首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptide neurotransmitters function as key intercellular signaling molecules in the nervous system. These peptides are generated in secretory vesicles from proneuropeptides by proteolytic processing at dibasic residues, followed by removal of N- and/or C-terminal basic residues to form active peptides. Enkephalin biosynthesis from proenkephalin utilizes the cysteine protease cathepsin L and the subtilisin-like prohormone convertase 2 (PC2). Cathepsin L generates peptide intermediates with N-terminal basic residue extensions, which must be removed by an aminopeptidase. In this study, we identified cathepsin H as an aminopeptidase in secretory vesicles that produces (Met)enkephalin (ME) by sequential removal of basic residues from KR-ME and KK-ME, supported by in vivo knockout of the cathepsin H gene. Localization of cathepsin H in secretory vesicles was demonstrated by immunoelectron microscopy and immunofluorescence deconvolution microscopy. Purified human cathepsin H sequentially removes N-terminal basic residues to generate ME, with peptide products characterized by nano-LC-MS/MS tandem mass spectrometry. Cathepsin H shows highest activities for cleaving N-terminal basic residues (Arg and Lys) among amino acid fluorogenic substrates. Notably, knockout of the cathepsin H gene results in reduction of ME in mouse brain. Cathepsin H deficient mice also show a substantial decrease in galanin peptide neurotransmitter levels in brain. These results illustrate a role for cathepsin H as an aminopeptidase for enkephalin and galanin peptide neurotransmitter production.  相似文献   

2.
Peptidase B (PepB) of Salmonella enterica serovar Typhimurium is one of three broad-specificity aminopeptidases found in this organism. We have sequenced the pepB gene and found that it encodes a 427-amino-acid (46.36-kDa) protein, which can be unambiguously assigned to the leucyl aminopeptidase (LAP) structural family. PepB has been overexpressed and purified. The active enzyme shows many similarities to other members of the LAP family: it is a heat-stable (70 degrees C; 20 min) hexameric ( approximately 270-kDa) metallopeptidase with a pH optimum of 8.5 to 9.5. A detailed study of the substrate specificity of the purified protein shows that it differs from other members of the family in its ability to hydrolyze peptides with N-terminal acidic residues. The preferred substrates for PepB are peptides with N-terminal Asp or Glu residues. Comparison of the amino acid sequence of PepB with those of other LAPs leads to the conclusion that PepB is the prototype of a new LAP subfamily with representatives in several other eubacterial species and to the prediction that the members of this family share the ability to hydrolyze peptides with N-terminal acidic residues. Site-directed mutagenesis has been used to show that this specificity appears to be determined by a single Lys residue present in a sequence motif conserved in all members of the subfamily.  相似文献   

3.
An aminopeptidase with specificity directed toward peptides with acidic N-terminal amino acid residues has been isolated from mouse brain cytosol. Purification by ion-exchange chromatography and gel filtration resulted in an enzyme that hydrolyzed aspartyl-phenylala-nine methyl ester at a rate of 13.2 μu,mol/min/mg protein at pH 7.5, an increase in specific activity of 1000-fold over that of brain homogenate. Its apparent molecular weight, determined by gel filtration, is ?450,000. Dipeptides with N-terminal aspartyl residues are cleaved preferentially to glutamic-containing analogs, and a neutral amino acid (or histidine) is necessary in the adjacent position. For pep-tides of the form aspartyl-X, relative activity was 100, 81, 71, 66, 19, or 0, where X was alanine, serine, leucine, phenylalanine, histidine, or proline, respectively. Tripep-tides were more rapidly hydrolyzed than dipeptides; however, activity tended to decline with increasing chain length. The acidic aminopeptidase can account for almost all of the activity of brain cytosol toward the N-terminal aspartyl residue of angiotensin II, aspartyl-phenylalanine methyl ester or aspartyl-alanine, and the N-terminal glu-tamyl residue of adrenocorticotropin(5-10). The enzyme was unaffected by bestatin or amastatin. It was inhibited by o-phenanthroline and EDTA. The latter effect could be reversed completely by Zn2+ and partially by Mn2+ or Mg2+; Co2+ and Fe2+ had no effect; Ca2+ was inhibitory. These properties distinguish the brain acidic aminopeptidase from aminopeptidase A isolated from human serum or pig kidney and the aspartyl aminopeptidase of dog kidney.  相似文献   

