首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The transfer of mannose from GDP-mannonse to exogenous glycopeptides and simple glycosides has been shown to be carried out by calf thyroid particles (Adamany, A. M., and Spiro, R. G. (1975) J. Biol. Chem. 250, 2830-2841). The present investigation indicates that this mannosylation process is accomplished through two sequential enzymatic reactions. The first involves the transfer of mannose from the sugar nucleotide to an endogenous acceptor to form a compound which has the properties of dolichyl mannosyl phosphate, while in the properties of dolichyl mannosyl phosphate, while in the second reaction this mannolipid serves as the glycosyl donor to exogenous acceptors. The particle-bound enzyme which catalyzed the first reaction utilized GDP-mannose (Km = 0.29 microM) as the most effective mannosyl donor, required a divalent cation, preferably manganese or calcium, and acted optimally at pH 6.3. Mannolipid synthesis was reversed by addition of GDP and a ready exchange of the mannose moiety was observed between [14C]mannolipid and unlabeled GDP-mannose. Exogenously supplied dolichyl phosphate, and to a lesser extent ficaprenyl phosphate, served as acceptors for the transfer reaction. The 14C-labeled endogenous lipid had the same chromatographic behavior as synthetic dolichyl mannosyl phosphate and enzymatically mannosylated dolichyl phosphate. The mannose component in the endogenous lipid was not susceptible to reduction with sodium borohydride and was released by mild acid hydrolysis. Alkaline treatment of the mannolipid released a phosphorylated mannose with properties consistent with that of mannose 2-phosphate. The formation of this compound which can arise from a cyclic 1,2-phosphate indicated, on the basis of steric considerations, that the mannose is present in beta linkage to the phosphate of the lipid. An intermediate role of the mannolipid in the glycosylation of exogenous acceptors was suggested by the observation that addition of dolichyl phosphate to thyroid particles resulted in a marked enhancement of mannose transfer from GDP-mannose to methyl-alpha-D-mannopyranoside acceptor while the presence of the glycoside caused a decrease in the mannolipid level. The glycosyl donor function of the polyisoprenyl mannosyl phosphate in the second reaction of the mannosylation sequence could be directly demonstrated by the transfer of [14C]mannose from purified endogenous mannolipid to either methyl-alpha-D-mannoside or dinitrophenyl unit A glycopeptides by thyroid enzyme in the presence of Triton X-100. The mannosylation of the glycoside was not inhibited by EDTA whereas the transfer of mannose to glycopeptide was cation-dependent. While dolichyl [14C]mannosyl phosphate, prepared from exogenous dolichyl phosphate, served as a donor of mannose to exogenous acceptor, this function could not be fulfilled by ficaprenyl [14C]mannosyl phosphate. The two-step reaction sequence carried out by thyroid enzymes which leads to the formation of an alpha-D-manno-pyranosyl-D-mannose linkage in exogenous acceptors by transfer of mannose from GDP-mannose through a beta-linked intermediate appears to involve a double inversion of anomeric configuration of this sugar.  相似文献   

2.
A cell-free particulate enzyme preparation of Mycobacterium smegmatis ATCC 607 catalyzed the transfer of labeled mannose from GDP[14C] mannose to methyl-alpha-D-mannopyranoside (an exogenously added acceptor) to form a product that was characterized to be 2-O-alpha-D[14C] mannopyranosyl-methyl-alpha-D-mannopyranoside. This transmannosylase activity was specific for both the sugar nucleotide donor and methyl monosaccharide acceptor. The reaction was stimulated by the addition of various metal ions and had a pH optimum of 6.0. The apparent Km of this transmannosylase reaction for methyl-alpha-D-mannopyranoside was 35 mM. The possible relationship between this "artificial" mannosyl-transfer system and the "natural" system which leads to the formation of the oligomannosides and glycoproteins is discussed.  相似文献   

