首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maternal heat stress in cattle may disrupt pregnancy by elevating uterine prostaglandin F(2alpha) (PGF(2alpha)) secretion. The objectives of this study were to determine the effects of elevated temperature (42 degrees C) in vitro upon 1) prostaglandin secretion by endometrial tissue; 2) the actions of extracellular regulators of uterine PGF [conceptus secretory proteins (bCSPs) and platelet-activating factor, (PAF)]; 3) the activity of the cyclooxygenase-endoperoxidase enzyme complex (PG synthetase); and 4) the activity of the endometrial PG synthesis inhibitor present in the endometrium from pregnant cattle. Endometrial explants at Day 17 of the estrous cycle produced more PGF than PGE(2) while elevated temperature caused increased PGF secretion but did not affect PGE(2) secretion. Elevated temperature did not reduce the ability of bCSPs or PAF to suppress release of PGF. The heat shock-induced increase in PGF at Day 17 was not due to the direct effects on PG synthetase, because PGF production from a cell-free cotyledonary microsomal enzyme preparation was reduced at elevated temperature. The activity of the cytosolic inhibitor of cyclooxygenase present in the endometrium of Day-17 pregnant cows could be reduced but not eliminated at 42 degrees C. We conclude that in vitro heat stress induces PGF secretion from the bovine uterine endometrium at Day 17 after estrus. This increase is not accompanied by the loss of regulatory capacity of conceptus products or increased activity of PG synthetase.  相似文献   

2.
The radioimmunological (RIA) determination of prostaglandin (PG) E2 and of PGF2alpha in urine of humans and rats is described in detail. After extraction and chromatography PGE2 was determined by using a PGE specific antibody or by using either PGB or PGF2alpha specific antibodies after the respective conversion procedures. The three different RIA procedures were compared to each other. PGF2alpha was determined by a specific antibody to PGF2alpha. Basal excretion of PGE2 and of PGF2alpha in healthy women on free diet was 9.3 ng/hour+/-0.98 and 18.3 ng/hour +/- 2.5 respectively. Furosemide increased the excretion of PGE2 and of PGF2alpha in humans significantly, while PG-excretion rates decreased on indomethacin. In rat urine PGE2 and PGF2alpha increased markedly from 46.2 pg/min +/- 9.3 and 27+/- 3.4 to 253.8 +/- 43.3 and 108 +/- 12.6 pg/min (per one kidney) in the anesthetized-laparotomized animal. This increase was abolished after giving two different PG synthetase inhibitors.  相似文献   

3.
Prostaglandin (PGE, 6-keto PGF1 alpha) output by cells dispersed from human amnion and decidua in the presence of increasing levels (0-5000 ng/ml) of estradiol-17 beta (E2) or 2-hydroxyestradiol-17 beta (2-OH E2) was studied in relation to parturition. Tissues were obtained from women at term either before (CS) or after (SL) spontaneous labor and vaginal delivery. In the absence of estrogens, the output of both PGs from amnion increased significantly with labor. No significant increase in decidua PG output occurred with labor. Neither estrogen influenced CS amnion PG output. However, both E2 and 2-OH E2 stimulated SL amnion PGE output (2-OH E2 greater than E2) while having no affect on 6-keto PGF1 alpha output. Only the highest dose of 2-OH E2 stimulated PGE output in CS decidua, but both estrogens significantly inhibited 6-keto PGF1 alpha output in this tissue. In SL decidua only 2-OH E2 significantly stimulated PGE, and neither estrogen affected 6-keto PGF1 alpha output. These results might suggest that estrogens modulate PG biosynthesis at the level of endoperoxide to primary PG conversion.  相似文献   

4.
Formation of prostaglandins by ovarian carcinomas   总被引:1,自引:0,他引:1  
Tissue contents of prostaglandins (PG) PGE2, PGE2a and 6-keto-PGF1a (degradation product of PGI2) were determined in specimens of advanced human ovarian cancer (n = 11). The PG levels (ng/mg tissue protein) varied widley: PGE2 17-515; PGF2a 2-43 and 6-keto-PGF1a 5-105. Tumors of patients without response to chemotherapy contained more PGE2, PGF2a and 6-keto-PGF1a than did tumors responding to chemotherapy. PG production was investigated in two ovarian carcinoma-derived cell lines. The ability of these cells to synthesize PG varied depending on the cell density. An increase of cell number was associated with a decrease of PG yield. PG formation was inhibited by indomethacin in a concentration-dependent manner. The present study suggests that ovarian carcinoma cells form PG in vivo and vitro.  相似文献   