4.
We present the first large-scale survey of N-terminal protein maturation in archaea based on 873 proteomically identified N-terminal peptides from the two haloarchaea Halobacterium salinarum and Natronomonas pharaonis. The observed protein maturation pattern can be attributed to the combined action of methionine aminopeptidase and N-terminal acetyltransferase and applies to cytosolic proteins as well as to a large fraction of integral membrane proteins. Both N-terminal maturation processes primarily depend on the amino acid in penultimate position, in which serine and threonine residues are over represented. Removal of the initiator methionine occurs in two-thirds of the haloarchaeal proteins and requires a small penultimate residue, indicating that methionine aminopeptidase specificity is conserved across all domains of life. While N-terminal acetylation is rare in bacteria, our proteomic data show that acetylated N termini are common in archaea affecting about 15% of the proteins and revealing a distinct archaeal N-terminal acetylation pattern. Haloarchaeal N-terminal acetyltransferase reveals narrow substrate specificity, which is limited to cleaved N termini starting with serine or alanine residues. A comparative analysis of 140 ortholog pairs with identified N-terminal peptide showed that acetylatable N-terminal residues are predominantly conserved amongst the two haloarchaea. Only few exceptions from the general N-terminal acetylation pattern were observed, which probably represent protein-specific modifications as they were confirmed by ortholog comparison.  相似文献   

5.
The crystal structure of prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis was determined. Prolyl tripeptidyl aminopeptidase consists of beta-propeller and catalytic domains, and a large cavity between the domains; this structure is similar to dipeptidyl aminopeptidase IV. A catalytic triad (Ser603, His710, and Asp678) was located in the catalytic domain; this triad was virtually identical to that of the enzymes belonging to the prolyl oligopeptidase family. The structure of an inactive S603A mutant enzyme complexed with a substrate was also determined. The pyrrolidine ring of the proline residue appeared to fit into a hydrophobic pocket composed of Tyr604, Val629, Trp632, Tyr635, Tyr639, Val680, and Val681. There were characteristic differences in the residues of the beta-propeller domain, and these differences were related to the substrate specificity of tripeptidyl activity. The N-terminal amino group was recognized by salt bridges, with two carboxyl groups of Glu205 and Glu206 from a helix in dipeptidyl aminopeptidase IV. In prolyl tripeptidyl aminopeptidase, however, the Glu205 (located in the loop) and Glu636 were found to carry out this function. The loop structure provides sufficient space to accommodate three N-terminal residues (Xaa-Xaa-Pro) of substrates. This is the first report of the structure and substrate recognition mechanism of tripeptidyl peptidase.  相似文献   

6.
Aspartyl aminopeptidase (EC 3.4.11.21) cleaves only unblocked N-terminal acidic amino-acid residues. To date, it has been found only in mammals. We report here that aspartyl aminopeptidase activity is present in yeast. Yeast aminopeptidase is encoded by an uncharacterized gene in chromosome VIII (YHR113W, Saccharomyces Genome Database). Yeast aspartyl aminopeptidase preferentially cleaved the unblocked N-terminal acidic amino-acid residue of peptides; the optimum pH for this activity was within the neutral range. The metalloproteases inhibitors EDTA and 1.10-phenanthroline both inhibited the activity of the enzyme, whereas bestatin, an inhibitor of most aminopeptidases, did not affect enzyme activity. Gel filtration chromatography revealed that the molecular mass of the native form of yeast aspartyl aminopeptidase is approximately 680,000. SDS/PAGE of purified yeast aspartyl aminopeptidase produced a single 56-kDa band, indicating that this enzyme comprises 12 identical subunits.  相似文献   

