首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, binding affinity for estrogen receptor subtypes (ER alpha and ER beta) and pharmacological activity on rat uterus of a new class of potent ligands, characterized by a 3-phenylbenzopyran scaffold with a basic side chain in position 4, are reported. Some of these compounds, endowed with very high receptor affinity, showed potent inhibition of agonist-stimulated uterine growth, with no or limited proliferative effect. Binding affinity mostly depended on the nature and position of substituents at the 3-phenyl ring, while the uterine activity seems to be affected by basic chain length. Compound 9c (CHF4227) showed excellent binding affinity and antagonist activity on the uterus. The docking of benzopyran derivatives explained the structure-affinity relationships observed for 3-phenyl substitution: a small, hydrophobic 4'-substituent could interact with a small accessory binding cavity, while di-substitution at 4' and 3' led to some ER alpha selectivity. This selectivity can be ascribed to differences in amino acid composition and side chain conformation in the region accommodating the 3-phenyl ring at human ER alpha and ER beta ligand-binding domain.  相似文献   

2.
3.
Seven estradiol (E2) derivatives with an alkynylamide side chain at the 17 alpha position were synthesized starting from ethynylestradiol (EE2). The main chemical step was the coupling reaction of the acetylide ion of EE2 with carbon dioxide, glutaric anhydride or bromoalkyl ortho ester. The synthesis of these compounds is fast (3-6 steps according to the compound) and is easily achieved with good yield. Five compounds with different side chain lengths were evaluated for uterotrophic and antiuterotrophic activity in the CD-1 mouse. None of the tested compounds shows estrogenic activity in this sensitive in vivo system. At low doses (1 and 3 micrograms), a 14-57% inhibition of E2-induced uterine growth was observed while no additional inhibition was observed at the 10, 20 and 30 micrograms doses. In human breast carcinoma cells in culture, all compounds show estrogenic activity at high concentrations while only compound 39 (N-butyl,N-methyl-8-[3',17' beta-dihydroxy estra-1',3',5'(10')-trien-17' alpha-yl]-7-octynamide) possesses antiproliferative or antiestrogenic effects. No significant correlation could be demonstrated between alkynylamide side chain length and estrogenic or antiestrogenic activity. Among the compounds tested, the derivative of EE2 possessing a five-methylene (CH2) side chain (compound 39) possesses the best antiestrogenic activity (44 +/- 7% in the CD-1 mouse uterus assay at the 3 micrograms dose and 57 +/- 4% at 0.1 nM in human ZR-75-1 cancer cells in culture.  相似文献   

4.
This study was organized by Professor Karl Folkers with the objective of finding derivatives of coenzyme Q which could be more effectively absorbed and would give better biomedical effects. In this series all the compounds are 2,3 dimethoxy, 5 methyl p benzoquinone with modified side chains in the 6 position. The modifications are primarily changes in chain length, unsaturation, methyl groups and addition of terminal phenyl groups. The test system evaluates the growth of serum deficient HL60, 3T3 and HeLa cells in the presence of coenzyme Q10 or coenzyme Q analogs. Short chain coenzyme Q homologues such as coenzyme Q2 give poor growth but compounds with saturated short aliphatic side chains from C10 to C18 produce good growth. Introduction of a single double bond at the 2' or 8' position in the aliphatic chain retains growth stimulation at low concentration but introduces inhibition at higher concentration. Introduction of a 3' methyl group in addition to the 2' enyl site in the side chain decreases the growth response and maintains inhibition. Addition of a terminal phenyl group to the side chain from C5 to C10 can produce analogs which give strong stimulation or strong inhibition of growth. The action of the analogs is in addition to the natural coenzyme Q in the cell and is not based on restoration of activity after depletion of normal coenzyme Q. The effects may be based on any of the sites in the cell where coenzyme Q functions. For example, coenzyme Q2 is known to decrease mitochondrial membrane potential whereas the analog with a 10C aliphatic side chain increases potential. Both of these compounds stimulate plasma membrane electron transport. Inhibition of apoptosis by coenzyme Q may also increase net cell proliferation and the 10C analog inhibits the permeability transition pore.  相似文献   

