首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Free vertical moment (FVM) of ground reaction is recognized to be a meaningful indicator of torsional stress on the lower limbs when walking. The purpose of this study was to examine whether and how gait speed influences the FVM when walking. Fourteen young healthy adults performed a series of overground walking trials at three different speeds: low, preferred and fast. FVM was measured during the stance phase of the dominant leg using a force platform embedded in a 10 m-long walkway. Transverse plane kinematic parameters of the foot and pelvis were measured using a motion capture system. Results showed a significant decrease in peak abduction FVM (i.e., resisting internal foot rotation) and an increase in peak adduction FVM (i.e., resisting external foot rotation), together with an increase in gait speed. Concomitantly, we observed a decrease in the foot progression angle and an increase in the peak pelvis rotation velocity in the transverse plane with an increase in gait speed. A significant positive correlation was found between the pelvis rotation velocity and the peak adduction moment, suggesting that pelvis rotation influences the magnitude of adduction FVM. Furthermore, we also found significant correlations between the peak adduction FVM and both the step length and frequency, indicating that the alterations in FVM may be ascribed to changes in these two key variables of gait speed. These speed-related changes in FVM should be considered when this parameter is used in gait assessment, particularly when used as an index for rehabilitation and injury prevention.  相似文献   

2.
In joints with 3 degrees of freedom, such as the shoulder joint, the association of different movements results in changes in the behavior of the moment arm of the muscles. The capacity of torque production for the same movement can be changed when movements take place in a different plane. The objective of this study is to quantify differences between torque production and resultant force estimated during the shoulder external rotation in two movement planes: the transverse and sagittal planes (with 90 degrees of shoulder abduction). Eight individuals were evaluated using an isokinetic dynamometer and an eletrogoniometer for movements in the transverse plane and six individuals for movements in the sagittal plane. The results showed that the execution of the external rotation in the sagittal plane allowed greater torque magnitudes and resultant force compared with those in the transverse plane, probably owing to a prestretching of infraspinatus and teres minor.  相似文献   

3.
The purpose of this study was to examine the effects of a 4-month season of collegiate tennis on glenohumeral joint internal and external rotation strength and range of motion in female collegiate tennis players. Eleven female collegiate tennis players were isokinetically tested to assess glenohumeral joint internal and external rotation strength with 90 degrees of abduction on a Cybex 6000 isokinetic dynamometer. Subjects were also measured for internal and external rotation range of motion using a universal goniometer with 90 degrees of abduction. Measurements were taken before and immediately after a 4-month season of competitive collegiate tennis play. A repeated-measures analysis of variance showed no significant difference in internal or external rotation strength or range of motion between pre- and postseason measures. Results from this study show that, despite 4 months of competitive tennis play, changes in rotational strength and range of motion did not occur. These data have implications for clinicians as well as strength and conditioning professionals designing rehabilitation and preventative conditioning programs for athletes in this population.  相似文献   

4.
The purpose of this study was to determine the relationship between hip and knee strength, and valgus knee motion during a single leg squat. Thirty healthy adults (15 men, 15 women) stood on their preferred foot, squatted to approximately 60 deg of knee flexion, and returned to the standing position. Frontal plane knee motion was evaluated using 3-D motion analysis. During Session 2, isokinetic (60 deg/sec) concentric and eccentric hip (abduction/adduction, flexion/extension, and internal/external rotation) and knee (flexion/extension) strength was evaluated. The results demonstrated that hip abduction (r2=0.13), knee flexion (r2=0.18), and knee extension (r2=0.14) peak torque were significant predictors of frontal plane knee motion. Significant negative correlations showed that individuals with greater hip abduction (r=-0.37), knee flexion (r=-0.43), and knee extension (r=-0.37) peak torque exhibited less motion toward the valgus direction. Men exhibited significantly greater absolute peak torque for all motions, excluding eccentric internal rotation. When normalized to body mass, men demonstrated significantly greater strength than women for concentric hip adduction and flexion, knee flexion and extension, and eccentric hip extension. The major findings demonstrate a significant role of hip muscle strength in the control of frontal plane knee motion.  相似文献   

