首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The epiphytic fern genus Lecanopteris (Polypodiaceae) is regularly inhabited by five species of Iridomyrmex and Crematogaster, which nest and deposit debris in the hollow rhizomes. These epiphytes gain nutrients from ants in two ways: by root absorption from carton runways which surround plants, and by uptake of solutes from ant faeces and debris through the inner rhizome walls. The rhizome cavity surface is black, minutely pitted and bears no specialized absorptive structures. Nutrients containing 14-glucose, 86-rubidium and 32-phosphorus injected into the rhizome cavity were translocated through the plant. Ants inhabiting Lecanopteris were fed glycine and urea containing 15-nitrogen, and this label was incorporated into the fern tissues. Thus ant-derived nutrients can be incorporated into Lecanopteris tissues. The ferns may gain other benefits from the ants such as defence against herbivores, nurture of juveniles or spore dispersal.  相似文献   

2.
GAY, H., 1993. Rhizome structure and evolution in the ant-associated epiphytic fern Lecanopteris Reinw. (Polypodiaceae). The Lecanopteris rhizome is expanded or hollow, and is used as a nest by ants of the genera Iridomyrmex and Crematogaster. The 13 species of Lecanopteris display six rhizome forms, unequally distributed between two subgenera. Subgenus Myrmecopteris comprises four species, each possessing a characteristic rhizome: L. mirabilis has a solid, arched rhizome, with the domatium between the rhizome underside and host trunk; L. sarcopus displays dimorphism between solid frond-bearing axes and hollow, frondless side branches; the rhizome of L. Crustacea is hollow but phyllopodia are solid; L. sinuosa has hollow rhizomes and phyllopodia. The architecture of L. mirabilis, L. sarcopus and L. Crustacea results in a compact, many-layered domatium, but L. sinuosa has a tittle-branched habit. Members of subg. Lecanopteris are completely hollow and have a compact architecture: six species typified by L. pumila have a central gallery and hollow phyllopodia, and three species typified by L. darnaedii have two gallery and chamber systems. The genus Lecanopteris is unlikely to be monophyletic; its nearest relative is Phymalodes. Phylogeny in subg. Myrmecopteris is unclear; no gradation of rhizome complexity exists. In subg. Lecanopteris, L. curtisii is considered most similar to the ancestral species, giving rise to the L. pumila group, which engendered the L. darnaedii group.  相似文献   

3.
Many ant partners of tropical ant-plants prune the leaves and shoot tips of other plants growing around their hosts. According to the hypothesis proposed by Davidson et al. (Ecology 69:801-808), this specialized behaviour not only protects the host plants against overgrowth, but it also conveys a direct benefit to the ant colony as it removes contact points to the neighbouring vegetation where invasions of enemy ants could occur. Here we test this hypothesis by comparing pruning intensity in five closely related Crematogaster (subgenus Decacrema) plant-ant species (and one species of Technomyrmex) that differ in their exposure to competition by other ants. Pruning intensity was quantified by measuring the area loss of paper tape pieces wrapped around the stems of Macaranga host plants. All Crematogaster (Decacrema) ants tested but not Technomyrmex sp. pruned, but the intensity of the behaviour varied strongly between and within species. Pruning was significantly weaker in the three tested Crematogaster species inhabiting Macaranga host plants with a slippery, waxy stem surface, which functions as a mechanical barrier protecting the specific ant partners against generalist competitors. Pruning was generally stronger on more densely ant-populated trees. Even though the number of ants per twig length was lower in associations of ants with glaucous Macaranga hosts, only part of the variation of pruning activity could be explained by "ant density". When corrected for ant density, "wax-running" Crematogaster (Decacrema) ants still pruned more weakly than their congeners inhabiting non-glaucous Macaranga hosts. Pruning is obviously most important when an ant-plant is potentially accessible to intruders, but less necessary when the ant colony is isolated by a protective wax barrier. Our results support the hypothesis that "selfish" defence against invasions is the major selective pressure that has led to the development and maintenance of pruning behaviour in weakly competitive plant-ants.  相似文献   

