首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transfection agent (TFA)-induced magnetic cell labeling with Feridex IV is an attractive method of loading cells because it employs a pharmaceutical source of iron oxide. Although attractive, the method has two significant drawbacks. First, it requires mixing positively charged transfection agents and negatively charged magnetic nanoparticles, and the resulting loss of nanoparticle surface charge causes nanoparticle precipitation. Second, it can result in nanoparticle adsorption to the cell surface rather than internalization. Internalization of Feridex (and associated dextran) is important since dextran cell exterior can react with the antidextran antibodies, commonly present in human populations, and trigger an antibody-mediated cytotoxicity. Here we employed three assays for selecting Feridex/TFA mixtures to minimize nanoparticle precipitation and surface adsorption: (1) an assay for precipitation or stability (light scattering), (2) an assay for labeled cells (percentage of cells retained by a magnetic filter), and (3) an antidextran-based assay for nanoparticle internalization. Cells loaded with Feridex/protamine had internalized iron, whereas cells loaded with Feridex/Lipofectamine had surface-adsorbed iron. Optimal conditions for loading cells were 10 microg/Feridex and 3 microg/mL protamine sulfate. Conditions for loading cells with Feridex and a TFA need to be carefully selected to minimize nanoparticle precipitation and dextran adsorption to the cell surface.  相似文献   

2.
We prepared stable homogeneous suspensions with layered double hydroxide (LDH) nanoparticles for in vitro gene delivery tests. The viability of HEK 293T cells in the presence of LDH nanoparticles at different concentrations was investigated. This revealed 50% cell viability at 500 microg/mL of LDH nanoparticles that is much higher than 50-100 microg/mL used for the delivery tests. The supercoiled pEF-eGFP plasmid (ca. 6100 base pairs) was mixed with LDH nanoparticle suspensions for anion exchange at a weight ratio of DNA/LDH between 1:25 and 1:100. In vitro experiments show that GFP expression in HEK 293T cells starts in the first day, reaches the maximum levels by the second day and continues in the third day. The GFP expression generally increases with the increase in DNA loading in DNA-LDH nanohybrids. However, the delivery efficiency with LDH nanoparticles as the agent is low. For example, the relative efficiency is 7%-15% of that of the commercial agent FuGENE 6. Three to 6% of total cells expressed GFP in an amount detectable by the FACS cytometry 2 days after transfection at 1 microg/mL of plasmid DNA with 25 microg/mL of LDH nanomaterial. The lower delivery efficiency could be attributed to the aggregation of LDH nanoparticles caused by the long-chain plasmid DNA.  相似文献   

3.
Visualization and quantification of inflammatory processes is of high importance for early diagnosis of a multitude of diseases. Magnetic resonance imaging (MRI) using iron oxide (FeO) nanoparticles as contrast agents allows the study of macrophage infiltration during inflammation in a variety of tissues. Macrophages are effectors of the immune response, their appearance being orchestrated by activated T lymphocytes. Therefore, tracking of labeled T lymphocytes, which initiate the immune process, should enable earlier detection of tissue inflammation. In this study, we investigate the feasibility of specifically labeling harvested T cells by using dextran-coated FeO nanoparticles and commonly available transfection agents (TAs). Physicochemical properties of the newly formed FeO/TA vesicles were determined as well as their cell toxicity and their T cell activation potential. The labeling efficiency of each FeO/TA combination was evaluated by measuring the transverse MRI relaxation rate R(2) by X-ray spectroscopy and magnetic selection. Toxicity and labeling efficacy differed significantly among TAs. The best results were achieved by using polyamine TAs and in particular by using poly-l-lysine at a concentration of 1.5 microg/mL administered in combination with 22.5 microg iron/mL. By using this protocol, up to 60% of harvested T cells could be labeled. Microscopic investigation revealed FeO/TA nanoparticles not only localized within the cytoplasma of the cells but also sticking to the outer membrane surface.  相似文献   

