首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) is produced by NO synthase (NOS) and contributes to the regulation of vascular tone in the perinatal lung. Although the neuronal or type I NOS (NOS I) isoform has been identified in the fetal lung, it is not known whether NO produced by the NOS I isoform plays a role in fetal pulmonary vasoregulation. To study the potential contribution of NOS I in the regulation of basal fetal pulmonary vascular resistance (PVR), we studied the hemodynamic effects of a selective NOS I antagonist, 7-nitroindazole (7-NINA), and a nonselective NOS antagonist, N-nitro-L-arginine (L-NNA), in chronically prepared fetal lambs (mean age 128 +/- 3 days, term 147 days). Brief intrapulmonary infusions of 7-NINA (1 mg) increased basal PVR by 37% (P < 0.05). The maximum increase in PVR occurred within 20 min after infusion, and PVR remained elevated for up to 60 min. Treatment with 7-NINA also increased the pressure gradient between the pulmonary artery and aorta, suggesting constriction of the ductus arteriosus (DA). To test whether 7-NINA treatment selectively inhibits the NOS I isoform, we studied the effects of 7-NINA and L-NNA on acetylcholine-induced pulmonary vasodilation. The vasodilator response to acetylcholine remained intact after treatment with 7-NINA but was completely inhibited after L-NNA, suggesting minimal effects on endothelial or type III NOS after 7-NINA infusion. Western blot analysis detected NOS I protein in the fetal lung and great vessels including the DA. NOS I protein was detected in intact and endothelium-denuded vessels, suggesting that NOS I is present in the medial or adventitial layer. We conclude that 7-NINA, a selective NOS I antagonist, increases basal PVR, systemic arterial pressure, and DA tone in the late-gestation fetus and that NOS I protein is present in the fetal lung and great vessels. We speculate that NOS I may contribute to NO production in the regulation of basal vascular tone in the pulmonary and systemic circulations and the DA.  相似文献   

2.
Nitric oxide (NO) and prostacyclin (PGI(2)) are potent fetal pulmonary vasodilators, but their relative roles and interactions in the regulation of the perinatal pulmonary circulation are poorly understood. We compared the separate and combined effects of nitric oxide synthase (NOS) and cyclooxygenase (COX) inhibition during acute hemodynamic stress caused by brief mechanical compression of the ductus arteriosus (DA) in chronically prepared fetal lambs. Nitro-L-arginine (L-NNA; NOS antagonist), meclofenamate (Mec; COX inhibitor), combined drugs (L-NNA-Mec), or saline (control) was infused into the left pulmonary artery (LPA) before DA compression. In controls, DA compression decreased pulmonary vascular resistance (PVR) by 43% (P < 0.01). L-NNA, but not Mec, treatment completely blocked vasodilation and caused a paradoxical increase in PVR (+31%; P < 0.05). The effects of L-NNA-Mec and L-NNA on PVR were similar. To determine if the vasodilator effect of PGI(2) is partly mediated by NO release, we studied PGI(2)-induced vasodilation before and after NOS inhibition. L-NNA treatment blocked the PGI(2)-induced rise in LPA blood flow by 73% (P < 0.001). We conclude that NO has a greater role than PGs in fetal pulmonary vasoregulation during acute hemodynamic stress and that PGI(2)-induced pulmonary vasodilation is largely mediated by NO release in the fetal lung.  相似文献   