5.
The primary structure of prostaglandin (PG) F synthetase from bovine lung shows 62% similarity with that of human liver aldehyde reductase (EC 1.1.1.2) (Watanabe, K., Fujii, Y., Nakayama, K., Ohkubo, H., Kuramitsu, S., Kagamiyama, H., Nakanishi, S., and Hayaishi, O. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 11-15). We therefore purified human liver aldehyde reductase to homogeneity and compared the immunological and catalytic properties of aldehyde reductase and PGF synthetase. Although both enzymes belong to a group of aldoketoreductases and their molecular weights are essentially identical, aldehyde reductase had no cross-reactivity to anti-PGF synthetase antiserum. Furthermore, there was a difference in the substrate specificity for reduction of PGs between the two enzymes. Aldehyde reductase catalyzed the reduction of PGJ2, delta 12-PGJ2, PGH2, or PGA2, but not that of PGB2, PGD2, or PGE2, whereas PGF synthetase reduced PGD2. The optimum pH, Km value for PGH2, and the turnover number were 6.5, 100 microM, and 3.1 min-1, respectively. The PGH2 9,11-endoperoxide reductase activity of aldehyde reductase was not affected in the presence of a substrate such as p-nitrobenzaldehyde, DL-glyceraldehyde, or 9,10-phenanthrenequinone, suggesting that PGH2 9,11-endoperoxide and other substrates are reduced at different active site(s). The reaction product formed from PGH2 by this enzyme was identified as PGF2 alpha by gas chromatography/mass spectrometry. These results suggest that aldehyde reductase is not exactly identical to PGF synthetase in terms of its immunological property and substrate specificity for PGs, but that this enzyme is also involved in the direct conversion of PGH2 to PGF2 alpha similar to PGF synthetase.  相似文献   

6.
Differential production of prostaglandins within the human uterus   总被引:2,自引:0,他引:2  
M H Abel  R W Kelly 《Prostaglandins》1979,18(5):821-828
The ability of broken cell preparations of human endometrium, myometrium and a mixture of endometrium and myometrium to convert 14C arachidonic acid to prostaglandins (PG's) was compared. Endometrium metabolished arachidonic acid predominantly to a mixture of PGF2 alpha and PGE2. A similar weight of myometrium showed relatively little activity, the major product identified was 6 oxo PGF1 alpha. However, a combination of endometrium and myometrium showed an enhanced conversion of arachidonic acid to 6 oxo PGF1 alpha associated with a decreased production of PGF2 alpha and PGE2. This suggests that human endometrium and myometrium differ in their ability to metabolize arachidonic acid and in their ability to convert the endoperoxides formed, to PG's.  相似文献   

7.
Turkeys are hypertensive compared to mammals of similar size. In vitro synthesis of thrombocyte thromboxane B2 (TxB2), 12L-hydroxy-5,8,10 heptadecatrienoic acid (HHT), 12L-hydroxy-5,8,10,14-eicosatetraenoic acid (HETE) and aortic prostaglandin (PG) production was studied in one to ten month old domestic white turkeys. Compared to normal human platelets, TxB2 production was increased (55.4 vs. 31.4%) and HETE production was markedly reduced (6.5 vs. 34.6%) in control thrombocytes. Similar to human platelets in which cyclooxygenase inhibition with aspirin results in an increase in HETE production, block of the thrombocyte enzyme with aspirin doubled the production of HETE. In vitro conversion of radiolabeled arachidonic acid (AA) showed that the primary PG produced by turkey aorta was PGE2. A 6-keto immunoreactive PG was present which comigrated with authentic 6-keto PGF1 alpha, but failure of the aortic supernatant to inhibit adenosine diphosphate or AA induced platelet aggregation suggested that PGI2 was not produced. The vasodepressor potency of PGE1, PGE2 and PGI2 was altered in awake turkeys with PGE1 and PGE2 having five times the hypotensive effect as PGI2. In addition, conversion of AA to PGE2 by aorta in one month turkeys was greater (17.3 vs. 9.2%) than in ten month old turkeys. Systemic arterial pressure was increased in the ten month old turkeys (188 mmHg) compared to one month old turkeys (143 mmHg). Thus, both vascular AA metabolism and the vasodepressor potencies of PGE2 and PGI2 are altered and the activity of the lipoxygenase pathway in thrombocytes is limited in the turkey.  相似文献   