4.
Meat ants (Iridomyrmex purpureus and allies) are perceived to be dominant members of Australian ant communities because of their great abundance, high rates of activity, and extreme aggressiveness. Here we describe the first experimental test of their influence on other ant species, and one of the first experimental studies of the influence of a dominant species on any diverse ant community. The study was conducted at a 0.4 ha savanna woodland site in the seasonal tropics of northern Australia, where the northern meat ant (I. sanguineus) represented 41% of pitfall catches and 73% of all ants at tuna baits, despite a total of 74 species being recorded. Meat ants were fenced out of experimental plots in order to test their influence on the foraging success of other species, as measured by access to tuna baits. The numbers of all other ants and ant species at baits in exclusion plots were approximately double those in controls (controlling for both the fences and for meat ant abundance), and returned rapidly to control levels when fences were removed after 7 weeks. Individual species differend markedly in their response to the fencing treatment, with species of Camponotus and Monomorium showing the strongest responses. Fencing had no effect on pitfall catches of species other than the meat ant, indicating that the effect of meat ants at baits was directly due to interference with foraging workers, and not regulation of general forager abundance. Such interference by meat ants has important implications for the sizes and densities of colonies of other ant species, and ultimately on overall ant community structure.  相似文献   

5.
PHENOLOGY OF THREE ANT SPECIES IN THE SOLOMON ISLANDS   总被引:1,自引:1,他引:0  
i
Seasonal variation in the composition of colonies is described, with particular reference to the incidence of sexual castes. The ant species are Oecophylla smaragdina F., Iridomyrmex cordatus Fr. Smith and Anoplolepis longipes Jerdon.  相似文献   

6.
Summary In central Portugal, 28 species of ants were found in oak, 25 in pine, 35 in eucalyptus and 12 in arable habitats, a total of 43 species. They include five numerically dominant species, the exotic Argentine ant.Linepithema (Iridomyrmex) humile and four native species,Crematogaster scutellaris, Pheidole pallidula, Tapinoma nigerrimum andTetramorium hispanicum. L. humile occurred in 34% of sampled sites. When present, it was abundant in all three arboreal habitats, where it was associated with strikingly decreased ant species richness and equitability. Such diversity was greater inL. humile-colonised arable habitats, where the ant was much less abundant than in the arboreal habitats.WhereL. humile was absent,C. scutellaris andP. pallidula were usually co-dominants in oak and pine, andT. nigerrimum andT. hispanicum in the arable habitat, but all were absent or rare in eucalyptus. Ants were numerically least abundant in eucalyptus but, in the absence ofL. humile, species richness was greater and the community more equitable than in the other habitats.L. humile-absent arable habitats supported the poorest and least equitable ant community.  相似文献   

7.
The rhizome morphology and architecture of L. sarcopus Teijsm. & Binnend. and L. darnaedii Hennipman. The rhizomes of the epiphytic fern Lecanopteris are highly modified and shelter ants, either in cavities or between the rhizome underside and the host tree. Different emphases on the relative contributions of morphology and architecture to the form of the ant-house exist in the genus, and are illustrated by a discussion of the rhizomes of L. sarcopus and L. darnaedii from Sulawesi, Indonesia. Lecanopteris sarcopus has dimorphic rhizomes, differentiated into solid, frond-bearing sections and hollow, frondless, ramifying ant-house branches. The internal morphology is simple; complexity in the rhizome structure is the result of profuse growth and branching of the ant-house branches. The rhizome of L. darnaedii is internally differentiated into two gallery and chamber systems, arranged vertically, with one directly above the other and running the length of the rhizome. Lecanopteris darnaedii does not branch profusely; 90–100% of primary side shoots develop but do not commonly grow beyond four to five internodes. Thus, in L. darnaedii plant architecture is restrained but morphology is intricate, while the reverse is true for L. sarcopus. Both species are equally regularly inhabited by ants.  相似文献   