5.
BackgroundCurrent non-invasive 3-D scapular kinematic measurement techniques such as electromagnetic tracking are subjected to restrictions of wired sensors and limited capture space. Video-based motion analysis provides greater freedom with relatively less movement restriction. However, video-based motion analysis was rarely used in and not validated for scapular kinematics.MethodsScapular kinematics of five subjects performing abduction, scaption, and internal/external rotation was captured simultaneously with video-based motion analysis and dynamic stereo X-ray, a gold standard for tracking scapular movements. The data from video-based motion analysis was correlated with the data from dynamic stereo X-ray for validity evaluation.FindingsStrong and significant correlations were identified in scapular protraction/retraction and medial/lateral rotation during abduction and scaption, and scapular medial/lateral rotation and anterior/posterior tilt during internal/external rotation.InterpretationVideo-based motion analysis is valid for evaluating a single subject's scapular movement pattern in protraction/retraction during abduction and scaption, and medial/lateral-rotation during internal/external rotation. Anterior/posterior-tilt during abduction and scaption should be investigated with caution. Video motion analysis is also valid for evaluating group average of scapular kinematics except for protraction/retraction during internal/external rotation. While acknowledging the inherent limitations, video-based motion analysis is an appropriate technique for tracking scapular kinematics.  相似文献   

6.
There are no direct recordings of obturator internus muscle activity in humans because of difficult access for electromyography (EMG) electrodes. Functions attributed to this muscle are based on speculation and include hip external rotation/abduction, and a role in stabilization as an “adjustable ligament” of the hip. Here we present (1) a technique to insert intramuscular EMG electrodes into obturator internus plus (2) the results of an investigation of obturator internus activity relative to that of nearby hip muscles during voluntary hip efforts in two hip positions and a weight-bearing task. Fine-wire electrodes were inserted with ultrasound guidance into obturator internus, gluteus maximus, piriformis and quadratus femoris in ten participants. Participants performed ramped and maximal isometric hip efforts (open kinetic chain) into flexion/extension, abduction/adduction, and internal/external rotation, and hip rotation to end range in standing. Analysis of the relationship between activity of the obturator internus and the other hip muscles provided evidence of limited contamination of the recordings with crosstalk. Obturator internus EMG amplitude was greatest during hip extension, then external rotation then abduction, with minimal to no activation in other directions. Obturator internus EMG was more commonly the first muscle active during abduction and external rotation than other muscles. This study describes a viable and valid technique to record obturator internus EMG and provides the first evidence of its activation during simple functions. The observation of specificity of activation to certain force directions questions the hypothesis of a general role in hip stabilisation regardless of force direction.  相似文献   

7.
Anterior cruciate ligament (ACL) injury is one of the most common serious lower-extremity injuries experienced by athletes participating in field and court sports and often occurs during a sudden change in direction or pivot. Both lateral trunk positioning during cutting and peak external knee abduction moments have been associated with ACL injury risk, though it is not known how core muscle activation influences these variables. In this study, the association between core muscle pre-activation and trunk position as well as the association between core muscle pre-activation and peak knee abduction moment during an unanticipated run-to-cut maneuver were investigated in 46 uninjured individuals. Average co-contraction indices and percent differences between muscle pairs were calculated prior to initial contact for internal obliques, external obliques, and L5 extensors using surface electromyography. Outside tilt of the trunk was defined as positive when the trunk was angled away from the cutting direction. No significant associations were found between pre-activations of core muscles and outside tilt of the trunk. Greater average co-contraction index of the L5 extensors was associated with greater peak knee abduction moment (p=0.0107). Increased co-contraction of the L5 extensors before foot contact could influence peak knee abduction moment by stiffening the spine, limiting sagittal plane trunk flexion (a motion pattern previously linked to ACL injury risk) and upper body kinetic energy absorption by the core during weight acceptance.  相似文献   