3.
The radioactive products derived from transfer of [14C]mannose residues from GDP-[14C]mannose to endogenous acceptors of a Hansenula holstii particulate enzyme preparation have been solubilized by Pronase digestion. From this soluble mixture, glycopeptides containing [14C]mannose have been purified and have been shown by β-elimination-reduction experiments to contain radioactive mannose and oligosaccharides of mannose linked to serine and threonine residues. Radioactive macromolecular complexes of mannan-protein were extracted from the particulate enzyme fraction with hot, neutral citrate buffer. These components contained variable quantities of protein, mannose, and phosphate. The more neutral components were reduced in size by Pronase digestion and yielded glycopeptides similar to those obtained by direct Pronase digestion of the particulate fraction.  相似文献   

4.
The methylmannose polysaccharide, found in the cytoplasm of Mycobacterium smegmatis, is composed of 3-O-methylmannose units joined in alpha 1----4 linkage in a chain terminated by unmethylated mannose at the nonreducing end. An alpha 1----4-mannosyltransferase, one of the two enzymes involved in methylmannose polysaccharide elongation, has been identified in cell extracts. The activity is membrane-associated and catalyzes the transfer of mannose from GDP-mannose to oligomeric acceptors composed of 4 to 12 3-O-methylmannoses. 1H NMR spectroscopy and alpha-mannosidase digestion confirm that the mannose is attached by an alpha 1----4 linkage. In competition studies, the enzyme utilizes shorter oligomeric acceptors preferentially. The Km of the mannosyltransferase for MeMan4-OCH3 is 15-20 microM, for MeMan6-OCH3 it is 75-85 microM, and for GDP-mannose it is 55 microM.  相似文献   

5.
A particulate enzyme preparation prepared from the intimal layer of pig aorta catalyzed the transfer of mannose from mannosyl-phosphoryl-polyprenol (MPP) into a series of oligosaccharides that were linked to lipid. The reaction required detergent with Triton X-100 and NP-40 being best at a concentration of 0.5%. Several other detergents were inactive or only slightly active. The pH optima for this activity was about 7 to 7.5 in Tris buffer and the apparent Km for MPP was about 2 x 10(-7) M. The reaction was not stimulated by the addition of divalent cation and, in fact, was inhibited by the high concentrations of cation. The addition of EDTA did not inhibit the transfer of mannose from MPP and was somewhat stimulatory. The transferase(s) activity was "solubilized" from the particles by treatment with Triton X-100. This solubilized enzyme still formed a series of lipid-linked oligosaccharides from either MPP or GDP-mannose. The oligosaccharides were released from the lipid by mild acid hydrolysis and were separated by paper chromatography. Some five or six radioactive oligosaccharides were formed from either MPP or from GDP-mannose and these oligosaccharides had similar mobilities upon paper chromatography. However, MPP was a better donor for the larger oligosaccharides (i.e. those containing 8, 9, or 10 sugar residues), whereas GDP-mannose was better for formation of the oligosaccharide containing 7 sugar residues. In the presence of EDTA and detergent no MPP was formed from GDP-mannose, but radioactivity was still incorporated into the lipid-linked oligosaccharides. Under these conditions essentially all of the radioactivity was in the oligosaccharide containing 7 sugar residues. Since much of this activity could be released as mannose by acetolysis, GDP-mannose may be the direct mannosyl donor for formation of 1 leads to 6 branches. Oligosaccharides 7, 8, 9, and 10 were isolated and partially characterized in terms of their molecular weights, sugar composition, susceptibility to alpha-mannosidase, and 14C products formed by acetolysis and periodate oxidation. The molecular weights ranged from 1310 for oligosaccharide 7 to 1750 for oligosaccharide 10. Hydrolysis of each oligosaccharide and reduction with NaB3H4 gave the expected ratio of [3H]hexitol to [3H]hexosaminitol based on the molecular weight of the oligosaccharide. However, the hexitol fraction contained [3H]mannitol and [3H]glucitol. Since the amount of radioactivity in glucitol was 2 to 4 times that in mannitol and since only glucosaminitol was found in the amino sugar peak, it seems likely that each 14C-oligosaccharide was contaminated with an unlabeled oligosaccharide of equal molecular weight containing glucose and GlcNAc. Acetolysis of the 14C-oligosaccharides gave rise to 14C peaks of mannose, mannobiose, and mannotriose. In the larger oligosaccharides, most of the radioactivity was in mannobiose whereas in oligosaccharide 7 most of the radioactivity was in mannose...  相似文献   

