首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mice lacking the gene for the IL-1R antagonist (IL-1ra) show abnormal development and homeostasis as well as altered responses to infectious and inflammatory stimuli. A reduction in the level of IL-1 signaling, either by deletion of the receptor or increased expression of IL-1ra, does not affect development or homeostasis, but does alter immune responses. In this study we use genetic epistasis to investigate the interdependence of selected genes in the IL-1 family in the regulation of these developmental and immunological processes. Deletion of the gene encoding the type I IL-1R (IL-1RI) is epistatic to deletion of the IL-1ra gene. Therefore, all functions of IL-1ra depend upon the presence of a functional receptor; there is no other target. Similarly, overexpression of the mRNA encoding the secreted form of IL-1ra is epistatic to deletion of the receptor antagonist, leaving the role of the intracellular splice variants of IL-1ra unknown. The abnormal development of IL-1ra-deficient mice is probably due to chronic overstimulation of the proinflammatory pathway via IL-1, but a clear single pathological defect is not apparent. These results support the model that the only essential function of IL-1ra in both health and disease is competitive inhibition of the IL-1RI.  相似文献   

2.
Staphylococcus aureus is a common aetiological agent of bacterial brain abscesses. We have previously established that a considerable IL-1 (interleukin-1) response is elicited immediately following S. aureus infection, where the cytokine can exert pleiotropic effects on glial activation and blood–brain barrier permeability. To assess the combined actions of IL-1α and IL-1β during CNS (central nervous system) infection, host defence responses were evaluated in IL-1RI (IL-1 receptor type I) KO (knockout) animals. IL-1RI KO mice were exquisitely sensitive to intracerebral S. aureus infection, as demonstrated by enhanced mortality rates and bacterial burdens within the first 24 h following pathogen exposure compared with WT (wild-type) animals. Loss of IL-1RI signalling also dampened the expression of select cytokines and chemokines, concomitant with significant reductions in neutrophil and macrophage infiltrates into the brain. In addition, the opening of astrocyte hemichannels during acute infection was shown to be dependent on IL-1RI activity. Collectively, these results demonstrate that IL-1RI signalling plays a pivotal role in the genesis of immune responses during the acute stage of brain abscess development through S. aureus containment, inflammatory mediator production, peripheral immune cell recruitment, and regulation of astrocyte hemichannel activity. Taken in the context of previous studies with MyD88 (myeloid differentiation primary response gene 88) and TLR2 (Toll-like receptor 2) KO animals, the current report advances our understanding of MyD88-dependent cascades and implicates IL-1RI signalling as a major antimicrobial effector pathway during acute brain-abscess formation.  相似文献   

3.
Hyperoxic lung injury, believed to be mediated by reactive oxygen species, inflammatory cell activation, and release of cytotoxic cytokines, complicates the care of many critically ill patients. The cytokine tumor necrosis factor (TNF)-alpha is induced in lungs exposed to high concentrations of oxygen; however, its contribution to hyperoxia-induced lung injury remains unclear. Both TNF-alpha treatment and blockade with anti-TNF antibodies increased survival in mice exposed to hyperoxia. In the current study, to determine if pulmonary oxygen toxicity is dependent on either of the TNF receptors, type I (TNFR-I) or type II (TNFR-II), TNFR-I or TNFR-II gene-ablated [(-/-)] mice and wild-type control mice (WT; C57BL/6) were studied in >95% oxygen. There was no difference in average length of survival, although early survival was better for TNFR-I(-/-) mice than for either TNFR-II(-/-) or WT mice. At 48 h of hyperoxia, slightly more alveolar septal thickening and peribronchiolar and periarteriolar edema were detected in WT than in TNFR-I(-/-) lungs. By 84 h of oxygen exposure, TNFR-I(-/-) mice demonstrated greater alveolar debris, inflammation, and edema than WT mice. TNFR-I was necessary for induction of cytokine interleukin (IL)-1beta, IL-1 receptor antagonist, chemokine macrophage inflammatory protein (MIP)-1beta, MIP-2, interferon-gamma-induced protein-10 (IP-10), and monocyte chemoattractant protein (MCP)-1 mRNA in response to intratracheal administration of recombinant murine TNF-alpha. However, IL-1beta, IL-6, macrophage migration inhibitory factor, MIP-1alpha, MIP-2, and MCP-1 mRNAs were comparably induced by hyperoxia in TNFR-I(-/-) and WT lungs. In contrast, mRNA for manganese superoxide dismutase and intercellular adhesion molecule-1 were induced by hyperoxia only in WT mice. Differences in early survival and toxicity suggest that pulmonary oxygen toxicity is in part mediated by TNFR-I. However, induction of specific cytokine and chemokine mRNA and lethality in response to severe hyperoxia was independent of TNFR-I expression. The current study supports the prediction that therapeutic efforts to block TNF-alpha receptor function will not protect against pulmonary oxygen toxicity.  相似文献   

