首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
The role of prostacyclin in mediating the increase in pulmonary blood flow caused by an increase in oxygen tension in the fetal lamb was investigated. Plasma concentrations of 6-keto-PGF1 alpha, the hydrolysis product of prostacyclin, were measured during an increase in pulmonary blood flow caused by a rise in oxygen tension in eight intrauterine fetal lambs. Fetal oxygen tension was increased by placing the pregnant ewes in a hyperbaric chamber and having them breathe 100% oxygen at three atmospheres absolute pressure. This increased fetal PaO2 from 27 +/- 3 to 60 +/- 6 torr (mean +/- S.E., p less than or equal to 0.0001) and increased the proportion of right ventricular output distributed to the fetal lungs from 6 +/- 2 to 45 +/- 7% (mean +/- S.E., p less than or equal to 0.001). However, the fetal plasma concentration of 6-keto-PGF1 alpha did not change, 186 +/- 26 to 208 +/- 40 pg/ml (mean +/- S.E.). Indomethacin decreased plasma concentrations of 6-keto-PGF1 alpha in each of three fetuses but did not decrease the proportion of right ventricular output distributed to their lungs. The increase in pulmonary blood flow caused by an increase in oxygen tension in the fetal lamb is not associated with an increase in plasma concentrations of 6-keto-PGF1 alpha. Prostacyclin does not appear to be involved in the increase in pulmonary blood flow caused by the increase in oxygen tension at birth.  相似文献   

2.
Distension of the main pulmonary artery or its major branches with an intraluminal balloon has been reported to cause pulmonary vasoconstriction by an unknown mechanism. This study was an attempt to confirm the pressor response and explore its cause. Several balloon distension methods were tried and discarded because they caused unintentional obstruction. Ultimately, I inflated a balloon placed retrogradely and confined to the left main pulmonary artery of six anesthetized open-chest dogs after ligating left lobar arterial branches. Blood flow and systemic gas composition were controlled by interposing an external pump oxygenator between the left ventricle and aorta. Pressures in the aorta, main pulmonary artery, and left atrium were recorded. Alveolar hypoxia was used as an independent test of pulmonary vasoreactivity. Although hypoxic pressor responses occurred, challenges with arterial distension did not change lung perfusion pressure. Silicone rubber casts were made of the arteries of six dogs used in pilot experiments. These revealed the limited lengths in which distenders can be placed without unintentional encroachment on flow. I could not support the conclusion that arterial distension causes vasoconstriction and am suspicious that the perfusion pressure increases reported by others may have been caused by undetected obstruction of a major arterial branch.  相似文献   

3.
Carbon monoxide (CO) at low concentrations imparts protective effects in numerous preclinical small animal models of brain injury. Evidence of protection in large animal models of cerebral injury, however, has not been tested. Neurologic deficits following open heart surgery are likely related in part to ischemia reperfusion injury that occurs during cardiopulmonary bypass surgery. Using a model of deep hypothermic circulatory arrest (DHCA) in piglets, we evaluated the effects of CO to reduce cerebral injury. DHCA and cardiopulmonary bypass (CPB) induced significant alterations in metabolic demands, including a decrease in the oxygen/glucose index (OGI), an increase in lactate/glucose index (LGI) and a rise in cerebral blood pressure that ultimately resulted in increased cell death in the neocortex and hippocampus that was completely abrogated in piglets preconditioned with a low, safe dose of CO. Moreover CO-treated animals maintained normal, pre-CPB OGI and LGI and corresponding cerebral sinus pressures with no change in systemic hemodynamics or metabolic intermediates. Collectively, our data demonstrate that inhaled CO may be beneficial in preventing cerebral injury resulting from DHCA and offer important therapeutic options in newborns undergoing DHCA for open heart surgery.  相似文献   