5.
The biological activities of tamoxifen derivatives that contain various side chain alterations were studied using a T47D breast cancer cell growth assay in vitro. We studied the activity of various analogs to determine the important aspects of side chain composition and aryl ring positioning on antiestrogenic activity. Previous studies utilizing a rat pituitary cell prolactin synthesis assay have shown that substitution of the aminoethoxy side chain for an allyl side chain resulted in agonist activity, whereas the addition of a glyceryl side chain produced antiestrogenic activity. In the present study utilizing T47D cells, compounds with alkyl or allyl substitutions were partial agonists, as were compounds with bulky para-substituted benzyl group constituents. A tamoxifen derivative with a side chain containing an ethyl ester was antiestrogenic (IC50 = 2 x 10(-6) M) and effectively inhibited estradiol (10(-10) M) stimulation of growth. However, a compound with a short similar methyl ester-containing side chain did not possess any activity. Compounds with carbinol-containing side chains were antiestrogenic (IC50 = 2.8-3.5 x 10(-7) M). All of the compounds displaying antiestrogenic activity could be "rescued" by incubation with estradiol (10(-8) M) and therefore were not nonspecifically toxic to the cells. These results support the hypothesis that the presence of a lone pair of electrons within the side chain region of tamoxifen may be required for antiestrogenic activity. Also, nonplanar placement of the aryl ring of the triphenylethylene-type of compound is critical for potency.  相似文献   

6.
In this present communication, the in vitro inhibition of the uptake of [3H]-L-norepinephrine ([3H] NE) and [3H]-Serotonin ([3H] 5-HT) by eleven synthesized 2-substituted-4-phenyl quinolines were studied using rat brain synaptosomal preparations. Compounds with an open side chain were relatively weak inhibitors of the synaptosomal uptake of [3H] NE and [3H] 5HT. Compounds having a distance of three atoms between the terminal basic nitrogen of the side chain and the quinoline ring were better inhibitors of serotonin uptake than those compounds having a four-atom distance. The replacement of the side chain with a piperazine ring produced compounds which were more potent and selective inhibitors of the uptake of either [3H] 5-HT or [3H] NE. Further structure-activity relationships are also discussed.  相似文献   

7.
A previously described aryl sulfonamide series, originally found through HTS, targets GlmU, a bifunctional essential enzyme involved in bacterial cell wall synthesis. Using structure-guided design, the potency of enzyme inhibition was increased in multiple isozymes from different bacterial species. Unsuitable physical properties (low Log D and high molecular weight) of those compounds prevented them from entering the cytoplasm of bacteria and inhibiting cell growth. Further modifications described herein led to compounds that possessed antibacterial activity, which was shown to occur through inhibition of GlmU. The left-hand side amide and the right-hand side sulfonamides were modified such that enzyme inhibitory activity was maintained (IC50 <0.1 μM against GlmU isozymes from Gram-negative organisms), and the lipophilicity was increased giving compounds with Log D ?1 to 3. Antibacterial activity in an efflux-pump deficient mutant of Haemophilus influenzae resulted for compounds such as 13.  相似文献   

8.
A series of 1,4-dihydroindeno[1,2-c]pyrazoles was prepared and evaluated for their enzymatic inhibition of KDR kinase. Computer modeling studies revealed the importance of attaching a basic side chain in predicting the binding mode of those compounds. Further investigation of structure-activity relationships led to 19, a lead compound with an acceptable selectivity profile, activity in whole cells, and good oral efficacy in an estradiol-induced murine uterine edema model of VEGF activity.  相似文献   

9.
A series of 1,1-dioxothieno[2,3-d]isothiazole (thienosultam) derivatives were designed and synthesized as novel ADAMTS-5 inhibitors for an investigation into a side chain of thienosultam for the S1′ pocket. The resulting compounds (19 and 24) show high ADAMTS-5 inhibition and other MMP selectivity, and these compounds show good oral bioavailability.  相似文献   

10.
Data on the chemical composition of triterpenic and steroid compounds, isolated from the chaga mushroom grown in natural environment or in a synthetic culture have been summarized. Special attention has been paid to the biological activity of chaga mushroom extracts and these particular compounds against various cancer cell lines in vitro and in vivo. This analysis has demonstrated some common features in inhibition of growth of various cell lines by chaga mushroom components. In this context, the most active are triterpene compounds containing OH group at C-22 and a side chain unsaturated bond.  相似文献   