3.
We have previously shown that lung VEGF expression is decreased in a fetal lamb model of PPHN and that VEGF165 inhibition causes severe pulmonary hypertension in fetal lambs. Therefore, we hypothesized that treatment with rhVEGF165 would preserve endothelium-dependent vasodilation and reduce the severity of pulmonary vascular remodeling in an experimental model of PPHN. We studied the effects of daily intrapulmonary infusions of rhVEGF after partial ligation of the ductus arteriosus (DA). We performed surgery in 24 late-gestation fetal lambs and placed catheters in the main pulmonary artery, left atrium, and aorta for pressure measurements and in the left pulmonary artery for drug infusions. A pressure transducer was placed around the LPA to measure blood flow to the left lung (Qp), and the DA was surgically constricted to induce pulmonary hypertension. rhVEGF165 or vehicle was infused for 7 or 14 days. ACh or 8-BrcGMP was infused on days 2 and 13 to assess endothelium-dependent and -independent vasodilation, respectively. ACh-induced vasodilation was reduced in PPHN lambs after 14 days (change in Qp from baseline, 106% vs. 11%). In contrast, the response to ACh was preserved in lambs treated with rhVEGF (change in Qp, 94% vs. 90%). Pulmonary vasodilation to 8-BrcGMP was not altered in PPHN lambs or enhanced by VEGF treatment. rhVEGF treatment increased expression of lung eNOS protein and decreased pulmonary artery wall thickness by 34% vs. PPHN lambs. We conclude that VEGF165 preserves endothelium-dependent vasodilation, upregulates eNOS expression, and reduces the severity of pulmonary vascular remodeling in experimental PPHN.  相似文献   

4.
In addition to high pulmonary vascular resistance (PVR) and low pulmonary blood flow, the fetal pulmonary circulation is characterized by mechanisms that oppose vasodilation. Past work suggests that high myogenic tone contributes to high PVR and may contribute to autoregulation of blood flow in the fetal lung. Rho-kinase (ROCK) can mediate the myogenic response in the adult systemic circulation, but whether high ROCK activity contributes to the myogenic response and modulates time-dependent vasodilation in the developing lung circulation are unknown. We studied the effects of fasudil, a ROCK inhibitor, on the hemodynamic response during acute compression of the ductus arteriosus (DA) in chronically prepared, late-gestation fetal sheep. Acute DA compression simultaneously induces two opposing responses: 1) blood flow-induced vasodilation through increased shear stress that is mediated by NO release and 2) stretch-induced vasoconstriction (i.e., the myogenic response). The myogenic response was assessed during acute DA compression after treatment with N(omega)-nitro-L-arginine, an inhibitor of nitric oxide synthase, to block flow-induced vasodilation and unmask the myogenic response. Intrapulmonary fasudil infusion (100 microg over 10 min) did not enhance flow-induced vasodilation during brief DA compression but reduced the myogenic response by 90% (P<0.05). During prolonged DA compression, fasudil prevented the time-dependent decline in left pulmonary artery blood flow at 2 h (183+/-29 vs. 110+/-11 ml/min with and without fasudil, respectively; P<0.001). We conclude that high ROCK activity opposes pulmonary vasodilation in utero and that the myogenic response maintains high PVR in the normal fetal lung through ROCK activation.  相似文献   

5.
Endothelin blockade augments pulmonary vasodilation in the ovine fetus   总被引:2,自引:0,他引:2  
Ivy, D. Dunbar, John P. Kinsella, and Steven H. Abman.Endothelin blockade augments pulmonary vasodilation in the ovine fetus. J. Appl. Physiol. 81(6):2481-2487, 1996.The physiological role of endothelin-1 (ET-1) inregulation of vascular tone in the perinatal lung is controversial.Recent studies suggest that ET-1 contributes to high basal pulmonaryvascular resistance in the normal fetus, but its role in the modulationof pulmonary vascular tone remains uncertain. We hypothesized that highET-1 activity opposes the vasodilator response to some physiological stimuli such as increased pressure. To test the hypothesis that ET-1modulates fetal pulmonary vascular responses to acute and prolongedphysiological stimuli, we performed a series of experiments in thelate-gestation ovine fetus. We studied the hemodynamic effects of twoET-1 antagonists, BQ-123 (a selectiveETA-receptor antagonist) andphosphoramidon (a nonselective ET-1-converting enzyme inhibitor) duringmechanical increases in pressure due to partial ductus arteriosuscompression in chronically prepared late-gestation fetal lambs. Incontrol studies, partial ductus arteriosus compression decreased theratio of pulmonary arterial pressure to pulmonary artery flow in theleft lung 34 ± 6% from baseline. Intrapulmonary infusions ofBQ-123 (0.5 µg/min for 10 min; 0.025 µg/min for 2 h) orphosphoramidon (1.0 mg/min for 10 min) augmented the peak vasodilatorresponse during ductus arteriosus compression (52 ± 3 and 49 ± 6% from baseline, respectively, P < 0.05 vs. control). In addition, unlike the transient vasodilator response to ductus arteriosus compression in control studies, ET-1blockade with BQ-123 or phosphoramidon prolonged the increase in flowcaused by ductus arteriosus compression. In summary,ETA-receptor blockade andET-1-converting enzyme inhibition augment and prolong fetal pulmonaryvasodilation during partial compression of the ductus arteriosus. Weconclude that ET-1 activity modulates acute and prolonged responses ofthe fetal pulmonary circulation to changes in vascular pressure. Wespeculate that ET-1 contributes to regulation and maintenance of highpulmonary vascular resistance in the normal ovine fetal lung.