7.
Aspartyl aminopeptidase (DAP), a widely distributed and abundant cytosolic enzyme, removes glutamyl or aspartyl residues from N-terminal acidic amino acid-containing peptides. DAP is a member of the M18 family of the MH clan of cocatalytic metallopeptidases. The human and mouse enzymes have been cloned. We have identified 8 highly homologous eukaryotic sequences that are probable aspartyl aminopeptidases. Eight histidine residues of human DAP were sequentially mutated to phenylalanine. Mutation of His94, His170, and His440 abolished enzymatic activity. His94 and His440 are postulated to be involved in binding cocatalytic zinc atoms by homology with other members of the MH clan. Mutation of His352 dramatically reduced enzyme activity. Gel-filtration analysis of the His352 mutant revealed destabilization of the quaternary structure and dissociation of the native 440-kDa enzyme. Mutation of His33 and of histidines residing in a cluster at residues 349, 359, and 363 all decreased k(cat). These studies reveal an important role for histidine residues both in catalysis and in the structural integrity of DAP.  相似文献   

8.
Pyroglutamyl peptidase II (PPII), a highly specific membrane-bound omegapeptidase, removes N-terminal pyroglutamyl from thyrotropin-releasing hormone (相似文献   

9.
Biosynthesis of peptide hormones and neurotransmittters involves proteolysis of proprotein precursors by secretory vesicle cathepsin L. Cathepsin L generates peptide intermediates with basic residues at their NH(2)-termini, indicating that Arg/Lys aminopeptidase is needed to generate the smaller biologically active peptide. Therefore, this study identified the Arg/Lys aminopeptidase that is present in secretory vesicles of adrenal medulla and neuroendocrine tissues, achieved by molecular cloning and localization in 'model' neuropeptide-containing secretory vesicles (bovine). Molecular cloning of the bovine aminopeptidase B (AP-B) cDNA defined its primary sequence that allowed selection of antisera for immunolocalization studies. AP-B was present in secretory vesicles that contain cathepsin L with the neuropeptides enkephalin and neuropeptide Y. The AP-B in several neuroendocrine tissues was detected by western blots. Recombinant bovine AP-B showed preference for Arg-methylcoumarinamide substrate. AP-B was inhibited by arphamenine, an inhibitor of aminopeptidases. Bovine AP-B showed similar activities for Arg-(Met)enkephalin (ME) and Lys-ME neuropeptide substrates to generate ME, while rat AP-B preferred Arg-ME. Furthermore, AP-B possesses an acidic pH optimum of 5.5-6.5 that is similar to the internal pH of secretory vesicles. The significant finding of the secretory vesicle localization of AP-B with neuropeptides and cathepsin L suggests a role for this exopeptidase in the biosynthesis of neuropeptides.  相似文献   

10.
Eukaryotic methionine aminopeptidase type 2 (MetAP2, MetAP2 gene (MAP2)), together with eukaryotic MetAP1, cotranslationally hydrolyzes initiator methionine from nascent polypeptides when the side chain of the second residue is small and uncharged. In this report, we took advantage of the yeast (Saccharomyces cerevisiae) map1 null strain's reliance on MetAP2 activity for the growth and viability to provide evidence of the first dominant negative mutant of eukaryotic MetAP2. Replacement of the conserved His(174) with alanine within the C-terminal catalytic domain of yeast MetAP2 eliminated detectable catalytic activity against a peptide substrate in vitro. Overexpression of MetAP2 (H174A) under the strong GPD promoter in a yeast map1 null strain was lethal, whereas overexpression under the weaker GAL1 promoter slightly inhibited map1 null growth. Deletion mutants further revealed that the N-terminal region of MetAP2 (residues 2-57) is essential but not sufficient for MetAP2 (H174A) to fully interfere with map1 null growth. Together, these results indicate that catalytically inactive MetAP2 is a dominant negative mutant that requires its N-terminal region to interfere with wild-type MetAP2 function.  相似文献   