8.
A non-anatomical reinsertion of the supraspinatus medially to the original footprint to avoid over-tensioning of the tendon in large and retracted tears is one surgical option in rotator cuff (RC) repair. The purpose of the study was to determine the biomechanical effects on the glenohumeral joint with regard to this surgical technique. A modified musculoskeletal computational shoulder model was used to evaluate the change in moment arms and muscle forces of the RC and the co-contracting muscles and the alteration of the joint reaction forces (compressive and shear forces) after reinsertion of the supraspinatus 5?mm, 10?mm, 15?mm and 20?mm medially to the original footprint. A medialization of the supraspinatus reduces its moment arm in glenohumeral abduction. In case of a medialization of the attachment of 15?mm and 20?mm, the supraspinatus restricts glenohumeral abduction at 54° and 68°. In glenohumeral forward flexion and in lower degrees of internal rotation the moment arm of the supraspinatus increases for a medialized tendon attachment and decreases in external rotation in relation to the anatomical condition. A medialization of the supraspinatus insertion point yields in an increase in muscle force for abduction, internal and external rotation. In the present model a medially non-anatomic reinsertion reduces significantly the compressive glenohumeral joint reaction and the glenohumeral stability. Moreover, the results show that a medialization of the supraspinatus leads to a reduction of the supraspinatus moment arm especially in abduction. This leads to an increase of a compensatory supraspinatus load for stabilization the humerus in space, which may potentially cause a postoperative overload of the tendon-bone-complex.  相似文献   

9.
Hominoids and atelines are known to use suspensory behaviors and are assumed to possess greater hip joint mobility than nonsuspensory monkeys, particularly for range of abduction. This assumption has greatly influenced how extant and fossil primate hip joint morphology has been interpreted, despite the fact that there are no data available on hip mobility in hominoids or Ateles. This study uses in vivo measurements to test the hypothesis that suspensory anthropoids have significantly greater ranges of hip joint mobility than nonsuspensory anthropoids. Passive hip joint mobility was measured on a large sample of anesthetized captive anthropoids (nonhuman hominids = 43, hylobatids = 6, cercopithecids = 43, Ateles = 6, and Cebus = 6). Angular and linear data were collected using goniometers and tape measures. Range of motion (ROM) data were analyzed for significant differences by locomotor group using ANOVA and phylogenetic regression. The data demonstrate that suspensory anthropoids are capable of significantly greater hip abduction and external rotation. Degree of flexion and internal rotation were not larger in the suspensory primates, indicating that suspension is not associated with a global increase in hip mobility. Future work should consider the role of external rotation in abduction ability, how the physical position of the distal limb segments are influenced by differences in ROM proximally, as well as focus on bony and soft tissue differences that enable or restrict abduction and external rotation at the anthropoid hip joint. Am J Phys Anthropol 153:417–434, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
Surface EMG was recorded in four subjects on three different occasions from the three parts of the deltoid, the clavicular part of the pectoralis major and from the infraspinatus muscles at different angles of abduction, in the frontal and scapular plane. The integrated EMG was related to the maximum values found for each muscle or muscle part during test contractions (%EMG). Linear relations can be seen for abduction angle vs %EMG. During abduction in the scapular plane the middle and posterior parts of the deltoid muscle showed significantly less activity than in the frontal plane. A simple two dimensional model to calculate the deltoid force out of total external moment at the shoulder is presented. For the middle part of the deltoid an EMG-force relation is presented. The maximal deltoid forces found during test contractions are compared with the absolute muscle force. Also, the length-force relation for the middle part of the deltoid muscle is given between 30° and 90° of abduction.  相似文献   

11.
Non-contact anterior cruciate ligament (ACL) injuries account for approximately 70% of ACL ruptures and often occur during a sudden change in direction or pivot. Decreased neuromuscular control of the trunk in a controlled perturbation task has previously been associated with ACL injury incidence, while knee abduction moments and tibial internal rotation moments have been associated with ACL strain and ACL injury incidence. In this study, the association between movement of the trunk during a run-to-cut maneuver and loading of the knee during the same activity was investigated. External knee moments and trunk angles were quantified during a run-to-cut maneuver for 29 individuals. The trunk angles examined were outside tilt (frontal plane angle of the torso from vertical), angle between the ground reaction force (GRF) and the torso in the plane containing the GRF and shoulders (torso-GRF_shoulders); and angle between GRF and torso in the plane containing the GRF and pelvis (torso-GRF_pelvis). Significant positive associations were found between torso angles and peak knee abduction moments (outside tilt, p=0.002; and torso-GRF_shoulders, p=0.036) while a significant negative association was found between peak tibial internal rotation moment and outside tilt (p=0.021). Because the peaks of these moments occur at different times and minimal axial rotation moment is observed at peak knee abduction moment (-0.29±0.46%BW*ht), the positive association between peak knee abduction moment and torso lean suggests that increasing torso lean may increase ACL load and risk of injury.  相似文献   

