首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Extensive studies in the adult have demonstrated that the sympathetic nervous system plays a central role in cardiovascular control. The maturation of the sympathetic nervous system before birth is poorly understood. In the present study, we directly recorded renal sympathetic nerve activity (renal SNA) in five preterm fetal sheep (99 +/- 1 days gestation; term is 147 days). Recordings were performed in utero using a telemetry-based technique to alleviate movement artifact without anesthesia or paralysis. The preterm fetuses exhibited a coordinated discharge pattern in renal SNA, indicating many individual neurons active at approximately the same time. This is consistent with that observed previously in adult animals, although the frequency of the bursts was relatively low (0.5 +/- 0.1 Hz). The discharges in renal SNA were entrained to the cardiac cycle (average delay between diastolic pressure and maximum renal SNA 319 +/- 1 ms). The entrainment of the sympathetic discharges to the cardiac cycle indicates phasic baroreceptor input and that the underlying circuits controlling SNA within the central nervous system are active in premature fetuses.  相似文献   

2.
Skin sympathetic nerve activity (SSNA) exhibits low- and high-frequency spectral components in normothermic subjects. However, spectral characteristics of SSNA in heat-stressed subjects are unknown. Because the main components of the integrated SSNA during heat stress (sudomotor/vasodilator activities) are different from those during normothermia and cooling (vasoconstrictor activity), we hypothesize that spectral characteristics of SSNA in heat-stressed subjects will be different from those in subjects subjected to normothermia or cooling. In 17 healthy subjects, SSNA, electrocardiogram, arterial blood pressure (via Finapres), respiratory activity, and skin blood flow were recorded during normothermia and heat stress. In 7 of the 17 subjects, these variables were also recorded during cooling. Spectral characteristics of integrated SSNA, R-R interval, beat-by-beat mean blood pressure, skin blood flow variability, and respiratory excursions were assessed. Heat stress and cooling significantly increased total SSNA. SSNA spectral power in the low-frequency (0.03-0.15 Hz), high-frequency (0.15-0.45 Hz), and very-high-frequency (0.45-2.5 Hz) regions was significantly elevated by heat stress and cooling. Interestingly, heat stress caused a greater relative increase of SSNA spectral power within the 0.45- to 2.5-Hz region than in the other spectral ranges; cooling did not show this effect. Differences in the SSNA spectral distribution between normothermia/cooling and heat stress may reflect different characteristics of central modulation of vasoconstrictor and sudomotor/vasodilator activities.  相似文献   

3.
4.
We have used the wavelet transform to evaluate the time-frequency content of laser-Doppler flowmetry (LDF) signals measured simultaneously on the surfaces of free microvascular flaps deprived of sympathetic nerve activity (SNA), and on adjacent intact skin, in humans. It was thereby possible to determine the frequency interval within which SNA manifests itself in peripheral blood flow oscillations. The frequency interval from 0.0095 to 2 Hz was examined and was divided into five subintervals: I, approximately 0.01 Hz; II, approximately 0.04 Hz; III, approximately 0.1 Hz; IV, approximately 0.3 Hz; and V, approximately 1 Hz. The average value of the LDF signal in the time domain as well as the mean amplitude and total power in the interval from 0.0095 to 2 Hz and amplitude and power within each of the five subintervals were significantly lower for signals measured on the free flap (P < 0.002). The normalized spectral amplitude and power in the free flap were significantly lower in only two intervals: I, from 0.0095 to 0.021 Hz; and II, from 0.021 to 0.052 Hz (P < 0.05); thus indicating that SNA is manifested in at least one of these frequency intervals. Because interval I has recently been shown to be the result of vascular endothelial activity, we conclude that we have identified SNA as influencing blood flow oscillations in normal tissues with repetition times of 20-50 s or frequencies of 0.02-0.05 Hz.  相似文献   