  相似文献   

6.
Nitric oxide (NO)-cGMP signaling plays a critical role during the transition of the pulmonary circulation at birth. BAY 41-2272 is a novel NO-independent direct stimulator of soluble guanylate cyclase that causes vasodilation in systemic and local circulations. However, the hemodynamic effects of BAY 41-2272 have not been studied in the perinatal pulmonary circulation. We hypothesized that BAY 41-2272 causes potent and sustained fetal pulmonary vasodilation. We performed surgery on 14 fetal lambs (125-130 days gestation; term = 147 days) and placed catheters in the main pulmonary artery, aorta, and left atrium to measure pressures. An ultrasonic flow transducer was placed on the left pulmonary artery (LPA) to measure blood flow, and a catheter was placed in the LPA for drug infusion. Pulmonary vascular resistance (PVR) was calculated as pulmonary artery pressure minus left atrial pressure divided by LPA blood flow. BAY 41-2272 caused dose-related increases in pulmonary blood flow up to threefold above baseline and reduced PVR by 75% (P < 0.01). Prolonged infusion of BAY 41-2272 caused sustained pulmonary vasodilation throughout the 120-min infusion period. The pulmonary vasodilator effect of BAY 41-2272 was not attenuated by N(omega)-nitro-l-arginine, a NO synthase inhibitor. In addition, compared with sildenafil, a phosphodiesterase 5 inhibitor, the pulmonary vasodilator response to BAY 41-2272 was more prolonged. We conclude that BAY 41-2272 causes potent and sustained fetal pulmonary vasodilation independent of NO release. We speculate that BAY 41-2272 may have therapeutic potential for pulmonary hypertension associated with failure to circulatory adaptation at birth, especially in the setting of impaired NO production.  相似文献   

7.
Calcium-sensitive potassium (K(Ca)) channels play a critical role in mediating perinatal pulmonary vasodilation. Because infants with persistent pulmonary hypertension of the newborn (PPHN) have blunted vasodilator responses to birth-related stimuli, we hypothesized that lung K(Ca) channel gene expression is decreased in PPHN. To test this hypothesis, we measured K(Ca) channel gene expression in distal lung homogenates from both fetal lambs with severe pulmonary hypertension caused by prolonged compression of the ductus arteriosus and age-matched, sham-operated animals (controls). After at least 9 days of compression of the ductus arteriosus, fetal lambs were killed. To determine lung K(Ca) channel mRNA levels, primers were designed against the known sequence of the K(Ca) channel and used in semiquantitative RT-PCR, with lung 18S rRNA content as an internal control. Compared to that in control lambs, lung K(Ca) channel mRNA content in the PPHN group was reduced by 26 +/- 6% (P < 0.02), whereas lung voltage-gated K(+) 2.1 mRNA content was unchanged. We conclude that lung K(Ca) channel mRNA expression is decreased in an ovine model of PPHN. Decreased K(Ca) channel gene expression may contribute to the abnormal pulmonary vascular reactivity associated with PPHN.  相似文献   

