首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dynamic metabolism of photosystem II reaction center proteins and pigments   总被引:4,自引:0,他引:4  
Photosystem II (PSII) reaction center is an intrinsic membrane-protein complex in the chloroplast that catalyzes primary charge separation between P680, a chlorophyll a dimer, and the primary quinone acceptor QA. This supramolecular protein complex consists of D1, D2, α and β subunits of cytochrome b559, the psbI gene product, and a few low molecular mass proteins. Ligated to this complex are pigments: chlorophyll a, pheophytin a, β-carotenes, and non-heme iron. One of the major outcomes of light-mediated photochemistry is the fact that in the light, D1 protein is rapidly turned over compared to the other proteins of the reaction center; the relative lability of proteins being: D1?D2>Cyt b559. D1 degradation in visible light exhibits complex, multiphasic kinetics. D1 degradation can be uncoupled from photosynthetic electron transport, which suggests that degradation may perform some separate function(s) beyond maintaining photosynthetic activity. The presence of a physiologically relevant level of ultraviolet-B (UV-B) radiation in a background of photosynthetically active radiation stimulates D1/D2 heterodimer degradation in a synergistic manner. D1 undergoes several post-translational modifications including N-acetylation, phosphorylation, and palmitoylation. Light-dependent phosphorylation of D1 occurs in all flowering plants but not in the green alga Chlamydomonas or in cyanobacteria, and the same may be true for D2. The roles of these modifications in D1/D2 assembly, turnover, or function are still a matter of conjecture. Nor do we yet know about the fate of the liganded pigments, such as the chlorophyll and carotenoids bound to the reaction center proteins. Environmental extremes that negatively impact photosynthesis seem to involve D1 metabolism. Thus, D1 protein is a major factor of PSII instability, and its replacement after its degradation is a primary component of the PSII repair cycle.  相似文献   

2.
Ultraviolet-B (UV-B) radiation can have a negative impact on the growth and development of plants. Plants tolerant to UV-B alleviate these effects using UV-screening pigments that reduce the penetration of UV-B into mesophyll tissue. Little is known about the relative contribution of specific phenolic compounds to the screening capacity of leaves. The D1 and D2 proteins constituting the photosystem (PS) II reaction center heterodimer are targets of UV-B radiation and can be used as an in situ sensor for UV penetration into photosynthetic tissue. Degradation of these proteins occurs under very low fluences of UV-B, and is strongly accelerated in the presence of visible light. Using the D1-D2 degradation assay, we characterized UV-B sensitivity of Arabidopsis mutants (tt4, tt5, and fah1) that are genetically altered in their composition of phenolic compounds. We found that changes in phenol metabolism result in altered rates of PSII reaction center heterodimer degradation under mixtures of photosynthetically active radiation and UV-B. A comparison of D2 degradation kinetics showed increased UV sensitivity of the Landsberg (Landsberg erecta) tt5 mutant relative to the Landsberg tt4 mutant and the Landsberg wild type. Despite a lack of flavonoid accumulation, the tt4 mutant is not particularly UV sensitive. However, the tolerance of this mutant to UV-B may reflect the increased accumulation of sinapate esters that strongly absorb in the UV range, and may thus protect the plant against environmentally relevant UV-B radiation. This sinapate-mediated protection is less obvious for the tt4 mutant of Columbia ecotype, indicating that the relative contribution of particular phenolics to the total screening capacity varies with the genetic background. The role of sinapate esters in UV screening is further substantiated by the results with the fah1 mutant where absence of most of the sinapate esters results in a significantly accelerated degradation of D2 under mixed light conditions. Because the latter mutant is not expected to be deficient in flavonoids, the relative contribution of flavonoids as protectants of PSII reaction center heterodimer against UV-B damage in Arabidopsis needs to be re-evaluated vis-a-vis screening by simple phenolics like sinapate esters.  相似文献   

3.
The effect of visible light on photosystem II reaction centre D1 protein in plants treated with ultraviolet-B light was studied. It was found that a 20 kDa C-terminal fragment of D1 protein generated during irradiation with ultraviolet-B light was stable when plants were incubated in the dark, but was degraded when plants were incubated in visible light. In this condition the recovery of photosynthetic activity was also observed. Even a low level of white light was sufficient to promote both further degradation of the fragment and recovery of activity. During this phase, the D1 protein is the main synthesized thylakoid polypeptide, indicating that other photosystem II proteins are recycled in the recovery process. Although both degradation of the 20 kDa fragment and resynthesis of D1 are light-dependent phenomena, they are not closely related, as degradation of the 20 kDa fragment may occur even in the absence of D1 synthesis. Comparing chemical and physical factors affecting the formation of the fragment in ultraviolet-B light and its degradation in white light, it was concluded that the formation of the fragment in ultraviolet-B light is a photochemical process, whereas the degradation of the fragment in white light is a protease-mediated process.  相似文献   