4.
5.
Because carbon monoxide (CO) has been proposed to have anti-inflammatory properties, we sought protective effects of CO in pulmonary O(2) toxicity, which leads rapidly to lung inflammation and respiratory failure. Based on published studies, we hypothesized that CO protects the lung against O(2) by selectively increasing expression of antioxidant enzymes, thereby decreasing oxidative injury and inflammation. Rats exposed to O(2) with or without CO [50-500 parts/million (ppm)] for 60 h were compared for lung wet-to-dry weight ratio (W/D), pleural fluid volume, myeloperoxidase (MPO) activity, histology, expression of heme oxygenase-1 (HO-1), and manganese superoxide dismutase (Mn SOD) proteins. The brains were evaluated for histological evidence of damage from CO. In O(2)-exposed animals, lung W/D increased from 4.8 in normal rats to 6.3; however, only CO at 200 and 500 ppm decreased W/D significantly (to 5.9) during O(2) exposure. Large volumes of pleural fluid accumulated in all rats, with no significant CO treatment effect. Lung MPO values increased after O(2) and were not attenuated by CO treatment. CO did not enhance lung expression of oxidant-responsive proteins Mn SOD and HO-1. Animals receiving O(2) and CO at 200 or 500 ppm showed significant apoptotic cell death in the cortex and hippocampus by immunochemical staining. Thus significant protection by CO against O(2)-induced lung injury could not be confirmed in rats, even at CO concentrations associated with apoptosis in the brain.  相似文献   

6.
Chronic early gestational chorioamnionitis is associated with development of bronchopulmonary dysplasia in preterm infants. A single intra-amniotic exposure to endotoxin decreased alveolarization and reduced expression of endothelial proteins in 125-day gestational age preterm lambs. We hypothesized that prolonged exposure to intra-amniotic endotoxin would cause progressive lung inflammation and inhibit alveolar and pulmonary vascular development. Endotoxin (1 mg/day) or saline was administered via an intra-amniotic osmotic pump from 80 to 108 days of gestational age (continuous pump) or by four weekly 10-mg intra-amniotic endotoxin injections starting at 100 days of gestational age (multiple dose). Lung morphometry, lung inflammation, vascular effects, and lung maturation were measured at delivery. The continuous pump lambs delivered at 100 days (approximately 70% of total endotoxin exposure) had lung inflammation, fewer saccules, and decreased endothelial proteins endothelial nitric oxide synthase and VEGF receptor 2 expression compared with controls. The continuous pump (delivered at 138 days) and multiple dose lambs (delivered at 130 and 145 days) had mild persistent lung inflammation and no significant differences in lung morphometry or expression of endothelial proteins compared with controls. Surfactant saturated phosphatidylcholine pool sizes were increased in all endotoxin-exposed groups, but lung function was not changed relative to controls. Contrary to our hypothesis, a prolonged fetal exposure to intra-amniotic endotoxin caused mild persistent inflammation but did not lead to progressive structural abnormalities in lungs of near-term gestation lambs.  相似文献   

7.
el-Saadani S 《Social biology》2000,47(3-4):218-243
This study is concerned with a major, though relatively neglected, reproductive health issue: fetal loss. In particular, the determinants of spontaneous intrauterine mortality in Egypt are investigated with stress on the demographic determinants. To this end, a conceptual framework is developed. Using pregnancy history data from a national survey conducted in Egypt in 1995, the determinants of spontaneous intrauterine fetal deaths among currently married women aged 18-45 are examined using multiple logistic models. It is found that the probability of intrauterine fetal loss rises with maternal age. The apparent positive association of the risk with gravidity is shown to be an artifact, due to the heterogeneity among women with respect to the risk of pregnancy loss, the consequent selection process, and reproductive compensation behavior according to the "success/failure" stopping rule. Therefore, high fertility cannot be said to cause spontaneous fetal loss. Two other features of a woman's reproduction are of strong significance, namely, her pregnancy history and spacing among pregnancies. Once a woman suffers from spontaneous fetal loss, the probability of undergoing further pregnancy losses rises sharply. And the shorter the pregnancy interval, the higher the probability of pregnancy loss. Pregnancies conceived after long intervals are less likely to end in loss.  相似文献   