11.
One of the main and most astonishing characteristics of peptides comprised of beta-amino acids with proteinogenic side chains is their extraordinarily high stability towards enzymatic degradation. So far, only certain microbial enzymes have been shown to cleave N-terminal beta(3)-homoamino acid residues from peptides. In this work, the L-aminopeptidase-D-amidase/esterase (DmpA) from Ochrobactrum anthropi LMG7991 is compared to two closely related beta-peptidyl aminopeptidases (BapA), which originate from Sphingosinicella strains, and to microsomal leucine aminopeptidase (LAP) as a reference. All four enzymes are aminopeptidases cleaving N-terminal amino acids from small peptides. Degradation experiments reveal that DmpA and both BapA enzymes exhibit unique, but clearly distinct substrate specificities and preferences. DmpA also cleaves beta- and mixed alpha,beta-peptides and amides, but a short side chain of the N-terminal beta-amino acid residue seems to be a prerequisite, since only peptides carrying N-terminal betahGly and beta(3)hAla are hydrolyzed with good efficiencies. Both beta-peptidyl aminopeptidases cleave beta-amino acids from a variety of beta-peptides and mixed alpha,beta-peptides, but they do not accept alpha-amino acids in the N-terminal position. Astonishingly, DmpA exhibited much higher catalytical rates for the mixed dipeptide carnosine (H-betahGly-His-OH) than for any other substrate described until now.  相似文献   

12.
In this study, a highly active foliar aminopeptidase preferentially releasing N-terminal alanine from artificial substrates was purified and characterized from cucumber (Cucumis sativus L. suyo). The enzyme had a molecular mass of 200 kDa consisting of two subunits of 95 kDa. It was a metalloprotease the pH optimum of which was 8 to 9. It cleaved Ala-, Gly-, Met-, Ser-, Leu-, Lys-, and Arg artificial substrates. An internal amino acid sequence was similar to those of aminopeptidase N (clan MA, family M1) of microorganisms, and was very similar to that of a putative aminopeptidase N of Arabidopsis thaliana. From these results, the highly active aminopeptidase in cucumber leaves was identified to be a plant aminopepitdase N.  相似文献   

13.
The removal of N-terminal translation initiator Met by methionine aminopeptidase (MetAP) is often crucial for the function and stability of proteins. On the basis of crystal structure and sequence alignment of MetAPs, we have engineered Escherichia coli MetAP by the mutation of three residues, Y168G, M206T, Q233G, in the substrate-binding pocket. Our engineered MetAPs are able to remove the Met from bulky or acidic penultimate residues, such as Met, His, Asp, Asn, Glu, Gln, Leu, Ile, Tyr, and Trp, as well as from small residues. The penultimate residue, the second residue after Met, was further removed if the antepenultimate residue, the third residue after Met, was small. By the coexpression of engineered MetAP in E. coli through the same or a separate vector, we have successfully produced recombinant proteins possessing an innate N terminus, such as onconase, an antitumor ribonuclease from the frog Rana pipiens. The N-terminal pyroglutamate of recombinant onconase is critical for its structural integrity, catalytic activity, and cyto-toxicity. On the basis of N-terminal sequence information in the protein database, 85%-90% of recombinant proteins should be produced in authentic form by our engineered MetAPs.  相似文献   

14.
Abstract: Eight protease inhibitors of microbiological origin were examined as potential inhibitors of a homogeneous rat brain enkephalin aminopeptidase. Bestatin [(2S,3R)-3-amino-2-hydroxy-4-phenylbutanoyl]- l -leucine and analogs of bestatin having basic, acidic, and other neutral amino acids substituted for the Leu residue exhibited inhibition constants ranging from 3.3 ± 10−5 to 8.3 ± 10−8 m . The best inhibitor had a positively charged amino acid (Lys) substituted for Leu. A series of phenylalanyl dipeptides were examined as substrates with the aminopeptidase. The amino acid residue on the carboxyl side of the peptide bond undergoing cleavage was varied systematically in the dipeptides to include neutral, acidic, and basic residues. Again, a positively charged amino acid (Arg) adjacent to the bond undergoing scission was kinetically preferred. These results may be used to design highly specific inhibitors of the enkephalin aminopeptidase.  相似文献   