4.
Peptide nucleic acids (PNAs) are very attractive antisense and antigene agents, but these molecules are not passively taken into cells. Here, using a functional cell assay and fluorescent-based methods, we investigated cell uptake and antisense activity of a tridecamer PNA that targets the HIV-1 polypurine tract sequence delivered using the arginine-rich (R/W)9 peptide (RRWWRRWRR). At micromolar concentrations, without use of any transfection agents, almost 80% inhibition of the target gene expression was obtained with the conjugate in the presence of the endosomolytic agent chloroquine. We show that chloroquine not only induced escape from endosomes but also enhanced the cellular uptake of the conjugate. Mechanistic studies revealed that (R/W)9-PNA conjugates were internalized via pinocytosis. Replacement of arginines with lysines reduced the uptake of the conjugate by six-fold, resulting in the abolition of intracellular target inhibition. Our results show that the arginines play a crucial role in the conjugate uptake and antisense activity. To determine whether specificity of the interactions of arginines with cell surface proteoglycans result in the internalization, we used flow cytometry to examine uptake of arginine- and lysine-rich conjugates in wild-type CHO-K1 and proteoglycan-deficient A745 cells. The uptake of both conjugates was decreased by four fold in CHO-745 cells; therefore proteoglycans promote internalization of cationic peptides, irrespective of the chemical nature of their positive charges. Our results show that arginine-rich cell-penetrating peptides, especially (R/W)9, are a promising tool for PNA internalization.  相似文献   

5.
By complexing ferumoxides or superparamagnetic iron oxide (SPIO) to transfection agents (TAs), it is possible to magnetically label mammalian cells. There has been no systematic study comparing TAs complexed to SPIO as far as cell labeling efficiency and viability. This study investigates the toxicity and labeling efficiency at various doses of FEs complexed to different TAs in mammalian cells. Different classes of TAs were used, such as polycationic amines, dendrimers, and lipid-based agents. Cellular toxicity was measured using doses of TAs from 1 to 50 microg/mL in incubation media. Iron incorporation efficiency was measured by combining various amounts of FEs and different doses of TAs. Lipofectamine2000 showed toxicity at lowest dose (1 microg/mL), whereas FuGENE6 and low molecular weight poly-L-lysine (PLL) showed the least toxicity. SPIO labeling efficiency was similar with high-molecular-weight PLL (388.1 kDa) and superfect, whereas FuGENE6 and low-molecular-weight PLL were inefficient in labeling cells. Concentrations of 25 to 50 microg/mL of FEs complexed to TAs in media resulted in sufficient endocytosis of the SPIO into endosomes to detect cells on cellular magnetic resonance imaging.  相似文献   

6.
Mixed monolayer protected gold clusters (MMPCs) functionalized with quaternary ammonium chains efficiently transfect mammalian cell cultures, as determined through beta-galactosidase transfer and activity. The success of these transfection assemblies depended on several variables, including the ratio of DNA to nanoparticle during the incubation period, the number of charged substituents in the monolayer core, and the hydrophobic packing surrounding these amines. Complexes of MMPCs and plasmid DNA formed at w/w ratios of 30 were most effective in promoting transfection of 293T cells in the presence of 10% serum and 100 microM chloroquine. The most efficient nanoparticle studied (MMPC 7) was approximately 8-fold more effective than 60 kDa polyethylenimine, a widely used transfection agent.  相似文献   

7.
目的:建立基于聚(乳酸-羟基乙酸)纳米粒(PLGA)载DNA的基因转染体系,比较用空白聚(乳酸-羟基乙酸)纳米粒(PLG-A-E)吸附质粒DNA和用分枝PEI修饰后的PLGA纳米粒(PLGA-BPEI)吸附质粒DNA优缺点。方法:用乳化蒸发法制备纳米粒,对纳米粒进行表征研究,包括包封率、Zeta电位、粒径大小、稳定性,用荧光显微镜观察它们对NIH3T3和HEK293细胞的转染效率,用MTT检测对它们细胞的毒性。结果:制备了两种基于PLGA的纳米粒,PLGA-E和PLGA-BPEI粒径大小为200-270nm,zeta电位为0-30mV,在血清和不同的pH值时两者均较稳定,转染效率PLGA-BPEI较PLGA-E高,且释放时间早,但前者较后者对细胞毒性大。结论:这两种基于PLGA纳米粒均能有效转染质粒DNA,它们存在不同的优缺点,应根据不同需要进行选择。  相似文献   

8.
Since bacterial invasion into host cells is an important step in the infection process, using the agents to interfere with bacterial internalization is an attractive approach to block the infection process. In this work, we describe a new, previously unrecognized role of the human cationic host defense peptide HMGN2 during Klebsiella pneumoniae infections. Our results revealed that the internalization of K. pneumoniae strain 03183 into cultured bladder epithelial cells (T24) was significantly reduced at HMGN2 concentrations that were unable to produce any bacteriostatic or bactericidal effect. Using microarrays and follow-up studies, we demonstrated that HMGN2 affected the internalization of K. pneumoniae strain 03183 by inhibiting the attachment of bacteria, and then decreasing bacteria-induced ERK1/2 activation and actin polymerization, which might contribute to bacterial internalization into T24 cells. This disruption of bacterial internalization implied that HMGN2 could provide protection against K. pneumoniae infections.  相似文献   