11.
6-Substituted purine and 9-beta-d-ribofuranosyl purine analogues were synthesized and their biological activities were evaluated. CD Spectra and thermal melting studies showed that compounds 8, 9, 10 could interact with RNA and DNA in solution. Compound 8 and 10 may bind with RNA single strand and interfere the formation of RNA duplex. Among of these compounds, compound 8 showed middle inhibition on the growth of HeLa cells (70.21%) and HL-60 cells (70.85%) at 10 microM. Comparing to the structures of these synthetic compounds, it may indicate that the sugar moiety and the 6-amino side chain of nucleoside 8 play an important role in the biological activities.  相似文献   

12.
A series of 4-anilinoquinoline derivatives related to the known inhibitor SGI-1027, containing side chains of varying pKa, were prepared by acid-catalysed coupling of the pre-formed side chains with 4-chloroquinolines. The compounds were evaluated for their ability to reduce the level of DNMT1 protein in HCT116 human colon carcinoma cells by Western blotting. With a very strongly basic N-methylpyridinium side chain, only NHCO-linked compounds were effective, whereas less strongly basic ((diaminomethylene)hydrazono)ethyl or 3-methylpyrimidine-2,4-diamine side chains allowed both NHCO- and CONH-linked compounds to show activity. In contrast, the pKa of the quinoline unit had little apparent influence on activity.  相似文献   

13.
Optimization of a tri-substituted N-pyridyl amide led to the discovery of a new class of potent N-pyrimidyl amide based p38α MAP kinase inhibitors. Initial SAR studies led to the identification of 5-dihydrofuran as an optimal hydrophobic group. Additional side chain modifications resulted in the introduction of hydrogen bond interactions. Through extensive SAR studies, analogs bearing free amino groups and alternatives to the parent (S)-α-methyl benzyl moiety were identified. These compounds exhibited improved cellular activities and maintained balance between p38α and CYP3A4 inhibition.  相似文献   

14.
Seven estradiol (E2) derivatives with an alkynylamide side chain at the 17α position were synthesized starting from ethynylestradiol (EE2). The main chemical step was the coupling reaction of the acetylide ion of EE2 with carbon dioxide, glutaric anhydride or bromoalkyl ortho ester. The synthesis of these compounds is fast (3–6 steps according to the compound) and is easily achieved with good yield. Five compounds with different side chain lenghts were evaluated for uterotrophic and antiuterotrophic activity in the CD-1 mouse. None of the tested compounds shows estrogenic activity in this sensitive in vitro system. At low doses (1 and 3 μg), a 14–57% inhibition of E2-induced uterine growth was observed while no additional inhibition was observed at the 10, 20 and 30 μg doses. In human breast carcinoma cells in culture, all compounds show estrogenic activity at high concentrations while only compound 39 (N-buty,N-methyl-8-[3′,17′β-dihydroxy estra-1′,3′,5′(10′)-trien-17′α-yl]-7-octynamide) possesses antiproliferative or antiestrogenic effects. No significant correlation could be demonstrated between alkynylamide side chain length and estrogenic or antiestrogenic activity. Among the compounds tested, the derivative of EE2 possessing a five-methylene (CH2) side chain (compound 39) possesses the best antiestrogenic activity (44 ± 7% in the CD-1 mouse uterus assay at the 3μg dose and 57 ± 4% at 0.1 nM in human ZR-75-1 cancer cells in culture).  相似文献   

15.
In a protein synthesis sytem derived from porcine uteri we have made the following observations: 1. Synthesis directed by the endogenous mRNA of the system is more sensitive to inhibition by puromycin than poly(U) directed synthesis. 2. Synthesis directed by the synthetic templates poly(G,U) and poly(C,U) is more sensitive to inhibition by puromycin than poly(U) directed synthesis and frequently shows a sensitivity to puromycin similar to that directed by endogenous mRNA. 3. Protein synthesis was inhibited by three aminoacyloligonucleotides (C-A-Phe, C-A-Asp, and C-A-Pro) which are analogs of the 3' terminus of aminoacyl tRNAs. Of the three, C-A-Phe was the most active and C-A-Asp the least active but, unlike puromycin, inhibition by these compounds was the same for endogenous and poly(U) directed synthesis. These results are interpreted as supporting the proposal that the acceptor site of ribosomes contains an hydrophobic binding region which interacts with the side chain of aliphatic amino acids, and particularly with the aromatic side chain of phenylalanine.  相似文献   