15.
The amino acid sequence of the bovine mitochondrial nicotinamide nucleotide transhydrogenase was recently deduced from isolated cDNAs and reported [Yamaguchi, M., Hatefi, Y., Trach, K., and Hoch, J.A. (1988) J. Biol. Chem. 263, 2761-2767]. The cDNAs lacked the N-terminal coding region, however, and the 8 N-terminal residues were determined by protein sequencing. In the present study, the nucleotide sequence of the 5' upstream region was determined by dideoxynucleotide sequencing of the transhydrogenase messenger RNA, and amino acid sequences of the N-terminal region and the signal peptide of the enzyme were deduced from the nucleotide sequence. The N-terminal sequence of the enzyme as deduced from the mRNA sequence is the same as that determined by protein sequencing, with one difference. Protein sequencing showed Ser as the N-terminal residue. The mRNA sequence indicated that Ser is the second N-terminal residue, and the first is Cys. That preparations of the enzyme are mixtures of two polypeptides, one polypeptide being one residue shorter at the N terminus than the other, has been pointed out in the above reference. The signal peptide consists of 43 residues, is rich in basic (4 Lys, 2 Arg) and hydroxylated (4 Thr, 3 Ser) amino acids, and lacks acidic residues.  相似文献   

16.
We have cloned a gene (papA) that encodes a prolyl aminopeptidase from Aspergillus niger. Homologous genes are present in the genomes of the Eurotiales A. nidulans, A. fumigatus and Talaromyces emersonii, but the gene is not present in the genome of the yeast Saccharomyces cerevisiae. Cell extracts of strains overexpressing the gene under the control of its own promoter showed a fourfold to sixfold increase in prolyl aminopeptidase activity, but no change in phenylalanine or leucine aminopeptidase activity. The overexpressed enzyme was subsequently purified and characterised. The enzyme specifically removes N-terminal proline and hydroxyproline residues from peptides. It is the first enzyme of its kind from a eukaryotic organism that has been characterised.  相似文献   

17.
Actinonin is a pseudotripeptide that displays a high affinity towards metalloproteases including peptide deformylases (PDFs) and M1 family aminopeptidases. PDF and M1 family aminopeptidases belong to thermolysin-metzincin superfamily. One of the major differences in terms of substrate binding pockets between these families is presence (in M1 aminopeptidases) or absence (in PDFs) of an S1 substrate pocket. The binding mode of actinonin to PDFs has been established previously; however, it is not clear how the actinonin, without a P1 residue, would bind to the M1 aminopeptidases. Here we describe the crystal structure of Escherichia coli aminopeptidase N (ePepN), a model protein of the M1 family aminopeptidases in complex with actinonin. For comparison we have also determined the structure of ePepN in complex with a well-known tetrapeptide inhibitor, amastatin. From the comparison of the actinonin and amastatin ePepN complexes, it is clear that the P1 residue is not critical as long as strong metal chelating head groups, like hydroxamic acid or α-hydroxy ketone, are present. Results from this study will be useful for the design of selective and efficient hydroxamate inhibitors against M1 family aminopeptidases.  相似文献   