4.
The effect of ultraviolet-B (UV-B) radiation on the amount of various Photosystem (PS) II subunits has been studied in the thalloid liverwort Conocephalum conicum. UV-B irradiation led to a drastic decrease of the reaction center proteins D1 and D2 and the outer light harvesting antenna (LHC II). A minor reduction was found in the levels of the CP 43 polypeptide of the inner antenna and the 33, 23 and 16 kDa extrinsic polypeptides of PS II. During UV-B irradiation, the extrinsic polypeptides accumulated in the soluble protein fraction, but D1 and D2 were not dedectable. Streptomycin, but not cycloheximide inhibited the repair process of PS II, indicating that only protein synthesis in the chloroplast is necessary for recovery. This indicates that the extrinsic proteins of PS II dissociate from the membrane during UV-B treatment and reassociate with PS II in the course of the repair process. We conclude that the reaction center core is a target of UV-B radiation in C. concicum. The extrinsic proteins of PS II are not directly affected by UV-B, but their release is the consequence of UV-B-induced degradation of the D1 and D2 proteins.  相似文献   

5.
Soybean [Glycine max (L.) Merr. cv. Hardee] and wheat (Triticum aestivum L. cv. Jori) were grown from seed under four ultraviolet-B irradiances and four levels of photosynthetically active radiation in a factorial design. The effects of ultraviolet-B radiation on leaf number and area, total dry matter production, dry weight of component organs, and plant height were compared between soybean and wheat. Ultraviolet-B radiation effects were dependent upon the level of photosynthetically active radiation incident during growth. Wheat and soybeans were both affected by low ultraviolet-B radiation flux densities; however, they differed markedly in their growth responses and biomass allocation patterns. Substantial interactions between ultraviolet-B and photosynthetically active radiation indicate a need for the measurement of longer wavelength radiation when evaluating the effects of ultraviolet-B radiation on plant growth in natural conditions.  相似文献   

6.
The D1/D2 heterodimer core is the heart of the photosystem II reaction center. A characteristic feature of this heterodimer is the differentially rapid, light-dependent degradation of the D1 protein. The D1 protein is possibly the most researched photosynthetic polypeptide, with aspects of structure-function, gene, messenger and protein regulation, electron transport, reactive oxygen species, photoinhibition, herbicide binding, stromal-granal translocations, reversible phosphorylation, and specific proteases, all under intensive investigation more than three decades after the protein's debut in the literature. This review will touch on some treaded areas of D1 research that have, so far, defied clear resolution, as well as cutting edge research on mechanisms and consequences of D1 protein degradation.  相似文献   

7.
 研究了温室种植的小麦在0kJ·m-2(对照)、8.82kJ·m-2(处理1)和12.6kJ·m-2(处理2)3种剂量的紫外线B辐射下叶绿体膜组分和膜流动性的变化。紫外线B辐射导致了光合色素(包括叶绿素和类胡萝卜素)的降解、Hill反应的抑制、膜脂肪酸组分配比的改变和不饱和度指数(IUFA)的下降、膜流动性的降低以及丙二醛(MDA)含量的升高。分析表明,紫外线B辐射诱导的膜脂过氧化是叶绿体膜系统受破坏的主要原因。  相似文献   

8.
We irradiated captive juvenile Euphausia superba in the laboratory with lower than spring surface levels of ultraviolet-B, ultraviolet-A and photosynthetically active radiation, in order to examine their response in terms of mortality and generalised activity. Levels of photosynthetically active radiation 3–5 times below surface irradiance caused krill to die within a week, while animals in the dark survived. Addition of ultraviolet-B typical of depths up to 15 m were found to significantly accelerate mortality and lead to a drop in activity in all experiments. A drop in activity in krill exposed to ultraviolet-A wavelengths was evident without an increase in mortality. The protein content of animals from various treatments was found not to vary. Accepted: 10 January 1999  相似文献   