8.
Prostaglandin (PG) synthetase activity and selective hormone responsiveness were examined in normal and SV40 transformed WI-38 fibroblasts (VA13-2RA). The transformed VA13-2RA cells have significantly reduced rates of PGE1, PGE2, PGF1alpha and PGF2alpha synthesis as compared to the normal WI-38 fibroblast. The transformed cell in contrast to the normal cell hyperresponds to stimulation by L-epinephrine (10 muM) and PGE1 (8.5 muM) but is unresponsive to bradykinin (BK) as measured by the accumulation of intracellular cyclic AMP. Indomethacin treatment does not significantly alter the PGE1 and L-epinephrine (EPI) responsiveness of the normal WI-38 fibroblast, however it abolishes the BK response in these cells. These results provide further evidence for the dependency of cell activation by bradykinin on the PG synthetase system. No experimental data was found to support the role of PGs as negative regulators of PGE1 and EPI responsiveness in the WI-38 fibroblast. Using the VA13-2RA cells, limited attempts to recover PG synthetase activity comparable to that found in normal WI-38 cells were unsuccessful. The VA13-2RA cell and its normal counterpart represent models for investigating the role of PGs in cell function and the mechanism of BK activation and its effect on cell metabolism.  相似文献   

9.
Prostaglandin (PG) synthetase activity of rat kidney medulla microsomal fraction was determined in vitro using I-14C-arachidonic acid as substrate. Natural ACTH resulted in a dose dependent suppression of PGE2 formation in vitro. The biosynthesis of PGE2 alpha was enhanced in the presence of ACTH (cortrophin). ACTH4--10 (1-Phe7 or d-Phe7) resulted in decreased PGE2 synthesis. The ratio of PGF2 alpha/PGE2 increased in proportion to the concentration of natural ACTH. The increase in the ratio of PG-s was more pronounced when ACTH4--10 fragments were applied. Natural ACTH in a dose dependent manner inhibited the prostaglandin dehydrogenase activity of kidney cytosol fraction in vitro. Prostaglandin inactivation was suppressed only by high doses of ACTH4--10 (d-Phe7). The data indicate that the natural ACTH and ACTH4--10 fragments might have a physiological role in the regulation of the prostaglandin system of a non-steroidogenic tissue.  相似文献   

10.

Background

The rate-limiting step in prostaglandin (PG) biosynthesis is catalyzed by phospholipase A2 (PLA2) enzymes which hydrolyze arachidonic acid from membrane phospholipids. Despite their importance in uterine PG production, little is known concerning the specific PLA2 enzymes that regulate arachidonic acid liberation in the uterine endometrium. The objectives of this study were to evaluate the expression and activities of calcium-independent Group VI and Group IVC PLA2 (PLA2G6 and PLA2G4C) and calcium-dependent Group IVA PLA2 (PLA2G4A) enzymes in the regulation of bovine uterine endometrial epithelial cell PG production.

Methods

Bovine endometrial epithelial cells in culture were treated with oxytocin, interferon-tau and the PLA2G6 inhibitor bromoenol lactone, alone and in combination. Concentrations of PGF2alpha and PGE2 released into the medium were analyzed. Western blot analysis was performed on cellular protein to determine the effects of treatments on expression of PLA2G4A, PLA2G6 and PLA2G4C. Group-specific PLA2 activity assays were performed on cell lysates following treatment with oxytocin, interferon-tau or vehicle (control), alone and in combination. To further evaluate the role of specific PLA2 enzymes in uterine cell PG biosynthesis, cells were transfected with cDNAs encoding human PLA2G6 and PLA24C, treated as described above and PG assays performed.