8.
Mechanisms that maintain high pulmonary vascular resistance (PVR) in the fetal lung are poorly understood. Activation of the Rho kinase signal transduction pathway, which promotes actin-myosin interaction in vascular smooth muscle cells, is increased in the pulmonary circulation of adult animals with experimental pulmonary hypertension. However, the role of Rho kinase has not been studied in the fetal lung. We hypothesized that activation of Rho kinase contributes to elevated PVR in the fetus. To address this hypothesis, we studied the pulmonary hemodynamic effects of brief (10 min) intrapulmonary infusions of two specific Rho kinase inhibitors, Y-27632 (15-500 microg) and HA-1077 (500 microg), in chronically prepared late-gestation fetal lambs (n = 9). Y-27632 caused potent, dose-dependent pulmonary vasodilation, lowering PVR from 0.67 +/- 0.18 to 0.16 +/- 0.02 mmHg x ml(-1) x min(-1) (P < 0.01) at the highest dose tested without lowering systemic arterial pressure. Despite brief infusions, Y-27632-induced pulmonary vasodilation was sustained for 50 min. HA-1077 caused a similar fall in PVR, from 0.39 +/- 0.03 to 0.19 +/- 0.03 (P < 0.05). To study nitric oxide (NO)-Rho kinase interactions in the fetal lung, we tested the effect of Rho kinase inhibition on pulmonary vasoconstriction caused by inhibition of endogenous NO production with nitro-L-arginine (L-NA; 15-30 mg), a selective NO synthase antagonist. L-NA increased PVR by 127 +/- 73% above baseline under control conditions, but this vasoconstrictor response was completely prevented by treatment with Y-27632 (P < 0.05). We conclude that the Rho kinase signal transduction pathway maintains high PVR in the normal fetal lung and that activation of the Rho kinase pathway mediates pulmonary vasoconstriction after NO synthase inhibition. We speculate that Rho kinase plays an essential role in the normal fetal pulmonary circulation and that Rho kinase inhibitors may provide novel therapy for neonatal pulmonary hypertension.  相似文献   

9.
Mechanisms that maintain high pulmonary vascular resistance (PVR) and oppose vasodilation in the fetal lung are poorly understood. In fetal lambs, increased pulmonary artery pressure evokes a potent vasoconstriction, suggesting that a myogenic response contributes to high PVR in the fetus. In adult systemic circulations, the arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) has been shown to modulate the myogenic response, but its role in the fetal lung is unknown. We hypothesized that acute increases in pulmonary artery pressure release 20-HETE, which causes vasoconstriction, or a myogenic response, in the fetal lung. To address this hypothesis, we studied the hemodynamic effects of N-methylsufonyl-12,12-dibromododec-11-enamide (DDMS), a specific inhibitor of 20-HETE production, on the pulmonary vasoconstriction caused by acute compression of the ductus arteriosus (DA) in chronically prepared fetal sheep. An inflatable vascular occluder around the DA was used to increase pulmonary artery pressure under three study conditions: control, after pretreatment with nitro-L-arginine (L-NA; to inhibit shear-stress vasodilation), and after combined treatment with both L-NA and a specific 20-HETE inhibitor, DDMS. We found that DA compression after L-NA treatment increased PVR by 44 +/- 12%. Although intrapulmonary DDMS infusion did not affect basal PVR, DDMS completely abolished the vasoconstrictor response to DA compression in the presence of L-NA (44 +/- 12% vs. 2 +/- 4% change in PVR, L-NA vs. L-NA + DDMS, P < 0.05). We conclude that 20-HETE mediates the myogenic response in the fetal pulmonary circulation and speculate that pharmacological inhibition of 20-HETE might have a therapeutic role in neonatal conditions characterized by pulmonary hypertension.  相似文献   