9.
Photosystem II (PSII) is a primary target for light‐induced damage in photosynthetic protein complexes. To avoid photoinhibition, chloroplasts have evolved a repair cycle with efficient degradation of the PSII reaction center protein, D1, by the proteases FtsH and Deg. Earlier reports have described that phosphorylated D1 is a poor substrate for proteolysis, suggesting a mechanistic role for protein phosphorylation in PSII quality control, but its precise role remains elusive. STN8, a protein kinase, plays a central role in this phosphorylation process. To elucidate the relationship between phosphorylation of D1 and the protease function we assessed in this study the involvement of STN8, using Arabidopsis thaliana mutants lacking FtsH2 [yellow variegated2 (var2)] and Deg5/Deg8 (deg5 deg8). In support of our presumption we found that phosphorylation of D1 increased more in var2. Furthermore, the coexistence of var2 and stn8 was shown to recover the delay in degradation of D1, resulting in mitigation of the high vulnerability to photoinhibition of var2. Partial D1 cleavage fragments that depended on Deg proteases tended to increase, with concomitant accumulation of reactive oxygen species in the mutants lacking STN8. We inferred that the accelerated degradation of D1 in var2 stn8 presents a tradeoff in that it improved the repair of PSII but simultaneously enhanced oxidative stress. Together, these results suggest that PSII core phosphorylation prevents undesirable cleavage of D1 by Deg proteases, which causes cytotoxicity, thereby balancing efficient linear electron flow and photo‐oxidative damage. We propose that PSII core phosphorylation contributes to fine‐tuned degradation of D1.  相似文献   

10.
Soybean plants (cv. Hardee) were grown from seed under four ultraviolet-B radiation flux densities and four photosynthetically active radiation levels in a factorial design. Net photosynthesis, dark respiration, and transpiration were measured after 2 and 6 weeks of exposure. Effects of ultraviolet-B radiation were dependent upon photosynthetically active radiation levels. Ultraviolet-B radiation adversely affected net photosynthesis at low photosynthetically active radiation levels, but had little consequence at levels normally saturating photosynthesis in the field. Ultraviolet-B radiation affected both stomatal and nonstomatal resistances to carbon dioxide under low levels of photosynthetically active radiation. The present study demonstrates interactions between ultraviolet-B and photosynthetically active radiation.  相似文献   

11.
Inhibition of electron transport and damage to the protein subunits by ultraviolet-B (UV-B, 280–320 nm) radiation have been studied in isolated reaction centers of the non-sulfur purple bacterium Rhodobacter sphaeroides R26. UV-B irradiation results in the inhibition of charge separation as detected by the loss of the initial amplitude of absorbance change at 430 nm reflecting the formation of the P+(QAQB) state. In addition to this effect, the charge recombination accelerates and the damping of the semiquinone oscillation increases in the UV-B irradiated reaction centers. A further effect of UV-B is a 2 fold increase in the half- inhibitory concentration of o-phenanthroline. Some damage to the protein subunits of the RC is also observed as a consequence of UV-B irradiation. This effect is manifested as loss of the L, M and H subunits on Coomassie stained gels, but not accompanied with specific degradation products. The damaging effects of UV-B radiation enhanced in reaction centers where the quinone was semireduced (QB ) during UV-B irradiation, but decreased in reaction centers which lacked quinone at the QB binding site. In comparison with Photosystem II of green plant photosynthesis, the bacterial reaction center shows about 40 times lower sensitivity to UV-B radiation concerning the activity loss and 10 times lower sensitivity concerning the extent of reaction center protein damage. It is concluded that the main effect of UV-B radiation in the purple bacterial reaction center occurs at the QAQB quinone acceptor complex by decreasing the binding affinity of QB and shifting the electron equilibration from QAQB to QA QB. The inhibitory effect is likely to be caused by modification of the protein environment around the QB binding pocket and mediated by the semiquinone form of QB. The UV-resistance of the bacterial reaction center compared to Photosystem II indicates that either the QAQB acceptor complex, which is present in both types of reaction centers with similar structure and function, is much less susceptible to UV damage in purple bacteria, or, more likely, that Photosystem II contains UV-B targets which are more sensitive than its quinone complex.Abbreviations Bchl bacteriochlorophyll - P Bchl dimer - QA primary quinone electron acceptor - QB secondary quinone electron acceptor - RC reaction center - UV-B ultraviolet-B  相似文献   