5.
Multi-unit sympathetic activity was recorded at elbow level from median nerve fascicles supplying glabrous skin of the left hand in five healthy subjects. The resultant vasomotor responses accompanying the neural activity were monitored by simultaneous recordings of skin blood flow using the laser doppler method and skin temperature in the innervation zones. No significant change in sympathetic activity was observed during handgrip exercise of the right hand under a constant gripping force of 2 kg. Subjects maintained the same gripping force of the right hand during exposure in random order to local vibration and/or noise, each type of exposure lasting 5 min with intervals of 20 min. A two-peaked significant increase in outflow from sympathetic nerves was observed during local exposure of the right hand to vibration with a frequency of 60 Hz and an acceleration of 50 m.s-2, followed by a postexposure period which revealed a relative suppression of sympathetic nerve activity and a significant increase in blood flow. Noise at 100 dB(A) showed only an initial effect on skin sympathetic nerve activity (SSA), whereas when combined with local vibration at 60 Hz, a pronounced increase in neural activity was noticed, indicating a combined effect of vibration and noise. These results from direct recordings of SSA suggest a sympathetic vasomotor reflex mechanism triggered by local vibration stimuli to the hand.  相似文献   

6.
We microneurographically recorded the traffic of sympathetic nerves leading to foot volar skin activity (SSA) and leg skeletal muscle activity (MSA) during isometric handgrip and simultaneously determined sweat rate by the ventilated capsule method and skin blood flow by laser-Doppler flowmetry in the innervating area of SSA. SSA increased abruptly and was almost constant during handgrip, accompanied by an increase in sweat rate, whereas skin blood flow showed no significant change during the handgrip. MSA showed a time-dependent increase during the course of handgrip. During arterial occlusion of the working forearm after handgrip, SSA decayed to the precontraction control level, whereas MSA remained at a higher level than during control. During involuntary biceps muscle contraction induced by electrical stimulation, both SSA and MSA increased. The results suggest that the SSA response during voluntary handgrip, which was demonstrated to contain mainly sudomotor activity, might be influenced by central command and input from peripheral mechanoreceptors but be influenced little by input from muscle chemoreceptors.  相似文献   

7.
Interactions among physiological mechanisms are abundant in biomedical signals, and they may exist to maintain efficient homeostasis. For example, sympathetic and parasympathetic neural activities interact to either elevate or depress the heart rate to maintain homeostasis. There has been considerable effort devoted to developing algorithms that can detect interactions between various physiological mechanisms. However, methods used to detect the presence of interactions between the sympathetic and parasympathetic nervous systems, to take one example, have had limited success. This may be because interactions in physiological systems are non-linear and non-stationary. The goal of this work was to identify non-linear interactions between the sympathetic and parasympathetic nervous systems in the form of frequency and amplitude modulations in human heart-rate data (n=6). To this end, wavelet analysis was performed, followed by frequency analysis of the resultant wavelet decomposed signals in several frequency brackets we define as: very low frequency (f<0.04 Hz), low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz). Our analysis suggests that the high-frequency bracket is modulated by the low-frequency bracket in the heart rate data obtained in both upright and sitting positions. However, there was no evidence of amplitude modulation among these frequencies.  相似文献   

8.
Single-pulse magnetic coil stimulation (Cadwell MES 10) over the cranium induces without pain an electric pulse in the underlying cerebral cortex. Stimulation over the motor cortex can elicit a muscle twitch. In 10 subjects, we tested whether motor cortical stimulation could also elicit skin sympathetic nerve activity (SSNA; n = 8) and muscle sympathetic nerve activity (MSNA; n = 5) in the peroneal nerve. Focal motor cortical stimulation predictably elicited bursts of SSNA but not MSNA; with successive stimuli, the SSNA responses did not readily extinguish (94% of discharges to the motor cortex evoked SSNA responses) and had predictable latencies [739 +/- 33 (SE) to 895 +/- 13 ms]. The SSNA responses were similar after stimulation of dominant and nondominant sides. Focal stimulation posterior to the motor cortex elicited extinguishable SSNA responses. In three of six subjects, anterior cortical stimulation evoked SSNA responses similar to those seen with motor cortex stimulation but without detectable movement; in the other subjects, anterior stimulation evoked less SSNA discharge than that seen with motor cortex stimulation. Contrasting with motor cortical stimulation, evoked SSNA responses were more readily extinguished with 1) peripheral stimulation that directly elicited forearm muscle activation accompanied by electromyograms similar to those with motor cortical stimulation; 2) auditory stimulation by the click of the energized coil when off the head; and 3) in preliminary experiments, finger afferent stimulation sufficient to cause tingling. Our findings are consistent with the hypothesis that motor cortex stimulation can cause activation of both alpha-motoneurons and SSNA.  相似文献   

