首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xu L  Blackburn EH 《Molecular cell》2007,28(2):315-327
Using a modified single telomere length analysis protocol (STELA) to clone and examine the sequence composition of individual human XpYp telomeres, we discovered a distinct class of extremely short telomeres in human cancer cells with active telomerase. We name them "t-stumps," to distinguish them from the well-regulated longer bulk telomeres. T-stumps contained arrangements of telomeric repeat variants and a minimal run of seven canonical telomeric TTAGGG repeats, but all could bind at least one TRF1 or TRF2 in vitro. The abundance of t-stumps was unaffected by ATM alteration but could be changed by manipulating telomerase catalytic subunit (hTERT) levels in cancer cells. We propose that in the setting of active telomerase and compromised checkpoints characteristic of human cancer cells, t-stumps define the minimal telomeric unit that can still be protected by a TRF1/TRF2-capping complex and, further, that hTERT (or telomerase) may have a role in protecting t-stumps.  相似文献   

2.
Telomere instability in a human cancer cell line.   总被引:6,自引:0,他引:6  
Telomere maintenance is essential in immortal cancer cells to compensate for DNA lost from the ends of chromosomes, to prevent chromosome fusion, and to facilitate chromosome segregation. However, the high rate of fusion of chromosomes near telomeres, termed telomere association, in many cancer cell lines has led to the proposal that some cancer cells may not efficiently perform telomere maintenance. Deficient telomere maintenance could play an important role in cancer because telomere associations and nondisjunction have been demonstrated to be mechanisms for genomic instability. To investigate this possibility, we have analyzed the telomeres of the human squamous cell carcinoma cell line SQ-9G, which has telomere associations in approximately 75% of the cells in the population. The absence of detectable telomeric repeat sequences at the sites of these telomere associations suggests that they result from telomere loss. The analysis of telomere length by quantitative in situ hybridization demonstrated that, compared to the human squamous cell carcinoma cell line SCC-61 which has few telomere associations, SQ-9G has more extensive heterogeneity in telomere length and more telomeres without detectable telomeric repeat sequences. The dynamics of the changes in telomere length also demonstrated a higher rate of fluctuation in telomere length, both on individual telomeres and coordinately on all telomeres. These results demonstrate that telomere maintenance can play a role in the genomic instability seen in cancer cells.  相似文献   

3.
The telomerase enzyme plays a critical role in human aging and cancer biology by maintaining telomere length and extending the proliferative lifespan of most stem cells and cancer cells. Despite the importance of this enzyme, our understanding of the mechanisms that regulate its activity and establish telomere length homeostasis in mammalian cells is incomplete, in part because the perfect repetitive nature of telomeric sequence hampers in situ detection of telomere elongation patterns. Here, we describe a novel assay using a mutant telomerase that adds a well-tolerated variant telomeric repeat sequence to telomere ends. By specifically detecting the addition of these variant repeats, we can directly visualize telomere elongation events in human cells. We validate this approach by in situ mapping of telomere elongation patterns within individual nuclei and across a population of cells.  相似文献   

4.
Telomeric proteins have an essential role in the regulation of the length of the telomeric DNA tract and in protection against end-to-end chromosome fusion. Telomere organization and how individual proteins are involved in different telomere functions in living cells is largely unknown. By using green fluorescent protein tagging and photobleaching, we investigated in vivo interactions of human telomeric DNA-binding proteins with telomeric DNA. Our results show that telomeric proteins interact with telomeres in a complex dynamic fashion: TRF2, which has a dual role in chromosome end protection and telomere length homeostasis, resides at telomeres in two distinct pools. One fraction ( approximately 73%) has binding dynamics similar to TRF1 (residence time of approximately 44 s). Interestingly, the other fraction of TRF2 binds with similar dynamics as the putative end-protecting factor hPOT1 (residence time of approximately 11 min). Our data support a dynamic model of telomeres in which chromosome end-protection and telomere length homeostasis are governed by differential binding of telomeric proteins to telomeric DNA.  相似文献   