Results

Constitutive cell production of PGF2alpha was about two-fold higher than PGE2. Oxytocin stimulated production of both PGs but the increase of PGF2alpha was significantly greater. Interferon-tau diminished oxytocin stimulation of both PGs. The PLA2G6 inhibitor, bromoenol lactone, abolished oxytocin-stimulated production of PGF2alpha. Treatments had little effect on PLA2G4A protein expression. In contrast, oxytocin enhanced expression of PLA2G6 and this effect was diminished in the presence of interferon-tau. Expression of PLA2G4C was barely detectable in control and oxytocin treated cells but it was enhanced in cells treated with interferon-tau. Oxytocin stimulated PLA2 activity in assays designed to evaluate PLA2G6 activity and interferon-tau inhibited this response. In assays designed to measure PLA2G4C activity, only interferon-tau was stimulatory. Cells overexpressing PLA2G6 produced similar quantities of the two PGs and these values were significantly higher than PG production by non-transfected cells. Oxytocin stimulated production of both PGs and this response was inhibited by interferon-tau. Bromoenol lactone inhibited oxtocin stimulation of PGF2alpha production but stimulated PGE2 production, both in the absence and presence of oxytocin. Cells over-expressing PLA2G4C produced more PGE2 than PGF2alpha and interferon-tau stimulated PGE2 production.

Conclusion

Results from these studies indicate that oxytocin stimulation of uterine PGF2alpha production is mediated, at least in part, by up-regulation of PLA2G6 expression and activity. In addition to its known inhibitory effect on oxytocin receptor expression, interferon-tau represses oxytocin-stimulated PLA2G6 expression and activity and this contributes to diminished PGF2alpha production. Furthermore, endometrial cell PGE2 biosynthesis was associated with PLA2G4C expression and activity and interferon-tau was stimulatory to this process.  相似文献   

11.
A simple bioassay for the detection of PGE2, PGF2 alpha and PGI2 was developed by the use of smooth muscle preparations from the human oviduct. The circular muscle layer showed opposite responses to PGE2 and PGF2 alpha while the tubal artery was expedient to distinguish PGE2 from PGI2. As compared to earlier described PG bioassays the system showed a high sensitivity and the limit for detection of an unknown sample was approx. 1 ng. Also combinations of PGs could be identified when reference samples were administered parallel to the unknown samples. It is suggested that the described PG bioassay when further developed may be advantageous for certain purposes since the tissue material generally can be obtained at routine gynecological operations, thus avoiding the use of laboratory animals.  相似文献   

12.
Newly formed prostaglandins (PGs), which are assumed to act as modulators of afferent sensory messages, were studied in chick dorsal root ganglia (DRG) during development. [1-14C]Arachidonic acid was converted by DRG homogenates from 1-week-old chickens into two major 14C-PGs: PGE2 and PGD2. The enzymatic conversion of arachidonic acid was characterized as follows: (a) Boiled preparations were inactivated; (b) synthesis of PGs was inhibited by pretreatment with aspirin or indomethacin and enhanced by esculetin, a protector of cyclooxygenase; and (c) [14C]PGE2 and [14C]PGD2 accumulation was a protein dose-dependent process. Further fractionation of crude homogenates indicated that PG endoperoxide synthetase (EC 1.14.99.1) and PGE2 synthetase (EC 5.3.99.3) were membrane-bound enzymes, whereas PGD2 synthetase (EC 5.3.99.2) was recovered in the cytosol. During development, from embryonic day 10 to day 14 after hatching, PGD2 synthetase activity remained constant; in contrast, a sharp rise in [14C]PGE2 synthesis was observed from embryonic day 14 to 18. The time curves of PGD2 and PGE2 synthetase specific activity may be related to changes taking place in the cell population of developing DRG. It is therefore suggested that arachidonic acid would be enzymatically converted early into PGD2 by maturing ganglion cells and then later into PGE2 by proliferating fibroblasts.  相似文献   

