 kdalton. The Km for oxidized glutathione was 11 μ M and the Km for NADPH was 1.7 μ M . Enzyme activity was affected by the ionic strength of the assay medium, and maximum activity was observed at an ionic strength of between 60 and 100 m M . The enzyme was inactivated by sulfhydryl modifying reagents and the presence of either oxidized glutathione or NADPH affected the extent of inactivation. Chloroplast glutathione reductase probably serves in the removal of photosynthetically derived H2O2 by reducing dehydroascorbate for ascorbate-linked reduction of H2O2. Intermediates of this reaction sequence, dehydroascorbate, ascorbate, reduced glutathione, and NADPH had no effect on enzymic activity.  相似文献   

8.
Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) was purified 56-fold from Vicia faba root nodules to a specific activity of 24.8 units mg-1 protein. Native molecular mass was determined to be 443 kDa by gel permeation chromatography, whereas a molecular mass of 113 kDa was obtained for the subunit by means of SDS-PAGE, indicating that the enzyme is a homotetramer. One peak of activity was obtained by ion-exchange chromatography or gel filtration, and thus there was no evidence of isoenzymes. The effect of pH on PEPC activity was studied, the pH optimum found at 8.25. The effect of substrate (phosphoenolpyruvate, PEP) on the enzyme activity was studied at five different pH values from 6.5 to 9.5. The Km(PEP) at pH 8.25 proved to be 0.064 m M. Inhibition by malate or activation by glucose-6-phosphate was dependent on the pH of the reaction mixture. Malate behaved as a non-competitive mixed-type inhibitor with a Ki of 0.76 m M , a Ki(s) of 1.15 m M and a Ki(i) of 0.72 m M , at pH 7.0 while at pH 8.25 Ki was about 140 m M. Activation by glucose-6-P was 70% with 4 m M PEP at pH 7, whereas no effect was found at pH 8.25. Experiments with mixed effectors at pH 7 and 1 m M PEP, showed that glucose-6-P can reverse the inhibition caused by L-malate on the PEPC activity.  相似文献   

9.
Ribulose bisphosphate carboxylase-oxygenase, RuBP carboxylase (EC 4.1.1.39), was purified from non-hardened and hardened needles of Pinus sylvestris L. Needles were collected from pine seedlings cultivated in nutrient solution in a climate chamber from seedlings grown outdoors, and from a tree in a natural stand. The enzyme was isolated from crude extracts through quantitative precipitation in polyethylene glycol 4000 and MgCl2, followed by sucrose gradient centrifugation in a fixed angle rotor. The purified enzyme seemed homogeneous by the criterion of (sodium dodecylsulphate) polyacrylamide gel electrophoresis. Contamination by nucleic acids was negligible. The RuBP carboxylase protein content of the gradient fractions was estimated as A2801 cm× 0.61 mg ml−1. Carboxylase activities were determined in a radioactive assay at 25°C. The specific activity of RuBP carboxylase isolated from non-hardened needles was approximately 1 μmol CO2 (mg protein)−1 min−1. For enzyme isolated from hardened needles collected during winter the specific activity was somewhat lower due to loss of enzyme activity during the preparation. The described two-step procedure provides a means for quantitation of the RuBP carboxylase protein in pine needles during all seasons.  相似文献   