5.
Human telomeres are composed of duplex TTAGGG repeats and a 3' single-stranded DNA tail. The telomeric DNA is protected and regulated by the shelterin proteins, including the protection of telomeres 1 (POT1) protein that binds telomeric single-stranded DNA. The single-stranded tail can fold into G-quadruplex (G4) DNA. Both POT1 and G4 DNA play important roles in regulating telomere length homeostasis. To date, most studies have focused on individual quadruplexes formed by four TTAGGG repeats. Telomeric tails in human cells have on average six times as many repeats, and no structural studies have examined POT1 binding in competition with G4 DNA folding. Using single molecule atomic force microscopy imaging, we observed that the majority of the telomeric tails of 16 repeats formed two quadruplexes even though four were possible. The result that physiological telomeric tails rarely form the maximum potential number of G4 units provides a structural basis for the coexistence of G4 and POT1 on the same DNA molecule, which is observed directly in the captured atomic force microscopy images. We further observed that POT1 is significantly more effective in disrupting quadruplex DNA on long telomeric tails than an antisense oligonucleotide, indicating a novel POT1 activity beyond simply preventing quadruplex folding.  相似文献   

6.
Telomere lengths are maintained in many cancer cells by the ribonucleoprotein enzyme telomerase but can be further elongated by increasing telomerase activity through the overexpression of telomerase components. We report here that increased telomerase activity results in increased telomere length that eventually reaches a plateau, accompanied by the generation of telomere length heterogeneity and the accumulation of extrachromosomal telomeric repeat DNA, principally in the form of telomeric circles (t-circles). Telomeric DNA was observed in promyelocytic leukemia bodies, but no intertelomeric copying or telomere exchange events were identified, and there was no increase in telomere dysfunction-induced foci. These data indicate that human cells possess a mechanism to negatively regulate telomere length by trimming telomeric DNA from the chromosome ends, most likely by t-loop resolution to form t-circles. Additionally, these results indicate that some phenotypic characteristics attributed to alternative lengthening of telomeres (ALT) result from increased mean telomere length, rather than from the ALT mechanism itself.  相似文献   

7.
8.
In V79 Chinese hamster cells, radiation-induced genomic instability results in a persistently increased frequency of micronuclei, dicentric chromosomes and apoptosis and in decreased colony-forming ability. These manifestations of radiation-induced genomic instability may be attributed to an increased rate of chromosome breakage events many generations after irradiation. This chromosomal instability does not seem to be a property which has been inflicted on individual chromosomes at the time of irradiation. Rather, it appears to be secondary to an increased level of non-specific clastogenic factors in the progeny of most if not all irradiated cells. This conclusion is drawn from the observations presented here, that all the chromosomes in surviving V79 cells are involved in the formation of dicentric chromosome aberrations 1 or 2 weeks after irradiation with about equal probability if corrections are made for chromosome length. Received: 5 March 1998 / Accepted in revised form: 1 July 1998  相似文献   

9.
To understand gene function, genetic analysis uses large perturbations such as gene deletion, knockdown or over-expression. Large perturbations have drawbacks: they move the cell far from its normal working point, and can thus be masked by off-target effects or compensation by other genes. Here, we offer a complementary approach, called noise genetics. We use natural cell-cell variations in protein level and localization, and correlate them to the natural variations of the phenotype of the same cells. Observing these variations is made possible by recent advances in dynamic proteomics that allow measuring proteins over time in individual living cells. Using motility of human cancer cells as a model system, and time-lapse microscopy on 566 fluorescently tagged proteins, we found 74 candidate motility genes whose level or localization strongly correlate with motility in individual cells. We recovered 30 known motility genes, and validated several novel ones by mild knockdown experiments. Noise genetics can complement standard genetics for a variety of phenotypes.  相似文献   