13.
The parturient uterus develops a markedly enhanced sensitivity to the uterotonic action of oxytocin (OT). The mechanism leading to this enhanced OT sensitivity is not known. Our previous work suggested that prostaglandins (PGs) may be involved. To define the relationship between OT sensitivity and uterine PG production, we measured uterine sensitivity to OT by a quantitative dose-response procedure in rats on Days 19, 20, 21 and 22 of pregnancy and monitored uterine and placental tissue concentrations of PGF2 alpha and PGE2. In addition, we determined the effects of inhibition of endogenous PG synthesis on OT sensitivity and uterine contractility. We found that both OT sensitivity and spontaneous contractility are positively related to uterine PGF2 alpha production. An abrupt increase in OT sensitivity was observed on Days 21 and 22 of pregnancy. The increase in OT sensitivity was coincidental with the marked increase in PGF2 alpha production in the uterus on Days 21 and 22 of pregnancy. Suppression of in vivo PG synthesis caused a reduction in both spontaneous uterine contractility and OT-induced contractions. Uterine PGE2 concentrations and release were 3-5 times lower than PGF2 alpha. There were no significant fluctuations of uterine PGE2 concentration measured on these last 4 days of gestation. Placental PG levels were also found not to be related to uterine contractility. Placental PGE2 levels were higher than PGF2 alpha and may play a regulatory role in placental perfusion. However, placental PGs did not vary with gestational age.  相似文献   

14.
Streptozotocin-induced pancreatic damage involves nitric oxide (NO) and prostaglandins (PGs) overproduction. In this work we aim to evaluate a putative relationship between the elevated NO levels and the altered prostanoid production in pancreatic tissue from streptozotocin-diabetic rats. Total NOS activity and nitrate/nitrite pancreatic levels in tissues from diabetic rats are decreased when the cyclooxygenase (COX) inhibitor indomethacin (INDO) is added to the incubating medium, while the addition of PGE(2)increases nitrate/nitrite production and NOS levels. INDO and PGE(2)selectively affect Ca(2+)-dependent NOS (iNOS) activity in diabetic tissues, and they have not been able to modify nitrate/nitrite levels, iNOS or Ca(2+)-dependent (cNOS) in control tissues. When the NOS inhibitor L-NMMA was present in the incubating medium, control pancreatic [(14)C]-Arachidonic Acid ([(14)C]-AA) conversion to 6-keto PGF(1 alpha)and to TXB(2)was lower, and PGF(2 alpha), PGE(2)and TXB(2)production from diabetic tissues diminished. The NO donors, spermine nonoate (SN) and SIN-1, enhanced TXB(2)levels in control tissues, while PGF(2 alpha), PGE(2)and TXB(2)levels from diabetic tissues were increased. PGE(2)production from control and diabetic tissues was assessed in the presence of the NO donor SN plus INDO or NS398, a specific PG synthase 2 inhibitor. When SN combined with INDO or NS398 was added, the increment of PGE(2)production was abolished by both inhibitors in equal amounts, indicating that the activating effect of nitric oxide is exerted on the inducible isoform of cyclooxygenase. In the diabetic rat, prostaglandins and NO seem to stimulate the generation of each other, suggesting a lack of regulatory mechanisms that control the levels of vasoactive substances in acute phase of beta-cell destruction.  相似文献   

15.
Desferrioxamine is an iron-chelating agent used in the treatment of iron overload. It is a powerful inhibitor of iron-dependent radical reactions. The effect of desferrioxamine of prostaglandin (PG) synthesis and metabolism in rabbit gastric antral mucosal slices has been examined. Desferrioxamine significantly enhanced the production of PGE2 and PGF2 alpha. The formation of 13,14-dihydro-15-keto PGE2 and 13,14-dihydro-15-keto PGF2 alpha was also increased slightly by desferrioxamine. The addition of Fe3+ or Al3+ blocked the stimulatory action of desferrioxamine on PGE2 and PGF2 alpha production. Desferrioxamine appears to be stimulating the activity of PG cyclooxygenase through the removal of endogenous antral mucosal iron. These results suggest that desferrioxamine has the potential to increase the PG levels in gastric mucosa by primarily stimulating PG biosynthesis. The possibility that desferrioxamine may be of therapeutic value in the treatment of ischemic injury in the stomach is discussed.  相似文献   