8.
Symbioses include some of the clearest cases of coevolution, but their origin, loss or reassembly with different partners can rarely be inferred. Here we use ant/plant symbioses involving three plant clades to investigate the evolution of symbioses. We generated phylogenies for the big-eyed arboreal ants (Pseudomyrmecinae), including 72% of their 286 species, as well as for five of their plant host groups, in each case sampling more than 61% of the species. We show that the ant-housing Vachellia (Mimosoideae) clade and its ants co-diversified for the past 5 Ma, with some species additionally colonized by younger plant-nesting ant species, some parasitic. An apparent co-radiation of ants and Tachigali (Caesalpinioideae) was followed by waves of colonization by the same ant clade, and subsequent occupation by a younger ant group. Wide crown and stem age differences between the ant-housing genus Triplaris (Polygonaceae) and its obligate ant inhabitants, and stochastic trait mapping, indicate that its domatium evolved earlier than the ants now occupying it, suggesting previous symbioses that dissolved. Parasitic ant species evolved from generalists, not from mutualists, and are younger than the mutualistic systems they parasitize. Our study illuminates the macroevolutionary assembly of ant/plant symbioses, which has been highly dynamic, even in very specialized systems.  相似文献   

9.
1. Ant–plant mutualisms are among the most widespread and ecologically important insect–plant interactions in the tropics. The multitrophic mutualism involving Macaranga plants (Euphorbiaceae) and Crematogaster ants (Formicidae) is the most diverse in Southeast Asia. This interaction also includes trophobiotic scale insects (Coccidae) and nematodes inhabiting ant refuse piles. 2. Here two myrmecophytic systems were compared, Macaranga trachyphylla with Crematogaster captiosa (Mt + Cc) and Macaranga beccariana with Crematogaster decamera (Mb + Cd), using a fine‐scale dissection of the stems. For the two plant species, for each internode, both contents (ants, coccids, refuse piles) and structure (internode height, numbers of open and occluded ant holes) were recorded. 3. There were significant patterns in the vertical distribution of ant colonies and their symbionts in the plant stems. Most coccids were kept in the highest sections of both systems, although Mb + Cd hosted a broader range of coccid species than Mt + Cc. Three nematode species were recorded, but with a rather low specificity to plant or ant species. Furthermore, the fine‐scale distribution showed aggregation of closed holes with ant brood and separation of nematode‐infested refuse piles from eggs. 4. The results of this study indicate that ants manipulate spatial colony structure via distribution of brood, holes and the symbionts. It is suggested that ants optimise the location of refuse piles and occluded holes via spatial heterogeneity in their distribution among internodes. This paper discusses the protective role of occluded holes and demonstrates some general interactions with other symbiotic fauna.  相似文献   

10.
In obligate ant–plant mutualisms, the asymmetric engagement of a single plant species with multiple ant species provides the opportunity for partners to vary in their behaviour. Variation in behaviour has implications for the interactions with third‐party species such as herbivores. This study assessed the effect of obligate ant‐mutualists (Crematogaster mimosae, Crematogaster nigriceps and Tetraponera penzigi) inhabiting the African ant‐acacia (Acacia drepanolobium) on three mega‐herbivore browsers: the Maasai giraffe (Giraffa camelopardalis tippelskirchi), the reticulated giraffe (Giraffa c. reticulata) and the black rhino (Diceros bicornis). Giraffes are abundant and wide‐ranging herbivores of the acacias, whereas black rhinos are localized and perennial herbivores of the acacias. Multiyear field studies comparing the ants’ aggressive behaviour and browsing by mega‐herbivores suggested differences between the tending abilities of the primary ant species inhabiting A. drepanolobium. Trees occupied by the aggressive ant species C. mimosae had significantly less browsing by giraffes and black rhino than trees occupied by other ant species. The results of this study provide evidence that ant‐mutualists on African acacias can serve as deterrents to mega‐herbivores and that different ant species vary in their tending abilities.  相似文献   