6.
Summary The cell surface of embryonic chick liver cells contains transferases for mannose, fucose, galactose, N-acetyl-glucosamine and N-acetyl-neuraminic acid. Liver cells obtained by trypsin-dissociation of the tissue use the corresponding exogenous sugar nucleotides as substrates. The activities of the enzymes tested do not depend neither on the dissociation procedure nor onde novo protcin synthesis. They vary considerably during development of the embryos, reaching maximal values at the 8th ± 1 day and at the 12th ± 1 day. Glycoproteins are the final stable endogenous acceptors for all sugars. Mannose transfer proceeds via a two or multistep reaction sequence. In a first step labile lipophilic intermediates are formed. Mannose can be liberated by treating the intermediates with 0.1n HCI at 100°C. In a second reaction step mannose becomes attached to glycoproteins. From embryonic chick liver cells a glycopeptide fraction has been obtained by pronase digestion followed by several purification steps. The purified glycopeptides inhibit all transferase systems and act as exogenous acceptors for mannose transfered from exogenous GDP-mannose.  相似文献   

7.
1. The transfer of mannose from GDP-(U-14-C)mannose into endogenous acceptors of bovine adrenal medullla and rat parotid was studied. The rapidly labelled product, a glycolipid, was partially purified and characterized. 2. It was stable to mild alkaline hydrolysis but yielded (14-C)mannose on mild acid hydrolysis. It co-chromatographed with mannosyl phosphoryl dolichol in four t.l.c. systems and on DEAE-cellulose acetate. Addition of dolichol phosphate or a dolichol phosphate-enriched fraction prepared from pig liver stimulated mannolipid synthesis. 3. The formation of mammolipid appeared reversible, since addition of GDP to a system synthesizing the mannolipid caused a rapid loss of label from the mannolipid. UDP-N-acetylglucosamine did not inhibit mannolipid synthesis except at high concentrations (2 mM), even though in the absence of GDP-mannose, N-acetylglucosamine was incorporated into a lipid having the properties of a glycosylated polyprenyl phosphate. 4. Mannose from GDP-mannose was also incorporated into two other acceptors, (2y being insoluble in chloroform-methanol (2:1, v/v) but soluble in choloroform-methanol-water (10:10:3, by vol.) and (ii) protein. These are formed much more slowly than the mannolipid. 5. Exogenous mannolipid served as a mannose donor for acceptors (i) and (ii), and it is suggested that transfer of mannose from GDP-mannose to mannosylated protein occurs via two intermediates, the mannolipid and acceptor (i).  相似文献   

8.
Incubation of a membrane fraction from Mycobacterium smegmatis cells with GDP-mannose and free mannose at pH 7 in presence of Mg2+ ions resulted in the formation of a series of alpha 1----6-linked mannooligosaccharides with up to 12 mannoses. The membrane fraction also catalyzed incorporation of mannose from GDP-mannose into a lipid-soluble product with the properties of a mannosyl phospholipid. A similar product was formed by the incubation of the membrane protein with decaprenol phosphate and GDP-mannose, and it was characterized as beta-mannosylphosphoryldecaprenol. A pulse-chase experiment suggested that the mannosyl phospholipid was an intermediate in alpha 1----6-linked mannooligosaccharide synthesis, and the isolated beta-mannosylphosphoryldecaprenol was shown to function as a direct mannosyl donor on incubation with mannose, methyl alpha-D-mannoside, or alpha 1----6-linked mannooligosaccharides as acceptors. The Km values for mannose, methylmannoside, and alpha 1----6-linked mannobiose were 30-90 mM, whereas for alpha 1----6-linked mannotriose, mannotetraose, and mannopentaose the Km dropped to 2 mM. A weak enzymic activity was detected at pH 6 in the presence of both Mg2+ and Mn2+ ions that catalyzed addition of mannose in alpha 1----2 linkage to the longer alpha 1----6-mannooligosaccharides in a reaction that was specific for GDP-mannose as the donor. The membrane preparation also contained an endo-alpha 1----6-mannanase activity that degraded products longer than mannotriose by cleavage of trisaccharide units from the nonreducing end of the alpha 1----6-mannooligosaccharides.  相似文献   