4.
IL-1 is a major proinflammatory cytokine which interacts with the IL-1 receptor I (IL-1RI) complex, composed of IL-1RI and IL-1R accessory protein subunits. Currently available strategies to counter pathological IL-1 signaling rely on a recombinant IL-1 receptor antagonist, which directly competes with IL-1 for its binding site. Presently, there are no small antagonists of the IL-1RI complex. Given this void, we derived 15 peptides from loops of IL-1R accessory protein, which are putative interactive sites with the IL-1RI subunit. In this study, we substantiate the merits of one of these peptides, rytvela (we termed "101.10"), as an inhibitor of IL-1R and describe its properties consistent with those of an allosteric negative modulator. 101.10 (IC(50) approximately 1 nM) blocked human thymocyte proliferation in vitro, and demonstrated robust in vivo effects in models of hyperthermia and inflammatory bowel disease as well as topically in contact dermatitis, superior to corticosteroids and IL-1ra; 101.10 did not bind to IL-1RI deficient cells and was ineffective in vivo in IL-1RI knockout mice. Importantly, characterization of 101.10, revealed noncompetitive antagonist actions and functional selectivity by blocking certain IL-1R pathways while not affecting others. Findings describe the discovery of a potent and specific small (peptide) antagonist of IL-1RI, with properties in line with an allosteric negative modulator.  相似文献   

5.
Interleukin 1 (IL-1), produced by both synovial cells and chondrocytes, plays a pivotal role in the pathogenesis of cartilage destruction in osteoarthritis (OA). We examined the specific expression and function of IL-1 receptor family-related genes in human joint tissues. Gene array analysis of human normal and OA-affected cartilage showed mRNA expression of IL-1 receptor accessory protein (IL-1RAcp) and IL-1 type I receptor (IL-1RI), but not IL-1 antagonist (IL-1ra) and IL-1 type II decoy receptor (IL-1RII). Similarly, human synovial and epithelial cells showed an absence of IL-1RII mRNA. Functional genomic analyses showed that soluble (s) IL-1RII, at picomolar concentrations, but not soluble TNF receptor:Fc, significantly inhibited IL-1beta-induced nitric oxide (NO) and/or prostaglandin E(2) production in chondrocytes, synovial and epithelial cells. In OA-affected cartilage, the IC(50) for inhibition of NO production by sIL-1RII was 2 log orders lower than that for sIL-1RI. Human chondrocytes that overexpressed IL-1RII were resistant to IL-1-induced IL-1beta mRNA accumulation and inhibition of proteoglycan synthesis. In osteoarthritis, deficient expression by chondrocytes of innate regulators or antagonists of IL-1 such as IL-1ra and IL-1RII (soluble or membrane form) may allow the catabolic effects of IL-1 to proceed unopposed. The sensitivity of IL-1 action to inhibition by sIL-1RII has therapeutic implications that could be directed toward correcting this unfavorable tissue(s) dependent imbalance.  相似文献   

6.
Anthrax produces at least two toxins that cause an intense systemic inflammatory response, edema, shock, and eventually death. The relative contributions of various elements of the immune response to mortality and course of disease progression are poorly understood. We hypothesized that knockout mice missing components of the immune system will have an altered response to infection. Parent strain mice and knockouts were challenged with LD95 of anthrax spores (5 x 10(6)) administered subcutaneously. Our results show that all genetic knockouts succumbed to anthrax infection at the same frequency as the parent. TNF antibody delayed death but TNF receptor 1 knockout had no effect. IL-1 receptor or iNOS knockouts died sooner. Anthrax was more abundant in the injection site of TNF-alpha and iNOS knockouts compared to parent suggesting that attenuated cellular response increases rate of disease progression. With the exception of edema and necrosis at the injection site pathological changes in internal organs were not observed.  相似文献   