10.
Persistent pulmonary hypertension of the newborn (PPHN) is partly due to impaired nitric oxide (NO)-cGMP signaling. BAY 41-2272 is a novel direct activator of soluble guanylate cyclase, but whether this drug may be an effective therapy for PPHN is unknown. We hypothesized that BAY 41-2272 would cause pulmonary vasodilation in a model of severe PPHN. To test this hypothesis, we compared the hemodynamic response of BAY 41-2272 to acetylcholine, an endothelium-dependent vasodilator, and sildenafil, a selective inhibitor of PDE5 in chronically instrumented fetal lambs at 1 and 5 days after partial ligation of the ductus arteriosus. After 9 days, we delivered the animals by cesarean section to measure their hemodynamic responses to inhaled NO (iNO), sildenafil, and BAY 41-2272 alone or combined with iNO. BAY 41-2272 caused marked pulmonary vasodilation, as characterized by a twofold increase in blood flow and a nearly 60% fall in PVR at day 1. Effectiveness of BAY 41-2272-induced pulmonary vasodilation increased during the development of pulmonary hypertension. Despite a similar effect at day 1, the pulmonary vasodilator response to BAY 41-2272 was greater than sildenafil at day 5. At birth, BAY 41-2272 dramatically reduced PVR and augmented the pulmonary vasodilation induced by iNO. We concluded that BAY 41-2272 causes potent pulmonary vasodilation in fetal and neonatal sheep with severe pulmonary hypertension. We speculate that BAY 41-2272 may provide a novel treatment for severe PPHN, especially in newborns with partial response to iNO therapy.  相似文献   

11.
Acute partial compression of the fetal ductus arteriosus (DA) results in an initial increase in pulmonary blood flow (PBF) that is followed by acute vasoconstriction. The objective of the present study was to determine the role of nitric oxide (NO)-endothelin-1 (ET-1) interactions in the acute changes in pulmonary vascular tone after in utero partial constriction of the DA. Twelve late-gestation fetal lambs (132-140 days) were instrumented to measure vascular pressures and left PBF. After a 24-h recovery period, acute constriction of the DA was performed by partially inflating a vascular occluder, and the hemodynamic variables were observed for 4 h. In control lambs (n = 7), acute ductal constriction initially increased PBF by 627% (P < 0.05). However, this was followed by active vasoconstriction, such that PBF was restored to preconstriction values by 4 h. This was associated with a 43% decrease in total NO synthase (NOS) activity (P < 0.05) and a 106% increase in plasma ET-1 levels (P < 0.05). Western blot analysis demonstrated no changes in lung tissue endothelial NOS, preproET-1, endothelin-converting enzyme-1, or ET(B) receptor protein levels. The infusion of PD-156707 (an ET(A) receptor antagonist, n = 5) completely blocked the vasoconstriction and preserved NOS activity. These data suggest that the fetal pulmonary vasoconstriction after acute constriction of the DA is mediated by NO-ET-1 interactions. These include an increase in ET(A) receptor-mediated vasoconstriction and an ET(A) receptor-mediated decrease in NOS activity. The mechanisms of these NO-ET-1 interactions, and their role in mediating acute changes in PBF, warrant further studies.  相似文献   

12.
Persistent pulmonary hypertension of newborn (PPHN) is associated with decreased NO release and impaired pulmonary vasodilation. We investigated the hypothesis that increased superoxide (O(2)(*-)) release by an uncoupled endothelial nitric oxide synthase (eNOS) contributes to impaired pulmonary vasodilation in PPHN. We investigated the response of isolated pulmonary arteries to the NOS agonist ATP and the NO donor S-nitroso-N-acetylpenicillamine (SNAP) in fetal lambs with PPHN induced by prenatal ligation of ductus arteriosus and in sham-ligated controls in the presence or absence of the NOS antagonist nitro-L-arginine methyl ester (L-NAME) or the O(2)(*-) scavenger 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron). ATP caused dose-dependent relaxation of pulmonary artery rings in control lambs but induced constriction of the rings in PPHN lambs. L-NAME, the NO precursor L-arginine, and Tiron restored the relaxation response of pulmonary artery rings to ATP in PPHN. Relaxation to NO was attenuated in arteries from PPHN lambs, and the response was improved by L-NAME and by Tiron. We also investigated the alteration in heat shock protein (HSP)90-eNOS interactions and release of NO and O(2)(*-) in response to ATP in the pulmonary artery endothelial cells (PAEC) from these lambs. Cultured PAEC and endothelium of freshly isolated pulmonary arteries from PPHN lambs released O(2)(*-) in response to ATP, and this was attenuated by the NOS antagonist L-NAME and superoxide dismutase (SOD). ATP stimulated HSP90-eNOS interactions in PAEC from control but not PPHN lambs. HSP90 immunoprecipitated from PPHN pulmonary arteries had increased nitrotyrosine signal. Oxidant stress from uncoupled eNOS contributes to impaired pulmonary vasodilation in PPHN induced by ductal ligation in fetal lambs.  相似文献   