9.
Poly(amidoamine) (PAMAM) dendrimer derivatives have been investigated for their biological applications, especially for delivery of drugs, including antimicrobial drugs to eukaryotic cells, but their effects on bacterial cells are largely unexplored. Herein we report that amino-terminated PAMAM dendrimers are highly toxic to the common Gram-negative pathogen Pseudomonas aeruginosa. The concentration that kills 50% of the bacteria (EC50) was in the range of approximately 0.9-1.5 microg/mL for the generation 5, amino-terminated dendrimers with or without partial (43%) coating of poly(ethylene glycol) (PEG). These EC50 values were lower than that ( approximately 1.9-2.8 microg/mL) for LL-37, a potent antimicrobial peptide expressed in a variety of epithelia. On the contrary, the dendrimers were far less toxic (EC50 > 21 microg/mL) to the Gram-positive pathogen Staphylococcus aureus than LL-37 (EC50 = approximately 1.9 microg/mL). In agreement with the previous studies on other cell types, the dendrimers were not cytotoxic to human corneal epithelial cells at the concentrations that were toxic to P. aeruginosa. Our findings indicate that amino-terminated PAMAM dendrimers and their partially PEG-coated derivatives possess attractive antimicrobial properties, particularly against Gram-negative bacteria, thus expanding the potential biological application of the dendrimers.  相似文献   

10.
Antibody targeting of drug substances can improve the efficacy of the active molecule, improving distribution and concentration of the drug at the site of injury/disease. Encapsulation of drug substances into polymeric nanoparticles can also improve the therapeutic effects of such compounds by protecting the molecule until its action is required. In this current study, we have brought together these two rationales to develop a novel immuno-nanoparticle with improved therapeutic effect against colorectal tumor cells. This nanoparticle comprised a layer of peripheral antibodies (Ab) directed toward the Fas receptor (CD95/Apo-1) covalently attached to poly(lactide-co-glycolide) nanoparticles (NP) loaded with camptothecin. Variations in surface carboxyl density permitted up to 48.5 microg coupled Ab per mg of NP and analysis of nanoparticulate cores showed efficient camptothecin loading. Fluorescence visualization studies confirmed internalization of nanoconstructs into endocytic compartments of HCT116 cells, an effect not evident in NP without superficial Ab. Cytotoxicity studies were then carried out against HCT116 cells. After 72 h, camptothecin solution resulted in an IC 50 of 21.8 ng mL (-1). Ab-directed delivery of NP-encapsulated camptothecin was shown to be considerably more effective with an IC 50 of 0.37 ng mL (-1). Calculation of synergistic ratios for these nanoconstructs demonstrated synergy of pharmacological relevance. Indeed, the results in this paper suggest that the attachment of anti-Fas antibodies to camptothecin-loaded nanoparticles may result in a therapeutic strategy that could have potential in the treatment of tumors expressing death receptors.  相似文献   

11.
We have developed a simple and robust transient expression system utilizing the 25 kDa branched cationic polymer polyethylenimine (PEI) as a vehicle to deliver plasmid DNA into suspension-adapted Chinese hamster ovary cells synchronized in G2/M phase of the cell cycle by anti-mitotic microtubule disrupting agents. The PEI-mediated transfection process was optimized with respect to PEI nitrogen to DNA phosphate molar ratio and the plasmid DNA mass to cell ratio using a reporter construct encoding firefly luciferase. Optimal production of luciferase was observed at a PEI N to DNA P ratio of 10:1 and 5 mug DNA 10(6) cells(-1). To manipulate transgene expression at mitosis, we arrested cells in G2/M phase of the cell cycle using the microtubule depolymerizing agent nocodazole. Using secreted human alkaline phosphatase (SEAP) and enhanced green fluorescent protein (eGFP) as reporters we showed that continued inclusion of nocodazole in cell culture medium significantly increased both transfection efficiency and reporter protein production. In the presence of nocodazole, greater than 90% of cells were eGFP positive 24 h post-transfection and qSEAP was increased almost fivefold, doubling total SEAP production. Under optimal conditions for PEI-mediated transfection, transient production of a recombinant chimeric IgG4 encoded on a single vector was enhanced twofold by nocodazole, a final yield of approximately 5 microg mL(-1) achieved at an initial viable cell density of 1 x 10(6) cells mL(-1). The glycosylation of the recombinant antibody at Asn297 was not significantly affected by nocodazole during transient production by this method.  相似文献   