7.
Proteolytic cleavage of the extracellular domain of the type II IL-1 decoy receptor (IL-1RII) generates soluble IL-1-binding proteins that prevent excessive bioactivity by binding free IL-1. In this study we report that an aminopeptidase, aminopeptidase regulator of TNFR1 shedding (ARTS-1), is required for IL-1RII shedding. Coimmunoprecipitation experiments demonstrate an association between endogenous membrane-associated ARTS-1 and a 47-kDa IL-1RII, consistent with ectodomain cleavage of the membrane-bound receptor. A direct correlation exists between ARTS-1 protein expression and IL-1RII shedding, as cell lines overexpressing ARTS-1 have increased IL-1RII shedding and decreased membrane-associated IL-1RII. Basal IL-1RII shedding is absent from ARTS-1 knockout cell lines, demonstrating that ARTS-1 is required for constitutive IL-1RII shedding. Similarly, PMA-mediated IL-1RII shedding is almost entirely ARTS-1-dependent. ARTS-1 expression also enhances ionomycin-induced IL-1RII shedding. ARTS-1 did not alter levels of membrane-associated IL-1RI or IL-1R antagonist release from ARTS-1 cell lines, which suggests that the ability of ARTS-1 to promote shedding of IL-1R family members may be specific for IL-1RII. Further, increased IL-1RII shedding by ARTS-1-overexpressing cells attenuates the biological activity of IL-1beta. We conclude that the ability of ARTS-1 to enhance IL-1RII shedding represents a new mechanism by which IL-1-induced cellular events can be modulated. As ARTS-1 also promotes the shedding of the structurally unrelated 55-kDa, type I TNF receptor and the IL-6R, we propose that ARTS-1 may play an important role in regulating innate immune and inflammatory responses by increasing cytokine receptor shedding.  相似文献   

8.
Inhalation of diesel exhaust particles (DEP) induces an inflammatory reaction in the lung; however, the mechanisms are largely unclear. IL-1β/IL-1RI signaling is crucial in several lung inflammatory responses. Typically, caspase-1 is activated within the NLRP3 inflammasome that recognizes several damage-associated molecular patterns, which results in cleavage of pro-IL-1β into mature IL-1β. In this study, we hypothesized that the NLRP3/caspase-1/IL-1β pathway is critical in DEP-induced lung inflammation. Upon DEP exposure, IL-1RI knockout mice had reduced pulmonary inflammation compared with wild-type mice. Similarly, treatment with rIL-1R antagonist (anakinra) and IL-1β neutralization impaired the DEP-induced lung inflammatory response. Upon DEP exposure, NLRP3 and caspase-1 knockout mice, however, showed similar IL-1β levels and comparable pulmonary inflammation compared with wild-type mice. In conclusion, these data show that the DEP-induced pulmonary inflammation acts through the IL-1β/IL-1RI axis. In addition, DEP initiates inflammation independent of the classical NLRP3/caspase-1 pathway, suggesting that other proteases might be involved.  相似文献   

9.
Interleukin 6 (IL-6) is a multifunctional cytokine that regulates various aspects of the immune response, such as acute phase reaction and hematopoiesis, and is an important signal that coordinates activities of liver cells, macrophages, and lymphocytes. Amoebic liver lesions have been studied, usually in hamsters, due to the problem of abscess development in mice. We report here the development of an experimental amoebic liver abscess (ALA) model in mice deficient in IL-6. Axenically grown amoebae were injected directly into the livers of C57BL/6 wild type (WT) and IL-6 KO -/- mice; the abscesses produced were counted and the inflammatory process was examined on 5, 10, and 20 days postinfection. Our results showed that IL-6 KO -/- mice develop ALA, in contrast to the WT strain, which usually do not have signs of abscess or infection. Histological analysis of the abscesses showed extended inflammatory response, mainly mediated by eosinophils, which strongly infiltrate the abscess in IL-6 K -/- mice. The present results suggest that in mice, IL-6 could play a role in the resistance against ALA.  相似文献   