10.
The C3 halophyte Suaeda salsa L. grown under the high concentration of NaCl (200 m M ) was used to investigate the role of the hydrogen peroxide (H2O2)-scavenging system [catalase, ascorbate peroxidase, glutathione reductase (GR), ascorbic acid, and glutathione (GSH)] in removal of reactive oxygen species. The activity of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), and GR (EC 1.6.4.2) increased significantly after 7 days of NaCl treatment. The isoform patterns of CAT and GR were not affected, but the staining intensities were significantly increased by NaCl treatment. Activities of both the thylakoid-bound APX or GR and stromal APX (S-APX) or GR in the chloroplasts were markedly enhanced under high salinity. Fifty percent of APX in the chloroplasts is thylakoid-bound APX. S-APX and GR activity represented about 74–78 and 64–71% of the total soluble leaf APX and GR activity, respectively. Salt treatment increased the contents of ascorbic acid and GSH. By contrast, a decreased content of H2O2 was found in the leaves of NaCl-treated S . salsa . The level of membrane lipid peroxidation decreased slightly after NaCl treatment. The plants grew well with high rate of net photosynthesis under high salinity. These data suggest that upregulation of the H2O2-scavenging system in plant cells, especially in the chloroplasts, is at least one component of the tolerance adaptations of halophytes to high salinity.  相似文献   

11.
Abstract. A mechanistic model of photosynthesis is developed based on the characteristics of ribulose 1,5-bisphosphate (RuBP) carboxylase and the assimilation of CO2 as an ordered reaction with RuBP binding before CO2. An equation is derived which considers the effects of light (for regeneration of RuBP) and CO2. Taking values for the maximum turnover of RuBP carboxylase at substrate saturation, the maximum carboxylation efficiency (maximum increase in rate per increase in CO2 concentration) and the minimum quantum requirement for the C3 pathway, photosynthesis in the absence of photorespiration is simulated. In the model, at varying concentrations of CO2, the efficiency of light utilization approaches a maximum value as photon flux density decreases. Similarly, with a given maximum carboxyation capacity, at varying photon flux densities the carboxylation efficiency approaches a constant maximum value (equal to V max/ K m CO2) as CO2 is decreased. However, a decrease in the state of activation of RuBP carboxylase under low light results in a lower carboxylation efficiency. Limits on the rate of photosynthesis, as the maximum capacity for regeneration of RuBP is reduced relative to carboxylation potential, or as the maximum capacity of the carboxylase varies, are considered.  相似文献   

12.
Peanuts ( Arachis hypogaea L. cv. Shulamit) grown with NO3 and saline water in hydroponics responded positively to addition of nitrogen (N) in their vegetative growth, but not in desert dune sand. In order to clarify these conflicting results, peanut plants were grown in a greenhouse pot experiment with fine calcareous sand. The nutrient solution contained 0 or 50 m M NaCl and 2 or 6 m M N in the form of Ca(NO3)2, NH4NO3 or (NH4)2SO4. Three replicates were harvested after 48 days (beginning of reproductive stage) and three after 109 days (pod filling). In addition, gynophores were treated with 0, 50, 100, 150 or 200 m M NaCl outside the growth pot to check their sensitivity to salt. Shoot dry weight became greater with increasing NH4+/NO3 ratio. Increasing the N concentration from 2 to 6 m M did not change shoot dry weight of the NH4NO3 or NH4+-fed plants, but caused a reduction in shoot dry weight of NO3-fed plants. Shoot dry weight was not affected by increasing the NaCl concentration to 50 m M . Salt caused an increase in the number of gynophores per plant and a reduction of the mean pod weight. A NaCl concentration of 100 m M and above reduced gynophore vitality. It is concluded that the salt sensitivity of peanut plants resides mainly in the sensitivity of the reproductive organs.  相似文献   

13.
Abstract. Plantago maritima L. was grown at three levels of salinity, 50, 200, 350 mol m−3 NaCl, and the effects on growth, ion content and photosynthetic capacity were studied. Shoot and root dry weight, leaf production and leaf length were all substantially reduced in plants grown at high salinity. Total leaf area of plants grown at 350 mol m−3 NaCl was only 20% of that in plants at low salinity. Both the Na+ and K+ content of leaves and roots increased with external salinity. There was no change in the Na+/K+ ratio of leaves or roots at different salinity levels. Despite the large reductions in growth and high accumulation of Na+ ions, leaf photosynthetic rate was only slightly reduced by salinity stress. The reduction in photosynthesis was not caused by reduced biochemical capacity as judged by photosynthetic response to intercellular CO2 and by ribulose-1,5-bisphosphate carboxylase activity, but was due to reduced leaf conductance and low intercellular CO2 concentration. The increased stomatal limitation of photosynthesis resulted in higher water-use efficiency of plants grown at high salinity.  相似文献   