9.
Skin surface cooling improves orthostatic tolerance through a yet to be identified mechanism. One possibility is that skin surface cooling increases the gain of baroreflex control of efferent responses contributing to the maintenance of blood pressure. To test this hypothesis, muscle sympathetic nerve activity (MSNA), arterial blood pressure, and heart rate were recorded in nine healthy subjects during both normothermic and skin surface cooling conditions, while baroreflex control of MSNA and heart rate were assessed during rapid pharmacologically induced changes in arterial blood pressure. Skin surface cooling decreased mean skin temperature (34.9 +/- 0.2 to 29.8 +/- 0.6 degrees C; P < 0.001) and increased mean arterial blood pressure (85 +/- 2 to 93 +/- 3 mmHg; P < 0.001) without changing MSNA (P = 0.47) or heart rate (P = 0.21). The slope of the relationship between MSNA and diastolic blood pressure during skin surface cooling (-3.54 +/- 0.29 units.beat(-1).mmHg(-1)) was not significantly different from normothermic conditions (-2.94 +/- 0.21 units.beat(-1).mmHg(-1); P = 0.19). The slope depicting baroreflex control of heart rate was also not altered by skin surface cooling. However, skin surface cooling shifted the "operating point" of both baroreflex curves to high arterial blood pressures (i.e., rightward shift). Resetting baroreflex curves to higher pressure might contribute to the elevations in orthostatic tolerance associated with skin surface cooling.  相似文献   

10.
End-stage renal disease (ESRD) is characterized by resting sympathetic overactivity. Baseline muscle sympathetic nerve activity (MSNA), which is governed by baroreflexes and chemoreflexes, is elevated in ESRD. Whether resting skin sympathetic nerve activity (SSNA), which is independent from baroreflex and chemoreflex control, is also elevated has never been reported in renal failure. The purpose of this study was to determine whether sympathetic overactivity of ESRD is generalized to include the skin distribution. We measured sympathetic nerve activity to both muscle and skin using microneurography in eight ESRD patients and eight controls. MSNA was significantly (P = 0.025) greater in ESRD (37.3 +/- 3.6 bursts/min) when compared with controls (23.1 +/- 4.4 bursts/min). However, SSNA was not elevated in ESRD (ESRD vs. controls, 17.6 +/- 2.2 vs. 16.1 +/- 1.7 bustst/min, P = 0.61). Similar results were obtained when MSNA was quantified as bursts per 100 heartbeats. We report the novel finding that although sympathetic activity directed to muscle is significantly elevated, activity directed to skin is not elevated in ESRD. The differential distribution of sympathetic outflow to the muscle vs. skin in ESRD is similar to the pattern seen in other disease states characterized by sympathetic overactivity such as heart failure and obesity.  相似文献   

11.
12.
13.
Tonic activity of sympathetic nerve fibers of the tibial and peroneal nerves was investigated in rabbits anesthetized with urethane by the multichannel coherent recording technique. Activity of stochastic character was shown to predominate in the tonic activity of these fibers. A component of activity with the frequency of the heart beat also is frequently observed, but the power of this component is never more than half the total power of activity. Activity with a frequency of 10 Hz, observed by other workers, and also modulation of tonic activity in the rhythm of respiration were not recorded in these experiments. Slow changes in the power of activity from zero to a level several times above average were observed when the blood pressure was stable.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 351–358, May–June, 1985.  相似文献   