12.
Adenosine deaminase (ADA), an enzyme involved in purine metabolism, catalyzes the hydrolytic breakdown of adenosine into inosine and free ammonia. ADA regulation has been targeted as a potential therapeutic agent for viral infections and lymphoproliferative disorders. In this study, we isolated a novel ADA inhibitor from a culture of Bacillus sp. J-89, and evaluated its anti-proliferative activity on human cancer cell lines. The ADA inhibitor was deduced as a 2-N-methyl-2,4-diazacycloheptanone by analyses of UV, IR, EI-MASS, (1)H-NMR, (13)C-(1)H NMR, and (13)C-NMR spectroscopy, and was designated IADA-7. IADA-7 was shown to inhibit purified mammalian and Actinomyces ADA. IADA-7 also inhibited the proliferation of both Jurkat T cells (IC(50) = 15 microg/mL) and J 82 (human transitional-cell carcinoma, bladder) cells (IC(50) = 25 microg/mL). In Jurkat T cells, apoptosis with 15 microg/mL IADA-7 for 24 and 48 hours was 9 and 13%, respectively. These results suggest that IADA-7 can inhibit ADA activity in multiple species and that it may represent a good candidate as an anti-cancer therapeutic agent due to its demonstrated anti-proliferative activity on cancer cells.  相似文献   

13.
We have demonstrated synthesis and application of a water-soluble, folate-substituted poly(p-phenyleneethynylene) (PPE) as a fluorescent contrast agent to image cancer cells. This fluorescent polymer targets and images KB cancer cells in vitro with high selectivity. To deliver PPE to the cells, folate ligands have been attached to an amine-functionalized PPE via an amide coupling agent. The hydrolysis of the ester groups gave a water-soluble PPE, 5. The PPE 5 is minimally cytotoxic at concentrations of 1-10 microg/mL, which is sufficient to stain KB cancer cells efficiently. PPE 6, devoid of folate ligands, did not stain KB cells. As a low folic acid (-) receptor control group, NIH 3T3 fibroblast cells were incubated with 5 and did not show fluorescent labeling. The folate receptor-mediated endocytosis of KB cells was evidenced by laser scanning confocal microscopy and fluorescence microscopy. The photochemical stability and ability to sustain multivalency provide advantages of PPEs over other fluorescent contrast agents. Their minimal cytotoxicity makes the PPE superior to the cytotoxic CdSe quantum dots.  相似文献   

14.
Transitional cell carcinoma (TCC), which is the most common type of bladder cancer, shows resistance to chemotherapeutic agents due to the overexpression of drug efflux pumps. In this study, the effects of feselol, a sesquiterpene coumarin extracted from Ferula badrakema, on cisplatin cytotoxicity were investigated in 5637 cells, a TCC subline. Cell viability and DNA lesion were evaluated by thiazolyl blue tetrazolium bromide and comet assays, respectively. Feselol had no significant cytotoxic effect in 5637 cells but at 32 microg/mL it increased the cytotoxicity of 1 microg/mL cisplatin by 37% after 24 h. Furthermore, the comet assay revealed that DNA damage induced by cisplatin in 5637 cells is enhanced by 31% when used in combination with feselol. Therefore, feselol might be considered as an effective reversal agent for future in vivo and clinical studies.  相似文献   