11.
Abstract. Field data on associations of butterfly larvae with ants were collated for 435 species of the subfamily Lycaeninae to analyse patterns in the identity, diversity and ecology of attendant ants. Worldwide, members of at least fifty-three ant genera from six subfamilies associate with Lycaeninae larvae. All these ant genera also forage for other liquid carbohydrate food sources. Species of Crematogaster and Camponotus constitute by far the most important ant associates of Lycaeninae larvae. Diversity of butterfly–ant associations, as measured by Hurlbert rarefaction, is highest in the Oriental, Australian and Nearctic faunal regions, and lower in Africa and the Palaearctic. The Neotropical region could not be assessed separately due to paucity of data. Multiple regression analyses revealed that the number of Lycaeninae species associated with a particular ant genus in a facultatively mutualistic manner is largely determined by the ecological prevalence and geographical distribution, but does not correlate with species richness, of an ant genus. This opportunism is suggested to be the key variable supporting the geographically and taxonomically widespread occurrence of ant–caterpillar mutualism in the Lycaeninae. Obligate interactions are much more specific and almost exclusively involve ecologically dominant ants with long-lived colonies. Neither species richness nor geographical distribution of an ant genus are significant predictors. In such associations, the role of ants shifts from visitors to hosts, and patterns of host use and specificity resemble those known from inquiline ant guests.  相似文献   

12.
Dominant species are thought to regulate species composition and assemblage structure. Invasion by a dominant species is thus likely to alter assemblages and anthropogenic disturbance often facilitates such invasions. In this study we examined the association of a dominant ant, Iridomyrmex purpureus , native to south-eastern Australia, with fire trails in national parks and its effects on ant assemblages. Association with fire trails was examined by comparing the numbers of I. purpureus nests on transects along fire trails with those in transects through surrounding vegetation. Ant assemblages and habitat characteristics of eight sandstone outcrops that supported colonies of I. purpureus were compared with those on eight that did not in summer and autumn 2000. We examined ant species richness, abundance, composition and biomass using quadrats, and resource use with Acacia botrycephalus seeds placed on rock and in vegetation. I. purpureus nests were considerably more common along fire trails than in surrounding vegetation. Sites with I. purpureus had similar species richness to those without, but a lower abundance and biomass of other ants and a different assemblage composition. These differences could not be attributed to any differences in measured habitat characteristics. Ecologically similar species, particularly other species of Iridomyrmex , were less abundant in areas with I. purpureus . While the biomass of other species was suppressed in areas with I. purpureus , the biomass of the dominant was several times that of the assemblage of other ants, a pattern shared with assemblages invaded by exotic species. In areas with I. purpureus , seeds were removed more rapidly from rock, but not vegetation, indicating that resources on rock may be under-exploited by other species. Regulation of invaded ant assemblages by this dominant ant is thus limited to functionally similar species, and this may be due to its use of resources that are unexploited in its absence.  相似文献   

13.
In Amazonian rain forest trees of Vochysia vismiaefolia (Vochysiaceae), ants were found to induce twig structures that resembled classical ant domatia. This phenomenon is novel for ant‐plants, which commonly develop domatia without the activity of ants. Eight species of ants were recorded inside the domatia of six individual trees, but domatia were most numerous and characteristic when induced and inhabited by an undescribed species of Pseudomyrmex on two trees. To investigate the mechanism of domatium growth, we drilled holes into young twigs: the expansion of the twig diameter surrounding the holes was significantly accelerated, comparable to domatia formation. Domatia induction is discussed as a putative step in the evolution of ant‐plants.  相似文献   

14.
The fitness advantage provided by caulinary domatia to myrmecophytes has never been directly demonstrated because most myrmecophytic species do not present any individual variation in the presence of domatia and the removal of domatia from entire plants is a destructive process. The semi-myrmecophytic tree, Humboldtia brunonis (Fabaceae: Caesalpinioideae), is an ideal species to investigate the selective advantage conferred by domatia because within the same population, some plants are devoid of domatia while others bear them. Several ant species patrol the plant for extra-floral nectar. Fruit production was found to be enhanced in domatia-bearing trees compared to trees devoid of domatia independent of the ant associate. However, this domatium effect was most conspicuous for trees associated with the populous and nomadic ant, Technomyrmex albipes. This species is a frequent associate of H. brunonis, inhabiting its domatia or building carton nests on it. Ant exclusion experiments revealed that T. albipes was the only ant to provide efficient anti-herbivore protection to the leaves of its host tree. Measures of ant activity as well as experiments using caterpillars revealed that the higher efficiency of T. albipes was due to its greater patrolling density and consequent shorter lag time in attacking the larvae. T. albipes also provided efficient anti-herbivore protection to flowers since fruit initiation was greater on ant-patrolled inflorescences than on those from which ants were excluded. We therefore demonstrated that caulinary domatia provide a selective advantage to their host-plant and that biotic defence is potentially the main fitness benefit mediated by domatia. However, it is not the sole advantage. The general positive effect of domatia on fruit set in this ant–plant could reflect other benefits conferred by domatia-inhabitants, which are not restricted to ants in this myrmecophyte, but comprise a large diversity of other invertebrates. Our results indicate that mutualisms enhance the evolution of myrmecophytism.  相似文献   