10.
To determine the role of IL-1 in the host defense against pneumonia, IL-1R type I-deficient (IL-1R(-/-)) and wild-type (Wt) mice were intranasally inoculated with Streptococcus pneumoniae. Pneumonia resulted in elevated IL-1alpha and IL-1beta mRNA and protein levels in the lungs. Survival rates did not differ between IL-1R(-/-) and Wt mice after inoculation with 5 x 10(4) or 2 x 10(5) CFU. At early time points (24 and 48 h) IL-1R(-/-) mice had 2-log more S. pneumoniae CFU in lungs than Wt mice; at 72 h bacterial outgrowth in lungs was similar in both groups. Upon histopathologic examination IL-1R(-/-) mice displayed a reduced capacity to form inflammatory infiltrates at 24 h after the induction of pneumonia. IL-1R(-/-) mice also had significantly less granulocyte influx in bronchoalveolar lavage fluid at 24 h after inoculation. Since TNF is known to enhance host defense during pneumonia, we determined the role of endogenous TNF in the early impairment and subsequent recovery of defense mechanisms in IL-1R(-/-) mice. All IL-1R(-/-) mice treated with anti-TNF rapidly died (no survivors (of 14 mice) after 4 days), while 10-day survival in IL-1R(-/-) mice (control Ab), Wt mice (anti-TNF), and Wt mice (control Ab) was 7 of 13, 3 of 14, and 12 of 13, respectively. These data suggest that TNF is more important for host defense against pneumococcal pneumonia than IL-1, and that the impaired early host defense in IL-1R(-/-) mice is compensated for by TNF at a later phase.  相似文献   

11.
IL-1 signal is transduced through type I receptor (IL-1RI). We have recently reported that LPS augments IL-1RI mRNA expression in the hepatocytes of mice in vivo, and the augmentation is mediated by the interaction of IL-1, IL-6, and glucocorticoid (GC). In this study, we examined whether IL-1RI mRNA expression level in the hepatocytes reflects those of cell surface molecule and IL-1 signaling. When primary cultured murine hepatocytes were treated with dexamethasone (Dex) or IL-6, these two reagents synergistically up-regulated IL-1RI mRNA expression in the cells. 125I-labeled IL-1 binding experiment showed that the level of binding was also up-regulated by the treatment with Dex and IL-6. Scatchard analysis revealed that the number of IL-1R increased. The increased binding of IL-1 was completely inhibited by an Ab against murine IL-1RI, indicating that Dex and IL-6 augmented the expression of cell surface IL-1RI molecule. When hepatocytes were pretreated with Dex and IL-6, the activation of IL-1R-associated kinase was augmented in response to IL-1, indicating that IL-1 signaling was also augmented. In addition, IL-1 treatment following administration of the combination of Dex and IL-6 into mice markedly increased the serum level of serum amyloid A. These results indicate that GC and IL-6 augment the expression of cell surface IL-1RI in hepatocytes, as well as IL-1 signaling and IL-1R-associated kinase activation, through up-regulation of IL-1RI mRNA level, which represents a novel regulatory network between IL-1, GC, and IL-6.  相似文献   

12.
In myasthenia gravis (MG), TNF and IL-1beta polymorphisms and high serum levels of these proinflammatory cytokines have been observed. Likewise, TNF and IL-1beta are critical for the activation of acetylcholine receptor (AChR)-specific T and B cells and for the development of experimental autoimmune myasthenia gravis (EAMG) induced by AChR immunization. We tested the therapeutic effect of human recombinant IL-1 receptor antagonist (IL-1ra) in C57BL/6 mice with EAMG. Multiple daily injections of 0.01 mg of IL-1ra administered for 2 wk following two AChR immunizations decreased the incidence and severity of clinical EAMG. Furthermore, IL-1ra treatment of mice with ongoing clinical EAMG reduced the clinical symptoms of disease. The IL-1ra-mediated suppression of clinical disease was associated with suppressed serum IFN-gamma, TNF-alpha, IL-1beta, IL-2, IL-6, C3, and anti-AChR IgG1 without influencing total serum IgG. Therefore, IL-1ra could be used as a nonsteroidal drug for the treatment of MG.  相似文献   

13.
Infection of macrophages from genetically susceptible A/J mice with Legionella pneumophila induces high levels of various cytokines in serum as well as in cultures of spleen or peritoneal cells from the mice. However, modulation of receptor expression for these cytokines during infection has not been studied in detail, even though these receptors on macrophages have a critical role in inflammatory responses during the infection. In the present study, the differential expression of mRNA for TNF and IL-1 receptors as well as receptor antigens during infection of macrophages with virulent vs. avirulent L. pneumophila was investigated. Mouse thioglycollate-elicited peritoneal macrophages showed by RT-PCR constitutive steady-state levels of mRNA for TNF-type I and -type II receptors as well as IL-1 type I receptor. However, IL-1 type II receptor mRNA was not expressed in thioglycollate-elicited macrophages. Infection of macrophages with virulent bacteria caused an upregulation of IL-1 type I and TNF type I receptor mRNA, but had no effect on TNF type II receptor message. Avirulent L. pneumophila infection caused much less induction of these receptor mRNAs. The amount of receptor antigen of IL-1 type I on the surface of macrophages was also increased by infection with virulent L. pneumophila determined by flow cytometric analysis. These results indicate that L. pneumophila infection not only causes induction of various cytokines, but also modulation of certain cytokine receptors, which may regulate the susceptibility to infection.  相似文献   