14.
A new system was developed in our laboratory to continuously monitor intra-arterial pressure, heart rate, and sympathetic nerve activity in unanesthetized rats. The animals were prepared 24 h before the start of the experiments. Sympathoneural traffic was measured at the level of splanchnic nerve. The amplitude of the spikes recorded at this level was utilized to express sympathetic nerve activity. The amplitude of the residual electroneurogram signal present 30 min after the rats were killed was 32 +/- 2 mV (mean +/- SE; n = 11). For analysis, these background values were subtracted from values determined in vivo. The nerve we studied contains postganglionic fibers, since electrical activity decreased in response to ganglionic blockade with pentolinium (1.25 mg/min iv for 4 min). The amplitude of spikes fell by 43 +/- 4% (n = 4). Sympathetic nerve activity was highly reproducible at a 24-h interval (104 +/- 26 vs. 111 +/- 27 mV for the amplitude of spikes; n = 11). Dose-response curves to the alpha 1-stimulant methoxamine and to bradykinin were established in four rats. The increase in blood pressure induced by methoxamine caused a dose-dependent fall in sympathetic nerve activity, whereas the blood pressure reduction resulting from bradykinin was associated with a dose-dependent activation of sympathetic drive. These data therefore indicate that it is possible with out system to accurately measure sympathetic nerve activity in the awake rat, together with intra-arterial pressure and heart rate.  相似文献   

15.
The role of chemoreflexes originating from carotid body and central chemoreceptors in the regulation of cervical preganglionic sympathetic nerve (PSN) activity was studied in anesthetized and spontaneously breathing cats. PSN efferents which responded to hypoxia were selected for the study. The PSN activity, breath-by-breath inspiratory tidal volume, tracheal PO2 and PCO2, and arterial systemic blood pressure were recorded simultaneously. The responses of PSN efferents to transient changes in and steady-state levels of arterial PO2 and PCO2 and to graded bolus injections of intravenous sodium cyanide (50-100 micrograms), nicotine (50-100 micrograms), and dopamine hydrochloride (30-60 micrograms) were compared before and after bilateral section of carotid sinus nerves (CSN). CSN section raised the base-line PSN activity and practically eliminated the responses to brief pharmacological stimuli, but it did not eliminate the responses to transient changes in and steady-state levels of arterial PO2 and PCO2. However, CSN section diminished PSN responses and abolished ventilatory responses to hypoxia. Thus the PSN response to hypoxia was partly independent of peripheral chemoreflex and of respiratory drive. We conclude that carotid body chemoreflex elicits fast PSN responses and that a moderate decline in arterial PO2 causes an additional slow, direct excitation of sympathetic nervous system. The latter indicates O2 chemosensitivity of the system in the physiological range of arterial PO2. This O2-sensing property may allow sympathetic nervous system to initiate chemoreflex responses independent of the peripheral chemoreceptors.  相似文献   

16.
The mechanisms responsible for the initial rise in splanchnic vascular resistance with environmental heating are controversial, and those responsible for the subsequent fall in splanchnic resistance in the severely hyperthermic animal are unknown. Thus we examined the effect of environmental heating on plasma catecholamine concentration, splanchnic sympathetic nerve activity (SNA), and select blood chemistries. In one study, 25 male Sprague-Dawley rats (270-300 g) were assigned to one of five groups on the basis of their core temperature (Tc, 37, 39, 41, 43, or 44 degrees C) at death. Heart rate (HR), mean arterial pressure (MAP), and Tc were monitored during heat stress under alpha-chloralose anesthesia (12.5 mg.ml-1.h-1). At each predetermined Tc, an aortic blood sample was drawn and analyzed for mean plasma concentration of norepinephrine (NE), epinephrine (E), Na+, K+, and lactate. From 41 to 43 degrees C, NE and E rose significantly, and the animals became hyperkalemic and lactacidemic. In a separate study, we quantitated SNA from the greater splanchnic nerve during heat exposure of artificially respired animals anesthetized with pentobarbital sodium (50 mg/kg). MAP, splanchnic SNA, and Tc were recorded. Tc was elevated from 37.0 +/- 0.12 to 41.3 +/- 0.18 degrees C in 70 min by increase of ambient temperature to 38 degrees C in an environmental chamber. Splanchnic SNA was 54 +/- 8 spikes/s at a Tc of 37 degrees C and increased significantly as Tc exceeded 39 degrees C (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
Cardiac sympathetic and parasympathetic neural activities have been found to interact with each other to efficiently regulate the heart rate and maintain homeostasis. Quantitative and noninvasive methods used to detect the presence of interactions have been lacking, however. This may be because interactions among autonomic nervous systems are nonlinear and nonstationary. The goal of this work was to identify nonlinear interactions between the sympathetic and parasympathetic nervous systems in the form of frequency and amplitude modulations in human heart rate data. To this end, wavelet analysis was performed, followed by frequency analysis of the resultant wavelet decomposed signals in several frequency brackets defined as very low frequency (f < 0.04 Hz), low frequency (LF; 0.04-0.15 Hz), and high frequency (HF; 0.15-0.4 Hz). Our analysis suggests that the HF band is significantly modulated by the LF band in the heart rate data obtained in both supine and upright body positions. The strength of modulations is stronger in the upright than supine position, which is consistent with elevated sympathetic nervous activities in the upright position. Furthermore, significantly stronger frequency modulation than in the control condition was also observed with the cold pressor test. The results with the cold pressor test, as well as the body position experiments, further demonstrate that the frequency modulation between LF and HF is most likely due to sympathetic and parasympathetic nervous interactions during sympathetic activations. The modulation phenomenon suggests that the parasympathetic nervous system is frequency modulated by the sympathetic nervous system. In this study, there was no evidence of amplitude modulation among these frequencies.  相似文献   