16.
17.
The growth of the cultured human breast carcinoma cell line NUB 1 as well as that of other cultured malignant cells has been shown to be inhibited by addition of gamma-linolenic acid (GLA) to the culture medium. It has previously been suggested that these findings may be attributed to correction of a GLA deficiency in malignant cells, with supplementation of this fatty acid leading to increased prostaglandin (PG) production and consequent growth inhibition. To test this hypothesis the effect of 50 micrograms/ml concentrations of GLA and its sequential metabolite dihomo-gamma-linolenic acid (DGLA) and cell growth, morphology and prostaglandin (PGE and PGF) production by NUB 1 cells was investigated. GLA increased PGE and PGF production, inhibited cell growth and caused accumulation of lipid containing cytoplasmic granules. While treatment with DGLA increased PG production to a significantly greater extent than GLA administration it had no apparent effect on cell growth of morphology and did not inhibit cell growth. These findings suggest that some action other than the ability to increase PG production may be responsible for the inhibitory effects produced by GLA in malignant cells.  相似文献   

18.
We cultured phagocytic cells derived from the thymic reticulum in order to study the regulation of prostaglandin (PG) production by antiinflammatory or immunostimulating agents. The kinetics of PGE2, 6-keto-PGF1 alpha and PGF2 alpha production were measured by specific radioimmunoassays of the supernatants harvested from cells treated with dexamethasone, a steroidal antiinflammatory drug and by two non steroidal inhibitors (indomethacin and sulindac) or by various immunostimulating agents, one of them, RU 41740 is currently being used in humans. Our results revealed that each of these drugs exerts a differential effect on the PG production, with a striking action on PGE2 synthesis, a lesser effect on 6-keto-PGF1 alpha production and almost no effect on PGF2 alpha synthesis. The possible mechanisms responsible for this complex regulation of PG production are discussed.  相似文献   

19.
Patients with diabetes mellitus have an increased susceptibility to heart disease. The exact mechanism for this phenomenon is unclear. Abnormalities in prostaglandin (PG) production have been suggested as a possible cause. In this connection, we examined the PG synthetic capacity of cardiac microsomes from spontaneously diabetic rats. Cardiac microsomes from diabetic and control rats produced varying amounts of 6-keto-PGF1 alpha (stable degradation product of PGI2), PGE2, PGD2, PGF2 alpha, and TXB2 (stable breakdown product of TXA2). In both instances the production of 6-keto-PGF1 alpha predominated, however, microsomes from diabetic rats showed markedly greater conversion of arachidonic acid to all the PG products, especially 6-keto-PGF1 alpha. When PGF2 alpha metabolism was detected between diabetic and control heart preparations. These results show an enhanced cyclooxygenase activity in diabetic rat hearts without any change in prostaglandin dehydrogenase activity. Such a change may promote some of the cardiac alterations seen in diabetic mellitus.  相似文献   

20.
Bovine placentomes were collected during late gestation, prepartum and immediately postpartum. Postpartum tissues were collected prior to fetal membrane separation. Maternal and fetal placentomal components each were examined for their ability to synthesize prostaglandins (PG's) from arachidonic acid (AA) and metabolize PGF2 alpha and PGE2 in vitro. Maternal placental PG synthesis was lower (P less than .05) than that for fetal placental tissue and was primarily PGF's. Fetal placental PG synthesis increased (P less than .05) prepartum and was primarily PGE's. Fetal placental PGE production predominated (P less than .05) postpartum if the fetal membranes were retained, while PGF production predominated (P less than .05) if the membranes were released. Maternal and fetal placental tissues were unable to convert PGE2 to PGF2 alpha (P greater than .05). Postpartum fetal placental tissue was able to convert PGF2 alpha to PGE2 (P less than .05) if the fetal membranes were retained but not if the membranes were released (P greater than .05). These results indicate that fetal placental synthesis of PGF's may be related to placental membrane separation. The shift in fetal placental PG production from PGE's to PGF's may be due to a cessation of the ability of released fetal tissue to convert PGF2 alpha to PGE2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号