12.
Approximately 20 protein subunits are associated with the PS II complex, not counting subunits of peripheral light-harvesting antenna complexes. However, it is not yet established which proteins specifically are involved in the water-oxidation process. Much evidence supports the concept that the D1/D2 reaction center heterodimer not only plays a central role in the primary photochemistry of Photosystem II, but also is involved in electron donation to P680 and in ligation of the manganese cluster. This evidence includes (a) the primary donor to P680 has been shown to be a redox-active tyrosyl residue (Tyr161) in the D1 protein, and (b) site-directed mutagenesis and computer-assisted modeling of the reaction center heterodimer have suggested several sites with a possible function in manganese ligation. These include Asp170, Gln165 and Gln189 of the D1 protein and Glu69 of the D2 protein as well as the C-terminal portion of the mature D1 protein. Also, hydrophilic loops of the chlorophyll-binding protein CP43 that are exposed at the inner thylakoid surface could be essential for the water-splitting process.In photosynthetic eukaryotes, three lumenal extrinsic proteins, PS II-O (33 kDa), PS II-P (23 kDa) and PS II-Q (16 kDa), influence the properties of the manganese cluster without being involved in the actual catalysis of water oxidation. The extrinsic proteins together may have multiple binding sites to the integral portion of PS II, which could be provided by the D1/D2 heterodimer and CP47. A major role for the PS II-O protein is to stabilize the manganese cluster. Most experimental evidence favors a connection of the PS II-P protein with binding of the Cl- and Ca2+ ions required for the water oxidation, while the PS II-Q protein seems to be associated only with the Cl- requirement. The two latter proteins are not present in PS II of prokaryotic organisms, where their functions may be replaced by a 10–12 kDa subunit and a newly discovered low-potential cytochrome c-550.Abbreviations PS II Photosystem II - PCC Pasteur Culture Collection  相似文献   

13.
Light, controls the “blueprint” for chloroplast development, but at high intensities is toxic to the chloroplast. Excessive light intensities inhibit primarily photosystem II electron transport. This results in generation of toxic singlet oxygen due to impairment of electron transport on the acceptor side between pheophytin and QB -the secondary electron acceptor. High light stress also impairs electron transport on the donor side of photosystem II generating highly oxidizing species Z+ and P680+. A conformationsl change in the photosystem II reaction centre protein Dl affecting its QB-binding site is involved in turning the damaged protein into a substrate for proteolysis. The evidence indicates that the degradation of D1 is an enzymatic process and the protease that degrades D1 protein has been shown to be a serine protease Although there is evidence to indicate that the chlorophyll a-protein complex CP43 acts as a serine-type protease degrading Dl, the observed degradation of Dl protein in photosystem II reaction centre particlesin vitro argues against the involvement of CP43 in Dl degradation. Besides the degradation during high light stress of Dl, and to a lesser extent D2-the other reaction centre protein, CP43 and CP29 have also been shown to undergo degradation. In an oxygenic environment, Dl is cleaved from its N-and C-termini and the disassembly of the photosystem II complex involves simultaneous release of manganese and three extrinsic proteins involved in oxygen evolution. It is known that protein with PEST sequences are subject to degradation; D1 protein contains a PEST sequence adjacent to the site of cleavage on the outer side of thylakoid membrane between helices IV and V. The molecular processes of “triggering” of Dl for proteolytic degradation are not clearly understood. The changes in structural organization of photosystem II due to generation of oxy-radicals and other highly oxidizing species have also not been resolved. Whether CP43 or a component of the photosystem II reaction centre itself (Dl. D2 or cy1 b559 subunits), which may be responsible for degradation of Dl, is also subject to light modification to become an active protease, is also not known. The identity of proteases degrading Dl, LHCII and CP43 and C29 remains to be established  相似文献   