9.
Preparation and purification of substrate amounts of radioactive as well as non-radioactive dolichyl diphosphate N-acetylglucosamine and dolichyl diphosphate chitobiose made it possible to test and characterize tentatively the first three reactions of the dolichol pathway (enzyme I-III). The test conditions are described in detail. All three enzymes were solubilized from yeast membranes with detergents. Enzyme II and III were purified to give a purification factor of 35-fold and 70-fold, respectively. The reactions required divalent metal ions with an optimum concentration of 10 mM Mg2+. Enzyme II was stimulated almost to the same extent also by Ca2+. The Km values for UDP-N-acetylglucosamine for enzyme I and II were 15 and 10 muM, respectively, and for GDP-mannose (enzyme III) 7 muM. The apparent Km values for the lipophilic acceptor was 180 muM for enzyme I (dolichyl phosphate), 40 muM for enzyme II (dolichyl diphosphate N-acetylglucosamine) and 17 muM for enzyme III (dolichyl diphosphate chitobiose). The corresponding V values were approximately 1, 10, and 50 nmol X h-1 X mg protein-1. All reactions were inhibited by nucleoside diphosphates.  相似文献   

10.
The unit A-type glycopeptides were purified from porcine thyroglobulin by Pronase digestion followed by chromatography on a DEAE-Sephadex A-25 column. These glycopeptides were separated into five fractions (UA-I, -II, -IV and -V) by Dowex 50W (X2) column chromatography. Fractions UA-I, -II, -III, -IV and -V were found to have the compositions (Man)9(GlcNAc)2-Asn, (Man)8(GlcNAc)2-Asn, (Man)7(GlcNAc)2-Asn, (Man)6(GlcNAc)2-Asn and (Man)5(GlcNAc)2-Asn respectively. The structures of these five fractions were investigated by the combination of exo- and endo-glycosidase digestions, methylation analysis. Smith periodate degradation and acetolysis. The results showed that fraction UA-V had the simplest structure: see formula in text. The larger glycopeptides (fractions UA-I, -II, -III and -IV) contained additional mannose residues alpha (1 leads to 2)-linked to the terminal mannose residues in the above core structure. These unit A-type glycopeptides appear to be biosynthetic intermediates that are to be processed to form complex-type glycopeptides (unit B-type sugar chains).  相似文献   

11.
M H Gold  H J Hahn 《Biochemistry》1976,15(9):1808-1814
Particulate membrane preparations from Neurospora crassa incorporated mannose from GDP-[14C] mannose into endogenous lipid and particulate protein acceptors. Synthesis of the mannosyl lipid is reversible in the presence of GDP. Chemical and chromatographic characterization of the mannosyl lipid suggest that it is a mannosylphosphorylpolyisoprenol. The other endogenous acceptor was precipitated by trichloracetic acid. Gel filtration and electrophoresis studies before and after treatment with proteolytic enzymes indicate that the second acceptor is a glycoprotein(s). beta Elimination studies on the mannosyl protein formed from GDP-[14C] mannose with Mg2+ in the reaction mixture or formed from mannosyl lipid indicate thad with the peptide chain. Several lines of evidence indicate that in Neurospora crassa the mannosyl lipid is an obligatory intermediate in the in vitro mannosylation of the protein. (a) At 15 degrees C the initial formation of the mannosyl lipid is faster than the initial formation of the mannosyl protein. (b) Exogenous partially purified mannosyl lipid can function as a mannosyl donor for the synthesis of the mannosyl protein. This reaction was also dependent on a divalent metal. The rate of this reaction was optimal at a concentration of Triton X-100 which effectively inhibited the transfer of mannose from GDP-[14C] mannose to lipid and protein, indicating that GDP-mannose was not an intermediate in the transfer of mannose from lipid to protein. The mannosyl protein formed in this reaction was indistinguishable by several criteria from the mannosyl protein formed from GDP-[14C] mannose and Mg2+. (c) The effect of a chase with an excess of unlabeled GDP-mannose on the incorporation of mannose into endogenous acceptors was immediate cessation of the synthesis and subsequent turnover of the mannosyl lipid; in contrast, however, incorporation of mannose into protein continued and was proportional to the loss of mannose from the mannosyl lipid.  相似文献   