15.
The Argentine ant Linepithema humile (Dolichoderinae) is one of the most widespread invasive ant species in the world. Throughout its introduced range, it is associated with the loss or reduced abundance of native ant species. The mechanisms by which these native species are displaced have received limited attention, particularly in Australia. The role of interference competition in the displacement of native ant species by L. humile was examined in coastal vegetation in central Victoria (southeastern Australia). Foragers from laboratory colonies placed in the field consistently and rapidly displaced the tyrant ant Iridomyrmex bicknelli, the big-headed ant Pheidole sp. 2, and the pony ant Rhytidoponera victoriae from baits. Numerical and behavioural dominance enabled Argentine ants to displace these ants in just 20 min; the abundance of native species at baits declined 3.5–24 fold in direct relation to the rapid increase in L. humile. Most precipitous was the decline of I. bicknelli, even though species in this typically dominant genus have been hypothesized to limit invasion of L. humile in Australia. Interspecific aggression contributed strongly to the competitive success of Argentine ants at baits. Fighting occurred in 50–75% of all observed interactions between Argentine and native ants. This study indicates that Argentine ants recruit rapidly, numerically dominate, and aggressively displace from baits a range of Australian native ant species from different subfamilies and functional groups. Such direct displacement is likely to reduce native biodiversity and indirectly alter food web structure and ecosystem processes within invaded areas. Biotic resistance to Argentine ant invasion from native ants in this coastal community in southeastern Australia is not supported in this study.  相似文献   

16.
Little is known about the spatial distribution of lianas on emergent trees in tropical rainforests and the factors affecting this distribution. The present study investigated the effects of an arboreal ant species, Crematogaster difformis, which forms myrmecophytic symbioses with two epiphytic ferns, Lecanopteris sp. and Platycerium sp., on the spatial distribution of lianas associated with emergent trees. Living lianas were placed onto trunk surfaces inside and outside the territories of the ants in the canopy, to examine their ability to remove them. The number of leaves pruned by the ants was significantly higher on lianas inside than outside their territories. The spatial overlap of the distributions of lianas and the two ferns on emergent trees were then examined. The frequency of liana colonization of tree crowns was found to be significantly lower on trees with than without ferns. Under the natural conditions, C. difformis workers were observed biting and pruning the lianas. These results suggest that C. difformis regulates the distribution of lianas on emergent trees.  相似文献   

17.
The African lycaenid butterfly, Anthene usamba, is an obligate myrmecophile of the acacia ant, Crematogaster mimosae. Female butterflies use the presence of C. mimosae as an oviposition cue. The eggs are laid on the foliage and young branches of the host plant, Acacia drepanolobium. Larvae shelter in the swollen thorns (domatia) of the host tree, where they live in close association with the acacia ants, and each larva occupies a domatium singly. Anthene usamba are tended by ants that feed from the dorsal nectary organ at regular intervals. Larvae also possess tentacle organs flanking the dorsal nectary organ and appear to signal to ants by everting these structures. Larvae were observed to spend most of their time within the domatia. Stable isotope analysis of matched host plant–ant–butterfly samples revealed that Anthene usamba are δ15N enriched relative to the ants with which they associate. These data, based on the increase in δ15N through trophic levels, indicate that the caterpillars of these butterflies are aphytophagous and either exploit the ant brood of C. mimosae within the domatia, or are fed mouth to mouth by adult workers via trophallaxis. This is the first documented case of aphytophagy in African Anthene. Pupation occurs inside the domatium and the imago emerges and departs via the hole chewed by the larva. The adult females remain closely associated with their natal patch of trees, whereas males disperse more widely across the acacia savannah. Females prefer to oviposit on trees with the specific host ant, C. mimosae, an aggressive obligate mutualist, and avoid neighbouring trees with other ant species. Adult butterflies are active during most months of the year, and there are at least two to three generations each year. Observations made over a 5‐year period indicate that a number of different lycaenid species utilize ant‐acacias in East Africa, and these observations are summarized, together with comparisons from the literature. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013 , 109 , 302–312.  相似文献   