14.
Irradiation of Spinach oleracea intact leaf tissue and of mesophyll protoplasts of Valerianella locusta at 20° C with strong light resulted in severe (40–80%) inhibition of photosynthesis, measured as photosystem II electron transport activity in isolated thylakoids or as fluorescence parameter FV/FM on intact leaf disks. No net degradation of the D1 protein of photosystem II was seen under these conditions. However, in the presence of streptomycin, an inhibitor of chloroplast protein synthesis, net D1 degradation (up to about 80%) did occur with a half-time of 4–6h, and photoinhibition was enhanced. Thylakoid ultrastructure remained stable during photoinhibition, even when substantial degradation of D1 took place in the presence of streptomycin. When leaf disks were irradiated at 2°C, streptomycin did not influence the degree of photoinhibition, and net Dl degradation did not occur. These results suggest that in excess (photoinhibitory) light at 20°C, turnover (coordinated degradation and synthesis) of D1 diminished the degree of photoinhibition. The observed photoinhibition is thought to be due to the accumulation of inactive photosystem II reaction centres still containing D1. In the presence of streptomycin, the Dl protein was degraded (probably in the previously inactivated centres), but restoration of active centres via D1 synthesis was blocked, leading to more severe photoinhibition. Low temperature (2°C), by restricting both degradation and resynthesis of D1, favoured the accumulation of inactive centres. Streptomycin and chloramphenicol (another inhibitor of chloroplast protein synthesis) were tested for side-effects on photosynthesis. Strong inhibitory effects of chloramphenicol, but much less severe effects of streptomycin were observed.  相似文献   

15.
The effects of introduced chloroplast gene mutations affecting D1 synthesis, turnover and function on photosynthesis, growth and competitive ability were examined in autotrophic cultures of Chlamydomonas reinhardtii (Chlorophyta) adapted to low or high irradiance. Few discernible effects were evident when the mutants were grown in low light (LL, 70 μmol m?2 s?1). The herbicide-resistant psbA mutation Ser264→ Ala (dr) slowed electron transfer and accelerated D1 degradation in cells grown under high light (HL, 600 μmol m?2 s?1). The maximum rate of light-and CO2-saturated photosynthesis, cell growth rate and competitive ability in the dr mutant were reduced compared to wild type under HL. However, the wild-type rate of D1 synthesis in dr was adequate to compensate for accelerated D1 degradation. 16S rRNA mutations conferring resistance to streptomycin and spectinomycin (spr/sr) that altered chloroplast ribosome structure and assembly were used to inhibit chloroplast protein synthesis. In spr/sr cells grown under HL, D1 synthesis was reduced by 40–60% compared to wild type and D1 degradation was accelerated, leading to a 4-fold reduction in D1 pool size. The reduced D1 levels were accompanied by an elevation of Fo and a decline in Fv/Fm, quantum yield and maximum rate of CO2-saturated photosynthesis. Chemostat experiments showed that the growth rate and competitive ability of spr/sr were reduced against both wild type and dr.  相似文献   

16.
Many animals, plants, and microorganisms are harmed by ultraviolet-B radiation. In particular, several members of class amphibia are negatively affected by exposure to ultraviolet-B radiation. Exposure to ultraviolet-B radiation can cause death or various types of sublethal damage in amphibians. One mechanism to lessen the effect of harmful ultraviolet-B radiation is to limit exposure to sunlight behaviorally. Few studies have examined the behavioral sensitivity of adult amphibians to ultraviolet-B radiation. Using both field experiments and field observations, we found that two species of diurnal poison-dart frogs in Costa Rica ( Dendrobates pumilio, D. auratus ) consistently preferred areas in the field and within experimental testing chambers that offered low levels of ultraviolet-B radiation. In field observations, vocalizing D. pumilio were found at locations with significantly lower levels of ambient ultraviolet-B compared to random locations throughout their natural habitat. Ultraviolet-B avoidance behavior may be an important behavioral response for tropical frogs in light of recent evidence suggesting a significant increase in the levels of ambient ultraviolet-B radiation in the tropics over the past decade.  相似文献   

17.
An outcome of the photochemistry during oxygenic photosynthesis is the rapid turn over of the D1 protein in the light compared to the other proteins of the photosystem II (PS II) reaction center. D1 is a major factor of PS II instability and its replacement a primary event of the PS II repair cycle. D1 also undergoes redox-dependent phosphorylation prior to its degradation. Although it has been suggested that phosphorylation modulates D1 metabolism, reversible D1 phosphorylation was reported not to be essential for PS II repair in Arabidopsis. Thus, the involvement of phosphorylation in D1 degradation is controversial. We show here that nitric oxide donors inhibit in vivo phosphorylation of the D1 protein in Spirodela without inhibiting degradation of the protein. Thus, D1 phosphorylation is not tightly linked to D1 degradation in the intact plant.  相似文献   