12.
Summary The molecular mechanism of reduced incorporation of radioactively labeled mannose into hamster liver glycoconjugates during the progression of vitamin A deficiency was investigated. In particular the in vivo incorporation of [2-3H]mannose into GDP-mannose, dolichyl phosphate mannose (Dol-P-Man), lipid-linked oligosaccharides, and glycopeptides of hamster liver was examined. Hamsters maintained on a vitamin A-free diet showed a reduction in the incorporation of mannose into GDP-mannose about 10 days before clinical signs of vitamin A deficiency could be observed. The decrease in [2-3H]mannose incorporated into GDP-mannose was accompanied by a reduction in label incorporated into Dol-P-Man, lipid linked oligosaccharides and glycopeptides, which became more severe with the progression of vitamin A deficiency. By the time they reached a plateau stage of growth, hamsters fed the vitamin A-free diet showed a 50% reduction in the amount of [2-3H]mannose converted to GDP-mannose, and the radioactivity associated with Dol-P-Man and glycopeptides was reduced by approximately 60% as compared to retinoic acid-supplemented controls. These results strongly indicate that the reduced incorporation of mannose into lipidic intermediates and glycoproteins observed during vitamin A deficiency is due to impaired GDP-mannose synthesis.Abbreviations Dol-P-Man Dolichyl Phosphate Mannose - Dol-P Dolichyl Phosphate  相似文献   

13.
Calf thyroid microsomes were found to contain an enzyme which catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phospho[35S]sulfate (PAPS) to C-3 of terminal galactose residues in beta 1----4 linkage to GlcNAc. This sulfotransferase is believed to be involved in the biosynthesis of the recently described Gal(3-SO4) capping groups present in the N-linked oligosaccharides of thyroglobulin (Spiro, R.G., and Bhoyroo, V. D. (1988) J. Biol. Chem. 263, 14351-14358). Assays with various native and modified glycopeptides indicated that the enzyme acted optimally on complex-type carbohydrate units in which beta-linked Gal has been uncovered by desulfation or brought into a terminal position by removal of sialyl and/or alpha-galactosyl residues. With fetuin asialoglycopeptides as acceptors (Km = 0.1 mM) the transfer of sulfate from PAPS (Km = 6.3 microM) had a pH optimum of approximately 7.0, required Mn2+ ions (10-50 mM) and was markedly stimulated by Triton X-100 (0.1%) and ATP (2 mM). The same enzyme apparently sulfated free N-acetyllactosamine (LacNAc; Km = 0.69 mM) and its ethyl glycoside, indicating that it had no absolute requirement for a peptide recognition site. Studies with a number of disaccharides related to LacNAc provided information relating to the specifying role of the beta 1----4 galactosyl linkage and the configuration at C-2 of the sugar to which it is attached. Hydrazine-nitrous acid-NaBH4 treatment of the 35S-labeled products from sulfotransferase action on asialoglycopeptides as well as on the ethyl glycoside of LacNAc yielded the same disaccharide, Gal(3-SO4) beta 1----4 anhydromannitol, as is obtained from a similar treatment of thyroglobulin. Subcellular distribution studies indicated that the PAPS:galactose 3-O-sulfotransferase is located in the Golgi compartment which is consistent with the late occurrence of the requisite beta-galactosylation step. It is proposed that in certain tissues the ultimate nature of the capping groups attached to glycoproteins containing terminal Gal beta 1----4GlcNAc sequences could be the result of a competition between this 3-O-sulfotransferase and sialyl- and/or alpha-galactosyltransferases.  相似文献   