19.
Stellate ganglion blockade (SGB) with a local anesthetic increases muscle sympathetic nerve activity in the tibial nerve in humans. However, whether this sympathetic excitation in the tibial nerve is due to a sympathetic blockade in the neck itself, or due to infiltration of a local anesthetic to adjacent nerves including the vagus nerve remains unknown. To rule out one mechanism, we examined the effects of cervical sympathetic trunk transection on renal sympathetic nerve activity (RSNA) in anesthetized rats. Seven rats were anesthetized with intraperitoneal urethane. RSNA together with arterial blood pressure and heart rate were recorded for 15 min before and 30 min after left cervical sympathetic trunk transection. The baroreceptor unloading RSNA obtained by decreasing arterial blood pressure with administration of sodium nitroprusside was also measured. Left cervical sympathetic trunk transection did not have any significant effects on RSNA, baroreceptor unloading RSNA, arterial blood pressure, and heart rate. These data suggest that there was no compensatory increase in RSNA when cervical sympathetic trunk was transected and that the increase in sympathetic nerve activity in the tibial nerve during SGB in humans may result from infiltration of a local anesthetic to adjacent nerves rather than a sympathetic blockade in the neck itself.  相似文献   

20.
Exercise-induced increases in skin sympathetic nerve activity (SSNA) are similar between isometric handgrip (IHG) and leg extension (IKE) performed at 30% of maximal voluntary contraction (MVC). However, the precise effect of exercise intensity and level of fatigue on this relationship is unclear. This study tested the following hypotheses: 1) exercise intensity and fatigue level would not affect the magnitude of exercise-induced increase in SSNA between IHG and IKE, and 2) altering IHG muscle mass would also not affect the magnitude of exercise-induced increase in SSNA. In protocol 1, SSNA (peroneal microneurography) was measured during baseline and during the initial and last 30 s of isometric exercise to volitional fatigue in 12 subjects who randomly performed IHG and IKE bouts at 15, 30, and 45% MVC. In protocol 2, SSNA was measured in eight subjects who performed one-arm IHG at 30% MVC with the addition of IHG of the contralateral arm in 10-s intervals for 1 min. Exercise intensity significantly increased SSNA responses during the first 30 s of IHG (34+/-13, 70+/-11, and 92+/-13% change from baseline) and IKE (30+/-17, 69+/-12, and 76+/-13% change from baseline) for 15, 30, and 45% MVC. During the last 30 s of exercise to volitional fatigue, there were no significant differences in SSNA between exercise intensities or limb. SSNA did not significantly change between one-arm and two-arm IHG. Combined, these data indicate that exercise-induced increases in SSNA are intensity dependent in the initial portion of isometric exercise, but these differences are eliminated with the development of fatigue. Moreover, the magnitude of exercise-induced increase in SSNA responses is not dependent on either muscle mass involved or exercising limb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号