10.
RPA-like proteins mediate yeast telomere function   总被引:1,自引:0,他引:1  
Cdc13, Stn1 and Ten1 are essential yeast proteins that both protect chromosome termini from unregulated resection and regulate telomere length. Cdc13, which localizes to telomeres through high-affinity binding to telomeric single-stranded DNA, has been extensively characterized, whereas the contribution(s) of the Cdc13-associated Stn1 and Ten1 proteins to telomere function have remained unclear. We show here that Stn1 and Ten1 are DNA-binding proteins with specificity for telomeric DNA substrates. Furthermore, Stn1 and Ten1 show similarities to Rpa2 and Rpa3, subunits of the heterotrimeric replication protein A (RPA) complex, which is the major single-stranded DNA-binding activity in eukaryotic cells. We propose that Cdc13, Stn1 and Ten1 function as a telomere-specific RPA-like complex. Identification of an RPA-like complex that is targeted to a specific region of the genome suggests that multiple RPA-like complexes have evolved, each making individual contributions to genomic stability.  相似文献   

11.
Telomestatin is a potent G-quadruplex ligand that interacts with the 3' telomeric overhang, leading to its degradation, and induces a delayed senescence and apoptosis of cancer cells. POT1 and TRF2 were recently identified as specific telomere-binding proteins involved in telomere capping and t-loop maintenance and whose interaction with telomeres is modulated by telomestatin. We show here that the treatment of HT1080 human tumor cells by telomestatin induces a rapid decrease of the telomeric G-overhang and of the double-stranded telomeric repeats. Telomestatin treatment also provokes a strong decrease of POT1 and TRF2 from their telomere sites, suggesting that the ligand triggers the uncapping of the telomere ends. The effect of the ligand is associated with an increase of the gamma-H2AX foci, one part of them colocalizing at telomeres, thus indicating the occurrence of a DNA damage response at the telomere, but also the presence of additional DNA targets for telomestatin. Interestingly, the expression of GFP-POT1 in HT1080 cells increases both telomere and G-overhang length. As compared with HT1080 cells, HT1080GFP-POT1 cells presented a resistance to telomestatin treatment characterized by a protection to the telomestatin-induced growth inhibition and the G-overhang shortening. This protection is related to the initial G-overhang length rather than to its degradation rate and is overcome by increased telomestatin concentration. Altogether these results suggest that telomestatin induced a telomere dysfunction in which G-overhang length and POT1 level are important factors but also suggest the presence of additional DNA sites of action for the ligand.  相似文献   

12.
p16基因导入致人乳腺癌MCF-7细胞端区缩短及细胞周期阻滞   总被引:3,自引:0,他引:3  
为进一步探讨 p1 6基因在抗肿瘤及细胞衰老中的作用 ,以脂质体介导的方法 ,将重组的含全长 p1 6c DNA的逆转录病毒载体导入人乳腺癌 MCF- 7细胞 ,获得稳定整合有效表达 .检测其对MCF- 7细胞的端区长度、细胞形态、增殖特性及细胞周期的影响 .结果显示 :导入 p1 6c DNA后的MCF- 7细胞端区长度明显缩短、增殖减慢 ,细胞周期阻滞于 G1期 .由此推测 ,野生型 p1 6基因可能通过诱导端区缩短效应及抑制细胞增殖从而抑制肿瘤和启动细胞衰老 .  相似文献   

13.
The integrity of telomeres in most cancer cells is maintained by the action of the telomerase enzyme complex, which catalyzes the synthesis of telomeric DNA repeats in order to replace those lost during replication. Telomerase is especially up-regulated in metastatic cancer and is thus emerging as a major therapeutic target. One approach to telomerase inhibition involves the sequestration of the single-stranded 3' ends of telomeric DNA into higher-order quadruplex structures. We have recently shown that tetra-substituted naphthalene diimide compounds are potent quadruplex-stabilizing molecules with telomerase inhibitory activity in cells. We show here that one such compound, BMSG-SH-3, which has been optimized by computer modeling, has significant in vivo antitumor activity against a model for pancreatic cancer, a cancer that is especially resistant to current therapies. A large reduction in telomerase activity in treated tumors was observed and the naphthalene diimide compound was found to be selectively localized in the treated tumors. We find that the expression of the therapeutically important chaperone protein HSP90, a regulator of telomerase is also reduced in vivo by BMSG-SH-3 treatment. The compound is a potent stabilizer of two G-quadruplex sequences found in the promoter region of the HSP90 gene, as well as a G-quadruplex from human telomeric DNA. It is proposed that the simultaneous targeting of these quadruplexes may be an effective anti-tumor strategy.  相似文献   