14.
1. Glucokinase (ATP : D-glucose 6-phosphotransferase, EC 2.7.1.2) was extracted from pea seeds and purified by fractionation with (NH4)2SO4 and chromatography on DEAE-cellulose and Sephadex. 2. The relative rates of phosphorylation of glucose, mannose and fructose (final concentration 5 mM) were 100, 64 and 11. 3. The Km for glucose of pea-seed glucokinase was 70 muM and the Km for mannose was 0.5 mM. The Km for fructose was much higher (30 mM). 4. Mg2+ ions were essential for activity. Mn2+ could partially replace Mg2+. 5. Enzyme activity was not inhibited by glucose 6-phosphate. A number of other metabolites had no effect on glucokinase activity. 6. Pea-seed glucokinase was inhibited by relatively low concentrations of ADP.  相似文献   

15.
The Mn-2+ dependent mannosyl transfer reaction between GDP-[14-C]mannose and dolichol phosphate, which is catalyzed by liver membranes, could not be followed accurately with the existing assay systems. Thus, GDP-[14-C]mannose is hydrolyzed rapidly by a pyrophosphatase present in microsomal and Golgi fractions from liver cells. The rate of the hydrolysis is rapid enough to limit the extent of incorporation of [14-c]mannose into endogenous acceptors. AMP was an effective inhibitor of the pyrophosphatase in Golgi membranes, and protected GDP-mannose from metabolism in alternative pathways. In the presence of AMP it was possible accurately to follow the time course of synthesis of dolichol phosphate [14-c]mannose over short time periods. Even though the time course of the reaction was measured over 2 s intervals, no linear portion could be detected in plots of product formed versus time. The kinetics of synthesis did, however, fit an equation for a first-order kinetic process. The basis for the first-order kinetics seems related to the very small amounts of dolichol phosphate in membranes. The values of the first-order rate constant is dependent on the concentrations of GDP-mannose and Mn-2+ added to the assays.  相似文献   

16.
Hamster liver post-nuclear membranes catalyze the transfer of mannose from GDP-mannose to endogenous dolichyl phosphate and to a second major endogenous acidic lipid. This mannolipid was believed to be synthesized from endogenous retinyl phosphate and was tentatively identified as retinyl phosphate mannose (Ret-P-Man) (De Luca, L. M., Brugh, M. R. Silverman-Jones, C. S. and Shidoji, Y. (1982) Biochem. J. 208, 159-170). To characterize this endogenous mannolipid in more detail, we isolated and purified the mannolipid from incubations containing hamster liver membranes and GDP-[14C]mannose and compared its properties to those of authentic Ret-P-Man. We found that the endogenous mannolipid was separable from authentic Ret-P-Man on a Mono Q anion exchange column, did not exhibit the absorbance spectrum characteristic of a retinol moiety, and was stable to mild acid under conditions which cleave authentic Ret-P-Man. The endogenous mannolipid was sensitive to mild base hydrolysis and mannose was released from the mannolipid by snake venom phosphodiesterase digestion. These properties were consistent with the endogenous acceptor being phosphatidic acid. Addition of exogenous phosphatidic acid, but not phospholipids with a head group blocking the phosphate moiety, to incubations containing hamster liver membranes and GDP-[14C]mannose resulted in the synthesis of a mannolipid with chromatographic and physical properties identical to the endogenous mannolipid. A double-labeled mannolipid was synthesized in incubations containing hamster liver membranes, GDP-[14C]mannose, and [3H]phosphatidic acid. Mannosyl transfer to exogenous phosphatidic acid was saturable with increasing concentrations of phosphatidic acid and GDP-mannose and specific for glycosyl transfer from GDP-mannose. Class E Thy-1-negative mutant mouse lymphoma cell membranes, which are defective in dolichyl phosphate mannose synthesis, also fail to transfer mannose from GDP-mannose to exogenous phosphatidic acid or retinyl phosphate. Amphomycin, an inhibitor of dolichyl phosphate mannose synthesis, blocked mannosyl transfer to the endogenous lipid, and to exogenous retinyl phosphate and phosphatidic acid. We conclude that the same mannosyltransferase responsible for dolichyl phosphate mannose synthesis can also utilize in vitro exogenous retinyl phosphate and phosphatidic acid as well as endogenous phosphatidic acid as mannosyl acceptors.  相似文献   