14.
We investigated the requirement for tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1 receptors in the pathogenesis of the pulmonary and hepatic responses to Escherichia coli lipopolysaccharide (LPS) by studying wild-type mice and mice deficient in TNF type 1 receptor [TNFR1 knockout (KO)] or both TNF type 1 and IL-1 receptors (TNFR1/IL-1R KO). In lung tissue, NF-kappaB activation was similar among the groups after exposure to aerosolized LPS. After intraperitoneal injection of LPS, NF-kappaB activation in liver was attenuated in TNFR1 KO mice and further diminished in TNFR1/IL-1R KO mice; however, in lung tissue, no impairment in NF-kappaB activation was found in TNFR1 KO mice and only a modest decrease was found in TNFR1/IL-1R KO mice. Lung concentrations of KC and macrophage-inflammatory peptide 2 were lower in TNFR1 KO and TNFR1/IL-1R KO mice after aerosolized and intraperitoneal LPS. We conclude that LPS-induced NF-kappaB activation in liver is mediated through TNF-alpha- and IL-1 receptor-dependent pathways, but, in the lung, LPS-induced NF-kappaB activation is largely independent of these receptors.  相似文献   

15.
Lack of Toll IL-1R8 exacerbates Th17 cell responses in fungal infection   总被引:2,自引:0,他引:2  
TLRs contribute to the inflammatory response in fungal infections. Although inflammation is an essential component of the protective response to fungi, its dysregulation may significantly worsen fungal diseases. In this study, we tested the hypothesis that Toll IL-1R8 (TIR8)/single Ig IL-1-related receptor, a member of the IL-1R family acting as a negative regulator of TLR/IL-1R signaling, affects TLR responses in fungal infections. Genetically engineered Tir8(-/-) mice were assessed for inflammatory and adaptive Th cell responses to Candida albicans and Aspergillus fumigatus. Inflammatory pathology and susceptibility to infection were higher in Tir8(-/-) mice and were causally linked to the activation of the Th17 pathway. IL-1R signaling was involved in Th17 cell activation by IL-6 and TGF-beta in that limited inflammatory pathology and relative absence of Th17 cell activation were observed in IL-1RI(-/-) mice. These data demonstrate that TIR8 is required for host resistance to fungal infections and that it functions to negatively regulate IL-1-dependent activation of inflammatory Th17 responses. TIR8 may contribute toward fine-tuning the balance between protective immunity and immunopathology in infection.  相似文献   

16.
When activated by its ligand, the interleukin receptor type I (IL-1RI) transduces signals in cooperation with the IL-1 receptor accessory protein (IL-1RacP). In contrast, IL-1RII functions as a decoy receptor without participating in IL-1 signalling. Brain astrocytes are cellular targets of IL-1 and play a pivotal role in brain responses to inflammation. The regulation of IL-1 receptors on astrocytes by anti-inflammatory cytokines such as IL-4 and IL-10 has not been studied, despite its importance for understanding the way these cells respond to IL-1. Using RT-PCR, we first showed that the expression of IL-1RI and IL-1RII, but not IL-1RacP, mRNAs are up-regulated by IL-1 beta in a time-dependent manner. Using a radioligand binding technique, we then showed that astrocytes display an equivalent number of IL-1RI and IL-1RII. IL-1 beta decreases the number of IL-1RI binding sites, whereas it increases those of IL-1RII. IL-4 and IL-10 both up-regulate IL-1RII IL-1 beta-induced, but only IL-4 does so for IL-1RI. At the protein level, IL-4 and IL-10 dramatically reverse the ability of IL-1 beta to inhibit expression of IL-1RI but neither affects the ability of IL-1 beta to enhance the number of IL-1RII. Collectively, these results establish the existence of receptor cross-talk between pro- and anti-inflammatory cytokines on a critical type of cell that regulates inflammatory events in the brain.  相似文献   