13.
We investigated the pulmonary vascular effects of prophylactic use of sildenafil, a specific phosphodiesterase-5 inhibitor, in late-gestation fetal lambs with chronic pulmonary hypertension. Fetal lambs were operated on at 129 +/- 1 days gestation (term = 147 days). Ductus arteriosus (DA) was compressed for 8 days to cause chronic pulmonary hypertension. Fetuses were treated with sildenafil (24 mg/day) or saline. Pulmonary vascular responses to increase in shear stress and in fetal PaO2 were studied at, respectively, day 4 and 6. Percent wall thickness of small pulmonary arteries (%WT) and the right ventricle-to-left ventricle plus septum ratio (RVH) were measured after completion of the study. In the control group, DA compression increased PA pressure (48 +/- 5 to 72 +/- 8 mmHg, P < 0.01) and pulmonary vascular resistance (PVR) (0.62 +/- 0.08 to 1.15 +/- 0.11 mmHg x ml(-1) x min(-1), P < 0.05). Similar increase in PAP was observed in the sildenafil group, but PVR did not change significantly (0.54 +/- 0.06 to 0.64 +/- 0.09 mmHg x ml(-1) x min(-1)). Acute DA compression, after brief decompression, elevated PVR 25% in controls and decreased PVR 35% in the sildenafil group. Increased fetal PaO2 did not change PVR in controls but decreased PVR 60% in the sildenafil group. %WT and RVH were not different between groups. Prophylactic sildenafil treatment prevents the rise in pulmonary vascular tone and altered vasoreactivity caused by DA compression in fetal lambs. These results support the hypothesis that elevated PDE5 activity is involved in the consequences of chronic pulmonary hypertension in the perinatal lung.  相似文献   

14.
To determine the fetal pulmonary vascular response to platelet-activating factor (PAF), we studied the hemodynamic effects of the infusion of PAF directly into the left pulmonary artery in 21 chronically catheterized fetal lambs. Left pulmonary arterial blood flow (Q) was measured with electromagnetic flow transducers. Ten-minute infusions of low-dose PAF (10-100 ng/min) produced increases in Q from a baseline of 71 +/- 5 to 207 +/- 20 ml/min (P less than 0.001) without changes in pulmonary arterial pressure. Pulmonary vasodilation with PAF was further confirmed through increases in Q with brief (15-s) infusions and increases in the slope of the pressure-flow relationship as assessed by rapid incremental compressions of the ductus arteriosus during PAF infusion. Infusion of Lyso-PAF had no effect on Q or pulmonary arterial pressure. Treatment with CV-3988, a selective PAF receptor antagonist, but not with meclofenamate, atropine, or diphenhydramine and cimetidine blocked the response to PAF infusion and did not affect baseline tone. Systemic infusion of high-dose PAF (300 ng/min) through the fetal inferior vena cava increased pulmonary arterial pressure (46.5 +/- 1.0 to 54.8 +/- 1.9 mmHg, P less than 0.01) and aorta pressure (44.3 +/- 1.0 to 52.7 +/- 2.2 mmHg, P less than 0.01) while also increasing Q. Neither PAF nor CV-3988 changed the gradient between pulmonary arterial and aorta pressures, suggesting that PAF does not affect ductal tone. We conclude that PAF is a potent fetal pulmonary vasodilator and that the effects are not mediated through cyclooxygenase products or by cholinergic or histaminergic effects.  相似文献   

15.
Eighteen prostacyclin injections (19.4±1.5 μg/kg) were performed in five chronically instrumented, intact fetal lambs in order to study the effects on pulmonary blood flow. These resulted in a brief period of bradycardia followed by a more prolonged period of increased pulmonary blood flow. In this latter phase, pulmonary blood flow increased from a baseline value of 49±4 ml/(kg min) to 122±10 ml/(kg min). Systolic/diastolic pulmonary arterial pressure simultaneously fell from to mm Hg. Flow through the ductus arteriosus was unchanged and right ventricular output increased to account for the increased pulmonary blood flow. Thus, prostacyclin causes pulmonary vasodilation in intact fetal lambs and may participate in the control of fetal pulmonary blood flow and the circulatory adjustments to extra-uterine life.  相似文献   