16.
A variety of amino acid and peptide amides have been shown to be inhibitors of dipeptidyl aminopeptidase. Among these compounds derivatives of strongly hydrophobic amino acids are the strongest inhibitors (Phe-NH2, Ki = 1.0 +/- 0.2 mM), while amides of basic amino acids were somewhat less effective (Lys-NH2, Ki = 36 +/- 3 mM). Short chain amino acid amides are notably weaker inhibitors (Gly-NH2, Ki = 293 +/- 50 mM). The interaction of the side chains of compounds with the enzyme appears to be at a site other than that at which the side chain of the amino-penultimate residue of the substrate interacts since the specificity of binding is different. Primary amines have been shown to inhibit, e.g., butylamine, Ki = 340 +/- 40 mM, and aromatic compounds have been shown to stimulate activity toward Gly-Gly-NH2 and Gly-Gly-OEt (phenol, 35% stimulation of activity at a 1:1 molar ratio with the substrate). The data suggest that inhibition involves binding at the site occupied by the free alpha-amino group and the N-terminal amino acid.  相似文献   

17.
A series of fumagillin analogues targeted at understanding tolerability of MetAP2 toward substitution at C4 and C6 were synthesized. Initially, the C6 side chain was maintained as cinnamoyl ester and C4 was modified. It was concluded that replacing the natural C4 of fumagillin with a benzyl oxime at C4 resulted in moderate loss of activity toward binding to MetAP2. Placement of a primary or secondary carbamate at C6 did not improve the potency of compounds toward inhibition of MetAP2. However, the inhibitory activity against MetAP2 was gained back by placing polar groups such as piperazinyl carbamate at C6. Small alkyl substituents on the amine of piperazinyl carbamate were well tolerated.  相似文献   

18.
A group of steroidal derived acids were synthesized and found to be human Cdc25A inhibitors. Their potency ranged from 1.1 to > 100 microM; the best ones compare very favorably with that of the novel cyano-containing 5,6-seco-cholesteryl acid 1 (IC50=2.2microM) reported by us recently (Peng, H.; Zalkow, L. H.; Abraham, R. T.; Powis, G. J. Med. Chem. 1998, 41, 4677). Structure-activity relationships of these compounds revealed that a hydrophobic cholesteryl side chain and a free carboxyl group are crucial for activity. The distance between these two pharmacophores is also important for the potency of these compounds. Several of the compounds showed selective growth inhibition effects in the NCI in vitro cancer cell line panel.  相似文献   

19.
Bhat RG  Kumar NS  Pinto BM 《Carbohydrate research》2007,342(12-13):1934-1942
The syntheses of polyhydroxylated imino- and anhydro thio-alditol compounds related to the naturally occurring glycosidase inhibitor, salacinol, containing a phosphate group in the side chain are described. The compounds lack hydroxyl groups on the acyclic side chain and are prototypes of the exact salacinol analogue. The synthetic strategy relies on the Mitsunobu reaction of N- and S-hydroxyalkyl derivatives of 2,3,5-tri-O-benzyl-1,4-dideoxy-1,4-imino-D-arabinitol and 1,4-anhydro-2,3,5-tri-O-benzyl-1-thio-D-arabinitol with dibenzyl phosphate to yield the corresponding protected heteroalditol phosphates. Screening of these compounds against recombinant human maltase glucoamylase (MGA), a critical intestinal glucosidase involved in the processing of oligosaccharides of glucose into glucose itself, shows that they are not effective inhibitors of MGA and demonstrates the importance of the hydroxyl and/or sulfate substituents present on the side chain for effective inhibition. The attempted synthesis of the exact analogue of salacinol by opening of cyclic phosphates is also described.  相似文献   

20.
Seventeen pungent oleoresin principles of ginger (Zingiber officinale, Roscoe) and synthetic analogues were evaluated for inhibition of cyclooxygenase-2 (COX-2) enzyme activity in the intact cell. These compounds exhibited a concentration and structure dependent inhibition of the enzyme, with IC(50) values in the range of 1-25 microM. Ginger constituents, [8]-paradol and [8]-shogaol, as well as two synthetic analogues, 3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)decane and 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)dodecane, showed strong inhibitory effects on COX-2 enzyme activity. The SAR analysis of these phenolic compounds revealed three important structural features that affect COX-2 inhibition: (i) lipophilicity of the alkyl side chain, (ii) substitution pattern of hydroxy and carbonyl groups on the side chain, and (iii) substitution pattern of hydroxy and methoxy groups on the aromatic moiety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号