8.
9.
10.
Inhaled nitric oxide (NO) is a highly selective pulmonary vasodilator. It was recently reported that inhaled NO causes peripheral vasodilatation after treatment with a NO synthase (NOS) inhibitor. These findings suggested the possibility that inhibition of endogenous NOS uncovered the systemic vasodilating effect of NO or NO adducts absorbed via the lungs during NO inhalation. To learn whether inhaled NO reduces systemic vascular resistance in the absence of endothelial NOS, we studied the systemic vascular effects of NO breathing in wild-type mice treated without and with the NOS inhibitor N(omega)-nitro-l-arginine methyl ester and in NOS3-deficient (NOS3(-/-)) mice. During general anesthesia, the cardiac output, left ventricular function, and systemic vascular resistance were not altered by NO breathing at 80 parts/million in both genotypes. Breathing NO in air did not alter blood pressure and heart rate, as measured by tail-cuff and telemetric methods, in either awake wild-type mice (whether or not they were treated with N(omega)-nitro-l-arginine methyl ester), or in awake NOS3(-/-) mice. Our findings suggest that absorption of NO or adducts during NO breathing is insufficient to cause systemic vasodilation in mice, even when endogenous endothelial NO production is congenitally absent.  相似文献   

11.
12.
The purpose of this study was to determine whether an increase in pulmonary vascular filtration pressure affects net production of liquid within the lumen of the fetal lung. We studied 14 chronically catheterized fetal lambs [130 +/- 3 (SD) days gestation] before, during, and after a 4-h rapid (500 ml/h) intravenous infusion of isotonic saline. In seven fetuses we measured pulmonary arterial and left atrial pressures, lung lymph flow, and protein osmotic pressures in plasma and lymph. In eight lambs with a chronically implanted tracheal loop cannula, we measured the change in luminal lung liquid volume over time by progressive dilution of tracheally instilled 125I-albumin, which stays within the lung lumen. Saline infusion increased pulmonary vascular pressures by 2-3 mmHg and decreased the plasma-lymph difference in protein osmotic pressure by 1 mmHg. Lung lymph flow increased from 1.9 +/- 0.6 to 3.9 +/- 1.2 (SD) ml/h; net production of luminal lung liquid did not change (12 +/- 5 to 12 +/- 6 ml/h). Thus an increase in net fluid filtration pressure in the pulmonary circulation, which was sufficient to double lung lymph flow, had no significant effect on luminal lung liquid secretion in fetal sheep.  相似文献   

13.
14.
The extent to which abnormal endothelium-dependent vasodilator mechanisms contribute to abnormal resting vasoconstriction and blunted reflex vasodilation seen in heart failure is unknown. The purpose of this study was to test the hypothesis that the resting and reflex abnormalities in vascular tone that characterize heart failure are mediated by abnormal endothelium-mediated mechanisms. Thirteen advanced heart-failure patients (New York Heart Association III-IV) and 13 age-matched normal controls were studied. Saline, acetylcholine (20 microg/min), or L-arginine (10 mg/min) was infused into the brachial artery, and forearm blood flow was measured by venous plethysmography at rest and during mental stress. At rest, acetylcholine decreased forearm vascular resistance in normal subjects, but this response was blunted in heart failure. During mental stress with intra-arterial acetylcholine or L-arginine, the decrease in forearm vascular resistance was not greater than during saline control in heart failure [saline control vs. acetylcholine (7 +/- 3 vs. 6 +/- 3, P = NS) or vs. L-arginine (9 +/- 2 units, P = NS)]. The increase in forearm blood flow was not greater than during saline control in heart failure [saline control vs. acetylcholine (1. 2 +/- 0.3 vs. 1.3 +/- 0.3, P = NS), or vs. L-arginine (1.2 +/- 0.2 ml x min(-1) x 100 ml(-1), P = NS)]. Furthermore, during mental stress with nitroprusside, the decrease in forearm vascular resistance was not greater than during saline control [saline control vs. nitroprusside (7 +/- 3 vs. 5 +/- 4 ml x min(-1) x 100 g(-1), P = NS)], and the increase in forearm blood flow was not greater than during saline control [saline control vs. nitroprusside (1.2 +/- 0.3 vs. 1.3 +/- 0.5 ml x min(-1) x 100 g(-1), P = NS)]. Because the endothelial-independent agent nitroprusside was unable to restore resting and reflex vasodilation to normal in heart failure, we conclude that impaired endothelium-mediated vasodilation with acetylholine-nitric oxide cannot be the principal cause of the attenuated resting- or reflex-mediated vasodilation in heart failure.  相似文献   