14.
N. Villa  L. Dalprà  L. Larizza 《Chromosoma》1997,106(6):400-404
Fluorescence in situ hybridization with a telomeric probe was used to monitor telomeric renewal following breakage induced by the rare fragile sites FRA10A, FRA12A and FRA16B. Interstitial telomere-like sequences were detected only at the break sites of FRA10A. Received: 26 February 1977; in revised form: 14 August 1997 / Accepted: 22 August 1997  相似文献   

15.
The 3' single-strand telomeric overhang (3'-OH) is a key component of telomere structure. Although telomere length has been well analyzed in a variety of human cancers, no information is available on the 3'-OH length in cancers. In the present study, we examined the 3'-OH length in normal and malignant endometria using telomere-oligonucleotide ligation assay. Although 3'-OH lengths varied among patients, 3'-OH length observed in endometrial cancers was significantly shorter than that found in samples derived from normal endometria (P < 0.001: Student's t-test), suggesting that erosion of 3'-OH length induces impaired telomeric integrity and genomic instability, leading to carcinogenesis. Interestingly, we found that the most aggressive subtypes of endometrial cancers harbored significantly longer 3'-OH length than those with non-aggressive subtypes (P < 0.001: Sheffe's test), suggesting that cancer cells with long 3'-OH length have growth advantage due to their stabilized telomere ends. In contrast, we failed to observe an association between overall telomere length and any clinicopathological characteristics of endometrial cancers. These findings suggest that erosion of 3'-OH length, rather than overall telomere length, play roles in endometrial carcinogenesis. Furthermore, long 3'-OH may serve as a molecular marker for aggressive phenotype of tumors.  相似文献   

16.
BACKGROUND: The length of the terminal sequences of linear chromosomes changes dynamically during cellular proliferation. A crucial element in the study of telomere-related regulation mechanisms is the ability to measure telomere lengths of individual chromosomes. Individual telomere lengths can be measured using digital imaging fluorescence microscopy-based techniques. We extended this method using confocal microscopy for the acquisition of three-dimensional (3D) images. Consequently, variations in measured signal intensities due to erroneous focusing are avoided. METHODS: We employed our 3D telomere sizing method to compare telomere lengths of sister chromatids within metaphase preparations from human lymphocytes. The samples were treated following a quantitative fluorescence in situ hybridization (Q-FISH) protocol using fluorescein isothiocyanate (FITC)-labeled telomeric peptidic nucleic acid (PNA) probes and propidium iodide (PI) counterstain. RESULTS: We demonstrated that the telomere lengths of two sister chromatids are not necessarily equal in human lymphocytes. Profound statistical analysis demonstrated significant differences in the distribution of the sister chromatid telomere lengths, but we were not able to prove a discrete distribution of telomere sister ratios. These telomere length differences were more apparent in older individuals. CONCLUSION: Whereas the majority of sister telomere pairs have equal lengths, surprisingly, a minority was significantly different in each individual studied. We are convinced that these observations are not linked to the methodology or the protocol applied. We suggest that a biological phenomenon might be involved.  相似文献   

17.
Using quantitative fluorescence in situ hybridization (Q-FISH), the average telomere length of hepatoma cells was assessed by the average telomeric signal intensity of cancer cells relative to that of stromal cells. We demonstrated first the applicability of Q-FISH for tissue sections by comparing Q-FISH and Southern blotting results. Tumors less than 50mm in diameter and with a relative telomeric intensity of less than 0.6 were categorized as group A and the remainder as group B. In group A, the telomere length correlated negatively with tumor size, whereas in group B there was no correlation. Compared with the group A tumors, the group B tumors were of significantly more advanced stage, showed higher telomerase and proliferative activities, and exhibited less differentiated histology. Therefore, we considered that a lack of correlation between telomere length and tumor size, namely, size-independence of telomere length, is associated with unfavorable clinicopathological features of hepatocellular carcinomas.  相似文献   

18.