18.
Tillberg CV 《Oecologia》2004,140(3):506-515
In ant–plant symbioses, the behavior of ant inhabitants affects the nature of the interaction, ranging from mutualism to parasitism. Mutualistic species confer a benefit to the plant, while parasites reap the benefits of the interaction without reciprocating, potentially resulting in a negative impact on the host plant. Using the ant–plant symbiosis between Cordia alliodora and its ant inhabitants as a model system, I examine the costs and benefits of habitation by the four most common ant inhabitants at La Selva Biological Station, Costa Rica. Costs are measured by counting coccoids associated with each ant species. Benefits include patrolling behavior, effectiveness at locating resources, and recruitment response. I also compare the diets of the four ant species using stable isotope analysis of nitrogen (N) and carbon (C). Ants varied in their rates of association with coccoids, performance of beneficial behaviors, and diet. These differences in cost, benefit, and diet among the ant species suggest differences in the nature of the symbiotic relationship between C. alliodora and its ants. Two of the ant species behave in a mutualistic manner, while the other two ant species appear to be parasites of the mutualism. I determined that the mutualistic ants feed at a higher trophic level than the parasitic ants. Behavioral and dietary evidence indicate the protective role of the mutualists, and suggest that the parasitic ants do not protect the plant by consuming herbivores.  相似文献   

19.
In this paper, we report the results of an experimental study on ant pollination of three plant species inhabiting the Mediterranean high mountains (Alyssum purpureum, Arenaria tetraquetra and Sedum anglicum) and four species inhabiting the aridlands (Lepidium subulatum, Gypsophyla struthium, Frankenia thymifolia and Retama sphaerocarpa) of South-eastern Spain. We determined several plant and ant traits, as well as the composition and abundance of the pollinator assemblage. Insects belonging to 29 families and five orders visited the flowers of the plant species studied. In all but two, L. subulatum and G. struthium, the ants comprised 70–100% of the flower visitors. The results clearly show that five out of seven of these plant species were pollinated by ants. The role of the ants as pollinators seems to depend heavily on the relative abundance of the ants with respect to the other species of the pollinator assemblage, ant pollination becoming evident when ants outnumber other floral visitors. The ant-pollination systems analysed in this study may be the result of prevailing ecological conditions more than an evolutionary result of a specialized interaction.  相似文献   

20.
Abstract:  Ants in the genus Iridomyrmex cause extensive problems for citrus producers in southern Australia by disrupting the biological control of honeydew-producing Hemiptera. We used baited pitfall traps to survey ant communities in 20 commercial citrus groves and test the hypothesis that populations of Iridomyrmex rufoniger gp spp. and Iridomyrmex purpureus can be reduced by conserving volunteer inter-row vegetation. Nine groves (five in the Murrumbidgee Irrigation Area, New South Wales, and four in the Sunraysia area, Victoria) were classified as 'bare' groves, where inter-row vegetation was routinely eliminated using herbicides and cultivation. The remaining 'grassed' groves (five in the MIA, six in Sunraysia) had inter-row vegetation controlled only by intermittent mowing. All groves had been managed consistently for between 9 and 22 years. MIA groves were trapped on three occasions (October 1997, January 1998 and April 1998), and Sunraysia groves once (March 1999). Over 190 000 ants were recovered, with I. rufoniger gp spp. accounting for 74% of overall captures and dominating collections in both 'bare' and 'grassed' groves. A linear mixed model analysis showed that ground cover management history had no significant effect (P > 0.05) on captures of I. rufoniger gp spp., I. purpureus , other Dolichoderinae, Ponerinae, Formicinae or Myrmicinae. High variability between ant populations in groves under the same management regime in each region suggests that aspects of grove management may be affecting ant community composition, however, our results indicate that suppression of pest Iridomyrmex species cannot be reliably achieved simply by altering the management of volunteer inter-row vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号