16.
The physiological basis of a characteristically low blood flow to the fetal lungs is incompletely understood. To determine the potential role of pulmonary vascular interaction in this phenomenon, simultaneous wave intensity analysis (WIA) was performed in the pulmonary trunk (PT) and left pulmonary artery (LPA) of 10 anesthetized late-gestation fetal sheep instrumented with PT and LPA micromanometer catheters to measure pressure (P) and transit-time flow probes to obtain blood velocity (U). Studies were performed at rest and during brief complete occlusion of the ductus arteriosus to augment pulmonary vasoconstriction (n = 4) or main pulmonary artery to abolish wave transmission from the lungs (n = 3). Wave intensity (dI(W)) was calculated as the product of the P and U rates of change. Forward and backward components of dI(W) were determined after calculation of wave speed. PT and LPA WIA displayed an early systolic forward compression wave (FCW(is)) increasing P and U, and a late systolic forward expansion wave decreasing P and U. However, a marked midsystolic fall in LPA U to near-zero was related to an extremely prominent midsystolic backward compression wave (BCW(ms)) that arose approximately 5 cm distal to the LPA, was threefold larger than the PT BCW(ms) (P < 0.001), of similar size to FCW(is) at rest (P > 0.6), larger than FCW(is) following ductal occlusion (P < 0.05) and abolished after main pulmonary artery occlusion. These findings suggest that the absence of pulmonary arterial midsystolic forward flow which accompanies a low fetal lung blood flow is due to a BCW(ms) generated in part by cyclical vasoconstriction within the pulmonary microcirculation.  相似文献   

17.
R Green  J Rojas  H Sundell 《Prostaglandins》1979,18(6):927-934
Eighteen prostacyclin injections (19.4 +/- 1.5 micrograms/kg) were performed in five chronically instrumented, intact fetal lambs in order to study the effects on pulmonary blood flow. These resulted in a brief period of bradycardia followed by a more prolonged period of increased pulmonary blood flow. In this latter phase, pulmonary blood flow increased from a baseline value of 49 +/- 4 ml/(kg min) to 122 +/- 10 ml/(kg min). Systolic/diastolic pulmonary arterial pressure simultaneously fell from 73 +/- 2/48 +/- 1 to 68 +/- 2/42 +/- 1 mm Hg. Flow through the ductus arteriosus was unchanged and right ventricular output increased to account for the increased pulmonary blood flow. Thus, prostacyclin causes pulmonary vasodilation in intact fetal lambs and may participate in the control of fetal pulmonary blood flow and the circulatory adjustments to extra-uterine life.  相似文献   

18.
Although inhaled NO (iNO) therapy is often effective in treating infants with persistent pulmonary hypertension of the newborn (PPHN), up to 40% of patients fail to respond, which may be partly due to abnormal expression and function of soluble guanylate cyclase (sGC). To determine whether altered sGC expression or activity due to oxidized sGC contributes to high pulmonary vascular resistance (PVR) and poor NO responsiveness, we studied the effects of cinaciguat (BAY 58-2667), an sGC activator, on pulmonary artery smooth muscle cells (PASMC) from normal fetal sheep and sheep exposed to chronic intrauterine pulmonary hypertension (i.e., PPHN). We found increased sGC α(1)- and β(1)-subunit protein expression but lower basal cGMP levels in PPHN PASMC compared with normal PASMC. To determine the effects of cinaciguat and NO after sGC oxidation in vitro, we measured cGMP production by normal and PPHN PASMC treated with cinaciguat and the NO donor, sodium nitroprusside (SNP), before and after exposure to 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, an sGC oxidizer), hyperoxia (fraction of inspired oxygen 0.50), or hydrogen peroxide (H(2)O(2)). After treatment with ODQ, SNP-induced cGMP generation was markedly reduced but the effects of cinaciguat were increased by 14- and 64-fold in PPHN fetal PASMC, respectively (P < 0.01 vs. controls). Hyperoxia or H(2)O(2) enhanced cGMP production by cinaciguat but not SNP in PASMC. To determine the hemodynamic effects of cinaciguat in vivo, we compared serial responses to cinaciguat and ACh in fetal lambs after ductus arteriosus ligation. In contrast with the impaired vasodilator response to ACh, cinaciguat-induced pulmonary vasodilation was significantly increased. After birth, cinaciguat caused a significantly greater fall in PVR than either 100% oxygen, iNO, or ACh. We conclude that cinaciguat causes more potent pulmonary vasodilation than iNO in experimental PPHN. We speculate that increased NO-insensitive sGC may contribute to the pathogenesis of PPHN, and cinaciguat may provide a novel treatment of severe pulmonary hypertension.  相似文献   