18.
The M42 aminopeptidases are a family of dinuclear aminopeptidases widely distributed in Prokaryotes. They are potentially associated to the proteasome, achieving complete peptide destruction. Their most peculiar characteristic is their quaternary structure, a tetrahedron-shaped particle made of twelve subunits. The catalytic site of M42 aminopeptidases is defined by seven conserved residues. Five of them are involved in metal ion binding which is important to maintain both the activity and the oligomeric state. The sixth conserved residue, a glutamate, is the catalytic base deprotonating the water molecule during peptide bond hydrolysis. The seventh residue is an aspartate whose function remains poorly understood. This aspartate residue, however, must have a critical role as it is strictly conserved in all MH clan enzymes. It forms some kind of catalytic triad with the histidine residue and the metal ion of the M2 binding site. We assess its role in TmPep1050, an M42 aminopeptidase of Thermotoga maritima, through a mutational approach. Asp-62 was substituted with alanine, asparagine, or glutamate residue. The Asp-62 substitutions completely abolished TmPep1050 activity and impeded dodecamer formation. They also interfered with metal ion binding as only one cobalt ion is bound per subunit instead of two. The structure of Asp62Ala variant was solved at 1.5 Å showing how the substitution has an impact on the active site fold. We propose a structural role for Asp-62, helping to stabilize a crucial loop in the active site and to position correctly the catalytic base and a metal ion ligand of the M1 site.  相似文献   

19.
Wang X  Song Y  Li J  Liu H  Xu X  Lai R  Zhang K 《Peptides》2007,28(10):2069-2074
While conducting experiments to investigate antimicrobial peptides of amphibians living in the Yunnan-Guizhou region of southwest China, a new family of antimicrobial peptides was identified from skin secretions of the Yunnan frog, Rana pleuraden. Members of the new peptide family named pleurain-As are composed of 26 amino acids with a unique N-terminal sequence (SIIT) and a disulfide-bridged heptapeptide sequence (CRLYNTC). By BLAST search, pleurain-As had no significant similarity to any known peptides. Native and synthetic peptides showed antimicrobial activities against tested microorganisms including Gram-negative and Gram-positive bacteria and fungi. Twenty different cDNAs encoding pleurain-As were cloned from the skin cDNA library of R. pleuraden. The precursors of pleurain-As are composed of 69 amino acid residues including predicted signal peptides, acidic propieces, and cationic mature antimicrobial peptides. The preproregion of pleurain-A precursor comprises a hydrophobic signal peptide of 22 residues followed by an 18 residue acidic propiece which terminates by a typical prohormone processing signal Lys-Arg. The preproregions of precursors are very similar to other amphibian antimicrobial peptide precursors but the mature pleurain-As are different from other antimicrobial peptide families. The remarkable similarity of preproregions of precursors that give rise to very different antimicrobial peptides in distantly related frog species suggests that the corresponding genes form a multigene family originating from a common ancestor. Furthermore, pleurain-As could exert antimicrobial capability against Helicobacter pylori. This is the first report of naturally occurring peptides with anti-H. pylori activity from Rana amphibians.  相似文献   

20.
The factors determining the site recognition and phosphorylation by rat liver casein kinase-2 (CK-2) have been explored with a set of 14 related hexapeptides each including a single phosphorylatable amino acid and five acidic plus neutral residues. Such peptides are different from each other in the following features: the nature of the phosphorylatable amino acid, if any; its position relative to the critically required acidic residues; the extension and the structure of the acidic cluster. All of them were tested as substrate and/or competitive inhibitors of CK-2, and their kinetic and inhibition constants were determined. The results suggest the following conclusions. Under strictly comparable conditions Ser is by far preferred over Thr. Tyr not being affected at all. In order to carry out its role of structural determinant the critical acidic cluster must be located on the C-terminal side of the target residue, though not necessarily adjacent to it. The affinity for the protein-binding site, as deduced from Km and/or Ki values, is largely dependent on the number of acidic residues but it is also significantly enhanced if a hydroxylic residue is located on their N-terminal side. An acidic residue at position +3 relative to serine plays an especially important role for triggering phosphorylation, the peptide Ser-Glu-Glu-Ala-Glu-Glu having similar Km but negligible Vmax compared to Ser-Glu-Ala-Glu-Glu-Glu and Ser-Glu-Glu-Glu-Ala-Glu. These data provide a rationale for the substrate specificity of CK-2 and will give a helpful insight into the structure of the protein-binding site of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号