15.
Ellipticine derivatives have potential as anticancer drugs. Their clinical use has been limited, however, by poor solubility and host toxicity. As N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-anticancer conjugates are showing promise in early clinical trials, a series of novel HPMA copolymer conjugates have been prepared containing the 6-(3-aminopropyl)-ellipticine derivative (APE, NSC176328). Drug was linked to the polymer via GFLG or GG peptide side chains. To optimize biological behavior, HPMA copolymer-GFLG-APE conjugates with different drug loading (total APE: 2.3-7% w/w; free APE: <0.1% w/w) were synthesized. Conjugation of APE to HPMA copolymers considerably increased its aqueous solubility (>10-fold). HPMA copolymer-GG-APE did not liberate drug in the presence of isolated lysosomal enzymes (tritosomes), but HPMA copolymer-GFLG-APE released APE to a maximum of 60% after 5 h. The rate of drug release was influenced by drug loading; lower loading led to greater release. Whereas free APE (35 microg/mL) caused significant hemolysis (50% after 1 h), HPMA copolymer-APE conjugates were not hemolytic up to 300 microg/mL (APE-equiv). As would be expected from its cellular pharmacokinetics, HPMA copolymer-GFLG-APE was >75 times less cytotoxic than free drug (IC(50) approximately 0.4 microg/mL) against B16F10 melanoma in vitro. However, in vivo when tested in mice bearing s.c. B16F10 melanoma, HPMA copolymer-GFLG-APE (1-10 mg/kg single dose, APE-equiv) given i.p. was somewhat more active (highest T/C value of 143%) than free APE (1 mg/kg) (T/C =127%). HPMA copolymer-APE conjugates warrant further evaluation as potential anticancer agents.  相似文献   

16.
Pseudomonas aeruginosa 47T2, grown in submerged culture with waste frying oil as a carbon source, produced a mixture of rhamnolipids with surface activity. Up to 11 rhamnolipid homologs (Rha-Rha-C(8)-C(10); Rha-C(10)-C(8)/Rha-C(8)-C(10);Rha-Rha-C(8)-C(12:1); Rha-Rha-C(10)-C(10); Rha-Rha-C(10)-C(12:1); Rha-C(10)-C(10); Rha-Rha-C(10)-C(12)/Rha-Rha-C(12)-C(10); Rha-C(10)-C(12:1)/Rha-C(12:1)-C(10); Rha-Rha-C(12:1)-C(12); Rha-Rha-C(10)-C(14:1); Rha-C(10)-C(12)/Rha-C(12)-C(10)) were isolated from cultures of P. aeruginosa 47T2 from waste frying oil and identified by HPLC-MS analysis. This article deals with the production, isolation, and chemical characterization of the rhamnolipid mixture RL(47T2). The physicochemical and biological properties of RL(47T2) as a new product were also studied. Its surface tension decreased to 32.8 mN/m; and the interfacial tension against kerosene to 1 mN/m. The critical micellar concentration for RL(47T2) was 108.8 mg/mL. The product showed excellent antimicrobial properties. Antimicrobial activity was evaluated according to the minimum inhibitory concentration (MIC), the lowest concentration of an antimicrobial agent that inhibits development of visible microbial growth. Low MIC values were found for bacteria Serratia marcescens (4 microg/mL), Enterobacter aerogenes (8 microg/mL), Klebsiella pneumoniae (0.5 microg/mL), Staphylococcus aureus and Staphylococcus epidermidis (32 microg/mL), Bacillus subtilis (16 microg/mL), and phytopathogenic fungal species: Chaetonium globosum (64 microg/mL), Penicillium funiculosum (16 microg/mL), Gliocadium virens (32 microg/mL) and Fusarium solani (75 microg/mL).  相似文献   

17.
Large-scale transient gene expression (TGE) in mammalian cells is an attractive method to rapidly produce recombinant proteins for pre-clinical studies, with some processes reported to reach 100 L. However, the yield remains low, hardly over 20 mg protein/L, mainly because the current TGEs have been performed at low cell density (approximately 5 x 10(5) cells/mL). In this study, the strategy to improve TGE focuses on facilitating transfection at high cell density. A high-density perfusion culture of 293 EBNA1 cells was established in 2-L bioreactor using Freestyle 293 expression medium (Invitrogen, Singapore) to grow the cells for transfection. Transfection was then carried out at 1 x 10(7) cells/mL using polyethylenimine (PEI) as DNA carrier, at the optimized conditions of 6 microg DNA/10(7) cells and 1:3 DNA to PEI mass ratio. During the post-transfection phase, 80.8 mg/L of the model protein, EPO was obtained at day 5.5 post-transfection (130 mg total EPO production) using a fed-batch culture mode. In comparison, perfusion cultures using an enriched SFM II medium resulted in a longer post-transfection production phase (8 days), and 227 mg of EPO was produced in 10.7 L medium, showing that high-density TGE enables the production of several hundreds of milligrams of protein in a 2 L bioreactor. In addition, a protocol for economical plasmid preparation based on anion exchange was also established to satisfy TGE's demand in terms of quality and quantity. To the best of our knowledge, this is the first report of transient transfections at a high cell density of up to 1 x 10(7) cells/mL.  相似文献   