15.
16.
Blood volume changes in the fetal lung following the onset of ventilation were studied by isotopic measurement of red blood cell and plasma volume in rapidly frozen lungs of ten near term fetal lambs. Total pulmonary blood volumes of fetal lambs ventilated with 3% O2 and 7% CO2 in nitrogen (so that blood gas levels were little changed from fetal values), or with air, were compared with measurements in unventilated lambs. Regional correlations of blood volume and blood flow (measured with isotope-labeled microemboli) within the lungs were also examined. Total pulmonary blood volume averaged 5.6 ml/kg body weight in unventilated fetal lambs and was approximately 43% greated in fetal lambs after 5-20 min of air ventilation, but not significantly different in lambs ventilated with 3% O2 and 7% CO2 in nitrogen. Thus it is ventilation with air, rather than the introduction of gas into the alveoli, which enlarges the fetal pulmonary vascular bed. Regional pulmonary blood volume and blood flow were correlated, though poorly, in air-ventilated lungs, but not in lungs ventilated with 3% O2 and 7% CO2 in nitrogen; this suggests that a common factor may operate to increase both blood flow and blood volume in the fetal lung following the introduction of air.  相似文献   

17.
18.
Bradykinin produces pulmonary vasodilation and also stimulates production of other pulmonary vasodilators, including prostaglandin I2 (PGI2) and endothelial-derived relaxing factor. In 12 chronically instrumented fetal lambs, we therefore investigated potential mediation of the bradykinin response by PGI2 or other cyclooxygenase products. A 15-min infusion of bradykinin (approximately 1 microgram/kg estimated fetal wt/min) increased fetal pulmonary blood flow by 522% (P less than 0.05) and decreased pulmonary vascular resistance by 86% (P less than 0.05); plasma 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha) concentration also increased (P less than 0.05). After cyclooxygenase inhibition by indomethacin (3 mg), bradykinin increased pulmonary blood flow by only 350% (P less than 0.05) and decreased pulmonary vascular resistance by 83% (P less than 0.05); plasma 6-keto-PGF1 alpha concentrations did not increase. The increase in pulmonary blood flow produced by bradykinin was greater before administration of indomethacin than after (P less than 0.05). These studies demonstrate that bradykinin produces fetal pulmonary vasodilation by at least two mechanisms, one dependent on and the other independent of PGI2 production, the latter mechanism predominating.  相似文献   

19.
We tested the hypothesis that postnatal resetting of the carotid chemoreceptors is initiated by, and is dependent on, the rise in arterial PO2 (PaO2) which normally occurs after birth as air breathing is established. Previous studies had indicated that this resetting takes at least 24 h. We applied a technique for ventilation of the lungs of fetal sheep in utero to 3 groups of fetuses of 140-142 days gestational age: group 1 were exposed to normocapnic hyperoxia (mean PaO2 179.9 +/- 22.2 mmHg) for 27.4 +/- 0.9 h; group 2 were exposed to normocapnic hyperoxia (mean PaO2 229.4 +/- 77.5 mmHg) for 7.0 +/- 0.3 h; group 3 were ventilated for 21.6 +/- 3.3 h with a nitrogen/CO2 mixture to maintain PaO2 and PaCO2 within the normal fetal range. At the end of the ventilation period the fetuses were delivered by caesarean section, anaesthetized, paralysed and ventilation was continued. The responses of single or few fibre carotid chemoreceptor preparations to isocapnic hypoxia were then determined. To compare their response curves quantitatively, hyperbolic curves were fitted to the data. No significant differences between any of the groups were found in the vertical or the horizontal asymptotes. There was no difference in the slope of the hyperbolic line between group 2 and group 3. However, this slope was significantly greater for Group 1 than for either group 2 or group 3. Our results show that a period of hyperoxia of 24-31 h in utero, although not a similar period of normoxic ventilation, initiates the process of carotid chemoreceptor resetting.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号