17.
A particulate fraction from the Saccharomyces cerevisiae mnn1 mutant was obtained after extracting a 115,000 x g pellet with 0.75% Triton X-100. Incubation of this preparation with labeled Man8GlcNAc and Man9GlcNAc in the presence of GDP-mannose followed by high pressure liquid chromatography showed the formation of Man9GlcNAc and Man10GlcNAc, respectively. Analysis by high resolution 1H NMR of the products indicates that, in each case, the mannose residue added is alpha-1,6-linked to the alpha-1,6-mannose residue of the substrate as follows (where M represents mannose and Gn represents N-acetylglucosamine): (Formula: see text). The mannosyltransferase therefore catalyzes the first step specific to the biosynthesis of the outer chain of yeast mannoproteins. The apparent Km values for both substrates are similar: 0.39 mM for Man8GlcNAc and 0.35 mM for Man9GlcNAc. The alpha-1,6-mannosyltransferase exhibits maximum activity between pH 7.1 and 7.6 in Tris maleate buffer, has an absolute requirement for Mn2+, and also requires Triton X-100. These results indicate that removal of the alpha-1,2-linked mannose residue from Man9GlcNAc is not essential for the alpha-1,6-mannosyltransferase which initiates outer chain synthesis, at least when oligosaccharides are used as substrates in a cell-free system.  相似文献   

18.
Isolation of linkage-region glycopeptides from corneal peptidokeratan sulfate was attempted under mild conditions. Peptidokeratan sulfate, which had been found in advance of the present study to contain three mannose residues per chain as a major component of the carbohydrate-protein linkage region, was digested with Pseudomonas endo-beta-galactosidase. The disaccharide-repeating chain was partially hydrolyzed, and almost all the galactose and N-acetylglucosamine residues were found in oligosaccharides of various sizes. The resulting linkage region-enriched glycopeptides were separated by gel filtration from these oligosaccharides and then fractionated by DEAE-cellulose and Dowex 50 chromatography with the guidance of the mannose content. The glycopeptides obtained were highly enriched in the linkage region and a large portion of them was free from sulfate groups, suggesting that they could be used to elucidate the structure of the linkage region.  相似文献   

19.
Thyroid rough microsomes catalyzed the transfer of mannose from GDP-mannose to endogeneous glycoprotein(s) and to glycolipids comprising a recently described dolichol phosphomannose extractable with usual organic solvents and a material tentatively identified as an oligosaccharide lipid. The labeling of the two lipids was consistent with a role in mannose transfer to glycoprotein(s). When partially purified dolichol phospho[14C] mannose was incubated with rough microsomes, a part of the label appeared in the second lipid, suggesting a role as intermediate, and less rapidly in glycoprotein(s). Sodium dodecyl sulfate/polyacrylamide gel electrophoresis did not allow to ascertain whether or not the glycoproteins receiving label from these sugar lipids comprised thyroglobulin precursors.  相似文献   

20.
Rabbit liver microsomes catalyzed mannosyltransfer from GDP-mannose to oligosaccharide-lipids isolated from porcine liver. The transfer occurred in the presence of 10 mM EDTA, a condition under which the formation of dolichol-P-mannose and other chloroform soluble mannosyl-lipids was almost completely inhibited, indicating that the mannosyl-oligosaccharide linkage was formed by a direct transfer of mannose from the nucleotide sugar. Virtually all of the mannose incorporated into the oligosaccharides was released by α-mannosidase, demonstrating the formation of an α-mannosyl-linkage in the oligosaccharide-lipid product. An enzyme catalyzing the divalent cation independent transfer of mannose from GDP-mannose to exogenous oligosaccharide-lipids was solubilized from rabbit liver microsomes and purified over 10 fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号