14.
The effect of high NaCl concentrations on the activity of catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7) and malate dehydrogenase (NAD+-linked; EC 1.1.1.37) from leaves of Halimione portulacoides (L.) Aellen was studied. The plants were exposed to high salinity during growth and enzyme activity was measured either in the absence or in the presence of various concentrations of NaCl. Increasing salinity in vitro induced three types of effects: (1) an increase in activity (peroxidase); (2) a decrease in activity (catalase); (3) stimulation by low salt concentration but inhibition by higher concentrations (malate dehydrogenase). Salinity in vivo induced a marked decrease in catalase and malate dehydrogenase activities. However, peroxidase in vivo showed an optimum curve of activity vs external NaCl concentration, with an optimum at ca 1 M NaCl. Exposure of plants to salinity induced changes in the properties of the enzyme proteins: they precipitated at a higher (NH4)2SO4 concentration, were eluted later during Sephadex G-200 filtration, and showed a shift in the maximal, minimal and optimal temperatures. These data are interpreted as evidence for conformational changes in the enzymes due to prolonged exposure to high salinity stress; such changes could be disruption into monomers (catalase and malate dehydrogenase), or changes in molecular shape (in the peroxidase).  相似文献   

15.
Regulation of soybean nodule phosphoenolpyruvate carboxylase in vivo   总被引:4,自引:0,他引:4  
The sensitivity of soybean ( Glycine max L. Merr, cv. PS47) nodule phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) to inhibition by L-malate in vitro increased when well-nodulated plants were subjected to decapitation (shoot removal). There was no effect of decapitation on the apparent Km of the enzyme for its substrate PEP but the I50 (L-malate) decreased from 4.2 to 1.7 m M. The total amount of PEP doubled and that of malate decreased by half in the nodules of decapitated plants relative to the control plants. This observation was consistent with a decrease in the activity of PEPC in vivo as a result of the increased malate sensitivity of the enzyme observed in vitro. Sucrose levels in the nodules declined in response to decapitation but there were no effects on the levels of glucose, fructose, pyruvate, 2-oxoglutarate, glutamine or glutamate. The results are discussed in terms of the role of protein phosphorylation in the regulation of PEPC activity in legume nodules.  相似文献   

16.
A tomato ( Lycopersicon esculentum Mill. cv. Pera) callus culture tolerant to NaCl was obtained by successive subcultures of NaCl-sensitive calli in medium supplemented with 50 m M NaCl. NaCl-tolerant calli grew better than NaCl-sensitive calli in media supplemented with 50 and 100 m M NaCl. Analysis of callus ion content showed a strong increase in Na+ and Cl both in NaCl-tolerant and -sensitive calli grown in media containing NaCl for one subculture. Cells from NaCl-tolerant calli showed a higher H+ extrusion activity than those from NaCl-sensitive calli grown for one subculture in the presence of NaCl. The inhibition of H+ extrusion by NaCl-sensitive cells was correlated with an inhibition of microsomal vanadate-sensitive H+-ATPase (EC 3.6.1.35) and ATP-dependent H+ transport, while the stimulation of H+ extrusion by cells tolerant to 50 m M NaCl was correlated with an increase in plasma membrane ATP-dependent H+ transport. The increase of ATP-dependent H+ extrusion in plasma membranes isolated from 50 m M NaCl-tolerant calli was not a result of stimulation of a vanadate-sensitive ATP hydrolytic activity or an increase in passive permeability to H+. Relative to NaCl-sensitive calli, plasma membrane H+-ATPase from calli tolerant to 50 m M NaCl showed a lower Km for Mg2+-ATP. Our results indicate that tolerance of tomato calli to 50 m M NaCl increases the affinity of plasma membrane H+-ATPase for the substrate ATP and stimulates the H+-pumping activity of this enzyme without modifying its phosphohydrolytic activity.  相似文献   