18.
Based on general SARs previously described for anti-HIV-1 diarylsulfone derivatives, a series of 2-amino- and 2-carboxamido-3-arylsulfonylthiophenes has been prepared and evaluated as potential antiviral and antitumor agents. In cell culture, some of the 2-aminothiophenes exhibited moderate and selective activity against HIV-1, with 2-amino-3-(2-nitrophenylsulfonyl)thiophene (7e) being most attractive (EC(50)=3.8 microg/mL, CC(50)=>100 microg/mL). In broad-spectrum antiviral assays, the 3-arylsulfonyl-2-(trifluoroacetamido)thiophenes (8c-g) and 2-acetamido-3-arylsulfonyl-5-nitrothiophenes (9f-g) proved considerably active (IC(50)=0.1-10 microg/mL) against human cytomegalovirus (CMV) and/or varicella zoster virus (VZV). Based on the activity of the trifluoroacetamides, ring-modified furan, N-(substituted)pyrrole, phenyl, and 3,4-thiophene analogues were prepared, and these compounds were also active against CMV and/or VZV, with the notable exception of the 3,4-thiophene derivative. In contrast to other amines, the 2-aminopyrrole precursors (13a-d) also exhibited potent activity against CMV. Unfortunately, most of these compounds displayed significant cytotoxicity against human fibroblasts, the cells supporting CMV and VZV replication, and thus selectivity indices were low. The most notable exception to this was the naphthyl-substituted aminopyrrole 13d, which exhibited both potent (IC(50)=0.3 microg/mL) and selective (CC(50)=>50 microg/mL) activity against CMV. Finally, thiophene aryl amides 8i-k displayed moderate in vitro activity against certain leukemia, breast, and colon cancer cell lines.  相似文献   

19.
A great challenge for gene therapy is to develop a high efficient gene delivery system with low toxicity. Nonviral vectors are still attractive although the current agents displayed some disadvantages (i.e., low transfection efficiency, high toxicity). To overcome the high toxicity of poly(ethylene imine) (PEI) and low transfection efficiency of PEGylated PEI (PEG-PEI), we linked a cell specific target molecule folate (FA) on poly(ethylene glycol) (PEG) and then grafted the FA-PEG onto hyperbranched PEI 25 kDa. The FA-PEG- grafted-hyperbranched-PEI (FA-PEG-PEI) effectively condensed plasmid DNA (pDNA) into nanoparticles with positive surface charge under a suitable N/P ratio. Tested in deferent cell lines (i.e., HEK 293T, glioma C6 and hepatoma HepG2 cells), no significant cytotoxicity of FA-PEG-PEI was added to PEG-PEI. More importantly, significant transfection efficiency was exhibited in FA-targeted cells. Reporter assay showed that FA-PEG-PEI/pDNA complexes had significantly higher transgene activity than that of PEI/pDNA in folate-receptor (FR) positive (HEK 293T and C6) cells but not FR-negative (HepG2) cells. These results indicated that FA-PEG-PEI might be a promising candidate for gene delivery with the characteristics of good biocompatibility, potential biodegradability, and relatively high gene transfection efficiency.  相似文献   

20.
Endostatin, a carboxy-terminal fragment of collagen XVIII, has been shown to act as an anti-angiogenic agent that specifically inhibits proliferation of endothelial cells and growth of various primary tumors. Here, we describe the expression by Chinese hamster ovary (CHO) cells of murine endostatin and of a tagged-fusion protein, (his)6-met-endostatin. A dicistronic mRNA expression vector was utilized in which endostatin cDNA was inserted upstream of the amplifiable marker gene, dihydrofolate reductase (DHFR). After transfection of the expression vectors, stepwise increments in methotrexate levels in the culture medium were applied, promoting gene amplification and increasing expression levels of the proteins of interest. The expression level of secreted native endostatin was about 78 microg/mL while the one for secreted (his)6-met-endostatin was about 114 microg/mL, for the best expressing clones. Characterization of physico-chemical and immunological activities of the proteins was performed using SDS-PAGE and Western blotting. The biological activities of recombinant endostatins were tested with a cow pulmonary artery endothelial (C-PAE) cell proliferation assay. Both recombinant endostatin and (his)6-met-endostatin inhibited, in a dose-dependent fashion, growth of C-PAE cells stimulated by basic fibroblast growth factor (bFGF).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号