Background

Telomeres are the protective arrays of tandem TTAGGG sequence and associated proteins at the termini of chromosomes. Telomeres shorten at each cell division due to the end-replication problem and are maintained above a critical threshold in malignant cancer cells to prevent cellular senescence or apoptosis. With the recent advances in massive parallel sequencing, assessing telomere content in the context of other cancer genomic aberrations becomes an attractive possibility. We present the first comprehensive analysis of telomeric DNA content change in tumors using whole-genome sequencing data from 235 pediatric cancers.

Results

To measure telomeric DNA content, we counted telomeric reads containing TTAGGGx4 or CCCTAAx4 and normalized to the average genomic coverage. Changes in telomeric DNA content in tumor genomes were clustered using a Bayesian Information Criterion to determine loss, no change, or gain. Using this approach, we found that the pattern of telomeric DNA alteration varies dramatically across the landscape of pediatric malignancies: telomere gain was found in 32% of solid tumors, 4% of brain tumors and 0% of hematopoietic malignancies. The results were validated by three independent experimental approaches and reveal significant association of telomere gain with the frequency of somatic sequence mutations and structural variations.

Conclusions

Telomere DNA content measurement using whole-genome sequencing data is a reliable approach that can generate useful insights into the landscape of the cancer genome. Measuring the change in telomeric DNA during malignant progression is likely to be a useful metric when considering telomeres in the context of the whole genome.  相似文献   

19.
Chromosome stability is primarily determined by telomere length. TRF1 is the core subunit of shelterin that plays a critical role in telomere organization and replication. However, the dynamics of TRF1 in scenarios of telomere-processing activities remain elusive. Using single-molecule magnetic tweezers, we here investigated the dynamics of TRF1 upon organizing a human telomere and the protein-DNA interactions at a moving telomeric fork. We first developed a method to obtain telomeres from human cells for directly measuring the telomere length by single-molecule force spectroscopy. Next, we examined the compaction and decompaction of a telomere by TRF1 dimers. TRF1 dissociates from a compacted telomere with heterogenous loops in ∼20 s. We also found a negative correlation between the number of telomeric loops and loop sizes. We further characterized the dynamics of TRF1 at a telomeric DNA fork. With binding energies of 11 kBT, TRF1 can modulate the forward and backward steps of DNA fork movements by 2–9 s at a critical force of F1/2, temporarily maintaining the telomeric fork open. Our results shed light on the mechanisms of how TRF1 organizes human telomeres and facilitates the efficient replication of telomeric DNA. Our work will help future research on the chemical biology of telomeres and shelterin-targeted drug discovery.  相似文献   

20.
There are two basic mechanisms that are associated with the maintenance of the telomere length, which endows cancer cells with unlimited proliferative potential. One mechanism, referred to as alternative lengthening of telomeres (ALT), accounts for approximately 10–15% of all human cancers. Tumours engaged in the ALT pathway are characterised by the presence of the single stranded 5′-C-rich telomeric overhang (C-overhang). This recently identified hallmark of ALT cancers distinguishes them from healthy tissues and renders the C-overhang as a clear target for anticancer therapy. We analysed structures of the 5′-C-rich and 3′-G-rich telomeric overhangs from human and Caenorhabditis elegans, the recently established multicellular in vivo model of ALT tumours. We show that the telomeric DNA from C. elegans and humans forms fundamentally different secondary structures. The unique structural characteristics of C. elegans telomeric DNA that are distinct not only from those of humans but also from those of other multicellular eukaryotes allowed us to identify evolutionarily conserved properties of telomeric DNA. Differences in structural organisation of the telomeric DNA between the C. elegans and human impose limitations on the use of the C. elegans as an ALT tumour model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号