17.
Pyruvate kinase enzymes were partially purified from leaves of halophytes, Atriplex gmelini C. A. Mey., Chenopodium acuminatum Wild, and Spergularia salina J. et C. Presl., grown hydroponically in the presence of 250 m M NaCl in a greenhouse, to determine their Km values for potassium. The values were all ca 10−3 M , as also reported for the glycophyte enzymes. However, the Km values were reduced by 60 to 70% by the addition of betaine to a concentration of 1 M .  相似文献   

18.
Activity and biochemical characteristic of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase from pear ( Pyrus communis cv. Blanquilla) was determined. The enzyme showed a low Km (57.5 μM) for ACC and was dependent on O2 (Km 0.44% in atmosphere). It had an absolute requirement for Fe2+, ascorbate and CO2 and was inhibited by α-aminoisobutyric acid (AIB: K1 4.2 m M ) and cobalt. ACC oxidase has an optimum pH of 6.7 and temperature maxima at 28 and 38°C and it is concluded that the activity of ACC oxidase from pear resembles authentic in vivo activity.  相似文献   

19.
Gas exchange parameters, water relations and Na+/Cl- content were measured on leaves of one-year-old sweet orange ( Citrus sinensis [L.] Osbeck cv. Hamlin) seedlings grown at increasing levels of salinity. Different salts (NaCl, KCl and NaNO3) were used to separate the effects of Cl and Na+ on the investigated parameters. The chloride salts reduced plant dry weight and increased defoliation. Accumulation of Cl in the leaf tissue caused a sharp reduction in photosynthesis and stomatal conductance. By contrast, these parameters were not affected by leaf Na+ concentrations of up to 478 m M in the tissue water. Leaf water potentials reached values near −1.8 MPa at high NaCl and KCl supplies. This reduction was offset by a decrease in the osmotic potential so that turgor was maintained at or above control values. The changes in osmotic potential were closely correlated with changes in leaf proline concentrations. Addition of Ca2+ (as calcium acetate) increased growth and halved defoliation of salt stressed plants. Furthermore, calcium acetate decreased the concentration of Cl and Na+ in the leaves, and increased photosynthesis and stomatal conductance. Calcium acetate also counteracted the reductions in leaf water and osmotic potentials induced by salinity. In addition, calcium acetate inhibited the accumulation of proline in the leaves which affected the reduction in osmotic potential. These results indicate that adverse effects of salinity in Citrus leaves are caused by accumulation of chloride.  相似文献   

20.
Within its wide range across Canada, jack pine is exposed to salinity from both natural and anthropogenic sources. To compare the effects of Cl and SO4 on salt injury, sand and solution-culture grown jack pine ( Pinus banksiana Lamb.) seedlings were treated with nutrient solutions containing 60 or 120 m M NaCl, 60 m M Na2SO4, or a mixture of 60 m M NaCl and 30 m M Na2SO4. After 5 weeks of salt treatments, concentrations of Cl, K, Na, and SO4 were determined in roots, stem and needles of the current and previous years growth, and in necrotic needles. To determine the role of water uptake in the absorption and translocation of salts in plants, total transpiration was measured as the loss of water from a sealed system and related to total plant uptake of Cl, Na, and SO4. Sodium uptake and root-to-shoot transport rates were greater in treatments containing Cl. A delay in root-to-shoot transport of both Na and Cl indicates retention of these ions in the roots. Electrolyte leakage of needles was more closely related to treatment Cl concentrations than treatment Na concentrations. The transport of Na ions to the shoot was related to the presence of Cl, but was not related to transpiration rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号