19.
Phosphodiesterase 1 (PDE1) modulates vascular tone and the development of tolerance to nitric oxide (NO)-releasing drugs in the systemic circulation. Any role of PDE1 in the pulmonary circulation remains largely uncertain. We measured the expression of genes encoding PDE1 isozymes in the pulmonary vasculature and examined whether or not selective inhibition of PDE1 by vinpocetine attenuates pulmonary hypertension and augments the pulmonary vasodilator response to inhaled NO in lambs. Using RT-PCR, we detected PDE1A, PDE1B, and PDE1C mRNAs in pulmonary arteries and veins isolated from healthy lambs. In 13 lambs, the thromboxane A(2) analog U-46619 was infused intravenously to increase mean pulmonary arterial pressure to 35 mmHg. Four animals received an intravenous infusion of vinpocetine at incremental doses of 0.3, 1, and 3 mg.kg(-1).h(-1). In nine lambs, inhaled NO was administered in a random order at 2, 5, 10, and 20 ppm before and after an intravenous infusion of 1 mg.kg(-1).h(-1) vinpocetine. Administration of vinpocetine did not alter pulmonary and systemic hemodynamics or transpulmonary cGMP or cAMP release. Inhaled NO selectively reduced mean pulmonary arterial pressure, pulmonary capillary pressure, and pulmonary vascular resistance index, while increasing transpulmonary cGMP release. The addition of vinpocetine enhanced pulmonary vasodilation and transpulmonary cGMP release induced by NO breathing without causing systemic vasodilation but did not prolong the duration of pulmonary vasodilation after NO inhalation was discontinued. Our findings demonstrate that selective inhibition of PDE1 augments the therapeutic efficacy of inhaled NO in an ovine model of acute chemically induced pulmonary hypertension.  相似文献   

20.
Coceani F  Kelsey L 《Life sciences》2000,66(26):2613-2623
We have proposed that endothelin-1 (ET-1), formed through the activation of a cytochrome P450 (CYP450)-based monooxygenase reaction, is important for generation of contractile tone in the ductus arteriosus and, consequently, for closure of the vessel at birth. The present investigation was undertaken to ascertain, using an isolated ductus preparation from near-term fetal lambs, whether carbon monoxide (CO) and nitric oxide (NO) qualify as regulators of the CYP450/ET-1 system. Preparations released ET-1 at rest and its amount showed no significant reduction following removal of the endothelium. Basal release was not changed by the NO synthesis inhibitor, N(G)-nitro-L-arginine methylester (L-NAME, 100 microM), nor by agents altering cyclic GMP content (i.e. increase; ONO-1505, 1 microM) and action (i.e. decrease; LY-83583, 10 microM). These findings extend previous work showing no effect of the CO synthesis inhibitor zinc protoporphyrin IX (ZnPP, 10 microM) under the same conditions (10). Conversely, both CO (65 microM) and the NO donor, sodium nitroprusside (SNP, 10 microM), curtailed ET-1 release. ET-1 release was increased by oxygen and reduced by pyrogens (endotoxin and IL-1, both at 100 ng mL(-1)). The endotoxin effect tended to be reversed by L-NAME and ZnPP, used singly or in combination. We conclude that ET-1 is formed naturally in the ductus and that its formation may change in response to physiological (oxygen) and pathophysiological (pyrogens) stimuli. Endogenous CO and NO, however, appear to have little or no role as ET-1 regulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号