17.
Tumor necrosis factor-alpha (TNF-alpha) plays an important role in the development of heart failure. There is a direct correlation between myocardial function and myocardial TNF levels in humans. TNF may induce local inflammation to exert tissue injury. On the other hand, suppressors of cytokine signaling (SOCS) proteins have been shown to inhibit proinflammatory signaling. However, it is unknown whether TNF mediates myocardial inflammation via STAT3/SOCS3 signaling in the heart and, if so, whether this effect is through the type 1 55-kDa TNF receptor (TNFR1). We hypothesized that TNFR1 deficiency protects myocardial function and decreases myocardial IL-6 production via the STAT3/SOCS3 pathway in response to TNF. Isolated male mouse hearts (n = 4/group) from wild-type (WT) and TNFR1 knockout (TNFR1KO) were subjected to direct TNF infusion (500 pg.ml(-1).min(-1) x 30 min) while left ventricular developed pressure and maximal positive and negative values of the first derivative of pressure were continuously recorded. Heart tissue was analyzed for active forms of STAT3, p38, SOCS3 and SOCS1 (Western blot analysis), as well as IL-1beta and IL-6 (ELISA). Coronary effluent was analyzed for lactate dehydrogenase (LDH) activity. As a result, TNFR1KO had significantly better myocardial function, less myocardial LDH release, and greater expression of SOCS3 (percentage of SOCS3/GAPDH: 45 +/- 4.5% vs. WT 22 +/- 6.5%) after TNF infusion. TNFR1 deficiency decreased STAT3 activation (percentage of phospho-STAT3/STAT3: 29 +/- 6.4% vs. WT 45 +/- 8.8%). IL-6 was decreased in TNFR1KO (150.2 +/- 3.65 pg/mg protein) versus WT (211.4 +/- 26.08) mice. TNFR1 deficiency did not change expression of p38 and IL-1beta following TNF infusion. These results suggest that deficiency of TNFR1 protects myocardium through SOCS3 and IL-6 but not p38 MAPK or IL-1beta.  相似文献   

18.
Wong PK  Campbell IK  Robb L  Wicks IP 《Cytokine》2005,29(2):72-76
OBJECTIVE: To evaluate the role of interleukin-11 (IL-11) in acute mBSA/IL-1-induced inflammatory arthritis. METHODS: IL-11 was administered via intra-articular (IA) injection into knee joints of C57BL/6 mice and joint histology was assessed. The mitogenic response to IL-11 was measured in wild-type (WT) synovial fibroblasts. IL-1 was used as a comparator in both the studies. The severity of acute methylated bovine serum albumin (mBSA)/IL-1 arthritis was determined in WT and IL-11 receptor null (IL-11Ra1-/-) mice. In parallel experiments, a neutralising antibody to IL-11 was administered to WT mice throughout this model. RESULTS: IA injections of IL-11 resulted in mild-to-moderate joint inflammation which was less than that due to IA IL-1. IL-11 had a dose-dependent mitogenic effect on WT synovial fibroblasts (P<0.01). mBSA/IL-1 acute arthritis was reduced in IL-11Ra1-/- versus WT mice (histological arthritis score: 10.1+/-0.5 versus 12.8+/-0.7, respectively; P=0.01). Administration of an IL-11 neutralising antibody to WT mice reduced mBSA/IL-1 acute arthritis scores compared to control antibody (10.6+/-0.7 versus 13.3+/-0.6, respectively; P=0.02). CONCLUSIONS: These data demonstrate that endogenous IL-11 exerts relatively mild but consistent pro-inflammatory effects in acute inflammatory arthritis.  相似文献   

19.
20.
Brain astrocytes play a pivotal role in the brain response to inflammation. They express IL-1 receptors including the type I IL-1 receptor (IL-1RI) that transduces IL-1 signals in cooperation with the IL-1 receptor accessory protein (IL-1RAcP) and the type II IL-1 receptor (IL-1RII) that functions as a decoy receptor. As glucocorticoid receptors are expressed on astrocytes, we hypothesized that glucocorticoids regulate IL-1 receptors expression. IL-1beta-activated mouse primary astrocytes were treated with 10(-6) M dexamethasone, and IL-1 receptors were studied at the mRNA and protein levels. Using RT-PCR, IL-1RI and IL-1RII but not IL-1RAcP mRNAs were found to be up-regulated by dexamethasone in a time-dependent manner. Dexamethasone (Dex), but not progesterone, had no effect on IL-1RI but strongly increased IL-1RII mRNA expression. Binding studies revealed an increase in the number of IL-1RII binding sites under the effect of Dex, but no change in affinity. These findings support the concept that glucocorticoids have important regulatory effect on the response of astrocytes to IL-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号