18.
Singh  M. 《Photosynthetica》2000,38(2):161-169
The photosynthesis and related plant productivity aspects of plants and cyanobacteria depend upon the functioning of photosystem 2 (PS2), associated with D1 and D2 heterodimer reaction centre core proteins. The D1 protein is encoded by psbA gene, genetically localized on the plastid genome (cpDNA), contains functional cofactors of PS2 in association with D2 protein, and also functions for radiant energy transformation through oxidation of water and reduction of plastoquinone. Surprisingly, D1 protein accounts for even less than 1% of the total thylakoid membrane protein content. In spite of that, its rate of turnover is very much comparable to ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) large subunit, most abundantly present in green tissue. The normal functioning of PS2 possesses damage-repair cycles of D1 protein. Generally, rate of photodamage does not exceed the rate of repair under optimal growth conditions, therefore, no adverse effect on photosynthetic efficiency is manifest. However, under strong irradiance coupled with elevated temperature, level of photodamage exceeds the rate of repair, resulting in photoinhibition, photodegradation of D1 protein, and lowering photosynthetic efficiency linked with plant productivity eventually. The features of D1 turnover process are reviewed, particularly with respect to molecular mechanisms.  相似文献   

19.
Mechanistic aspects of the Photosystem II (PS II) damage and repair cycle in Dunaliella salina were investigated. The work addressed the role of chloroplast-encoded protein biosynthesis on the rate of the D1 protein (chloroplast psbA gene product) degradation, following photoinhibition of PS II under in vivo conditions. Cells were grown under different light-intensities and the rate of D1 photodamage and degradation was measured via pulse-chase measurements with (35S)sulfate. It is shown that no detectable difference exists in the rate of D1 degradation in D. salina, measured in the presence or absence of lincomycin, a chloroplast protein biosynthesis inhibitor. The results suggest that de novo D1 biosynthesis does not play a role in the regulation of D1 degradation. In low-light (100 mol photons m–2 s–1) grown cells, the rate of photodamage to D1 did not exceed the rate of its degradation and replacement. In high-light (2200 mol photons m–1 s–1) grown cells, the rate of D1 photodamage was faster than the rate of its degradation, resulting in a significant accumulation of photoinactivated PS II centers in the chloroplast thylakoids (chronic photoinhibition). The latter was coincident with the appearance of a 160 kD complex that contained photodamaged D1. Electron micrographs of D. salina thylakoids revealed extensive grana stacks in the thylakoid membrane of low-light grown cells. Only rudimentary appressions consisting of simple membrane pairings were found in the high-light grown cells. The results are discussed in terms of the regulation of D1 degradation in chloroplasts under in vivo conditions.Abbreviations Chl chlorophyll - D1 the 32 kD reaction center protein of PS II, encoded by the chloroplast psbA gene - D2 the 34 kD reaction center protein of PS II, encoded by the chloroplast psbD gene - HL high light - LL low light - Linc lincomycin  相似文献   

20.
Ultraviolet radiation effects were examined in natural phytoplankton communities from Rimouski (Canada), Ubatuba (Brazil), and Ushuaia (Argentina). Outdoor pump‐mixed mesocosms were submitted to ambient solar radiation (NUVB) and ambient with additional UV‐B radiation (UVBR) from lamps (HUVB), corresponding to a local 60% ozone depletion scenario. At all sites, neither algal biomass nor dark‐adapted Fv/Fm were significantly affected by additional UVBR, suggesting the presence of active UV protection or repair mechanisms. To examine the role of D1 protein turnover, essential for PSII repair, short‐term surface incubations were performed in the presence or absence of lincomycin, a chloroplast protein synthesis inhibitor. Effects on PSII were determined using chl a in vivo fluorescence, whereas the D1 protein was detected immunochemically. In the absence of D1 repair, D1 pools and Fv/Fm decreased to a similar extent under both light treatments. In the presence of D1 repair, D1 pools suffered faster net degradation under HUVB compared with NUVB, whereas Fv/Fm was maintained for both light treatments, suggesting that HUVB exposure in field populations had more effect on D1 synthesis and PSII repair than on D1 degradation. The fewer undamaged reaction centers remaining in phytoplankton under HUVB were able to maintain Fv/Fm or actually recovered during the dark acclimation before Fv/Fm measurements. The D1 pools suffered faster net degradation at the tropical site where high irradiance drove faster D1 degradation and high water temperature enabled fast enzymatic activities. This study shows the crucial role of dynamic changes in D1 turnover in the photobiology of natural planktonic communities across a range of latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号