12.
Whilst anterior cruciate ligament injury commonly occurs during change of direction (CoD) tasks, there is little research on how athletes execute CoD after anterior cruciate ligament reconstruction (ACLR). The aims of this study were to determine between-limb and between-test differences in performance (time) and joint kinematics and kinetics during planned and unplanned CoD. One hundred and fifty-six male subjects carried out 90° maximal effort, planned and unplanned CoD tests in a 3D motion capture laboratory 9 months after ACLR. Statistical parametric mapping (2 × 2 ANOVA; limb × test) was used to identify differences in CoD time and biomechanical measures between limbs and between tests. There was no interaction effect but a main effect for limb and task. There was no between-limb difference in the time to complete both CoD tests. Between-limb differences were found for internal knee valgus moment, knee internal rotation and flexion angle, knee extension and external rotation moment and ankle external rotation moment with lower values on the ACLR side (effect size 0.72–0.5). Between test differences were found with less contralateral pelvis rotation, distance from centre of mass to the ankle in frontal plane, posterior ground reaction force and greater hip abduction during the unplanned CoD (effect size 0.75–0.5). Findings demonstrated that kinematic and kinetic differences between limbs are evident during both CoD tests 9 months after surgery, despite no statistical differences in performance time. Biomechanical differences between tests were found in variables, which have previously been associated with ACL injury mechanism during unplanned CoD.  相似文献   

13.
The objectives of this research were to develop a methodology for three-dimensional finite element (FE) modeling of the inferior glenohumeral ligament complex (IGHL complex) as a continuous structure, to determine optimal mesh density for FE simulations, to examine strains and forces in the IGHL complex in clinically relevant joint positions, and to perform sensitivity studies to assess the effects of assumed material properties. A simple translation test in the anterior direction was performed on a cadaveric shoulder, with the humerus oriented at 60 degrees of glenohumeral abduction and 0 degrees of flexion/extension, at 0 degrees , 30 degrees and 60 degrees of humeral external rotation. The geometries of the relevant structures were extracted from volumetric CT data to create a FE model. Experimentally measured kinematics were applied to the FE model to simulate the simple translation test. First principal strains, insertion site forces and contact forces were analyzed. At maximum anterior humeral translation, strains in the IGHL complex were highly inhomogeneous for all external rotation angles. The motion of the humerus with respect to the glenoid during the simple translation test produced a tangential load at the proximal and distal edges of the IGHL complex. This loading was primarily in the plane of the inferior glenohumeral ligament complex, producing an in-plane shear-loading pattern. There was a significant increase in strain with increasing angle of external rotation. The largest insertion site forces occurred at the axillary pouch insertion to the humerus (36.7N at 60 degrees of external rotation) and the highest contact forces were between the anterior band of the IGHL complex and the humeral cartilage (7.3N at 60 degrees of external rotation). Strain predictions were highly sensitive to changes in the ratio of bulk to shear modulus of the IGHL complex, while predictions were moderately sensitive to changes in elastic modulus of the IGHL complex. Changes to the material properties of the humeral cartilage had little effect on predicted strains. The methodologies developed in this research and the results of the mesh convergence and sensitivity studies provide a basis for the subject-specific modeling of the mechanics of the IGHL complex.  相似文献   

14.
Angular momentum is highly regulated over the gait cycle and is important for maintaining dynamic stability and control of movement. However, little is known regarding how angular momentum is regulated on irregular surfaces, such as slopes, when the risk of falling is higher. This study examined the three-dimensional whole-body angular momentum patterns of 30 healthy subjects walking over a range of incline and decline angles. The range of angular momentum was either similar or reduced on decline surfaces and increased on incline surfaces relative to level ground, with the greatest differences occurring in the frontal and sagittal planes. These results suggest that angular momentum is more tightly controlled during decline walking when the risk of falling is greater. In the frontal plane, the range of angular momentum was strongly correlated with the peak hip and knee abduction moments in early stance. In the transverse plane, the strongest correlation occurred with the knee external rotation peak in late stance. In the sagittal plane, all external moment peaks were correlated with the range of angular momentum. The peak ankle plantarflexion, knee flexion and hip extension moments were also strongly correlated with the sagittal-plane angular momentum. These results highlight how able-bodied subjects control angular momentum differently on sloped surfaces relative to level walking and provide a baseline for comparison with pathological populations that are more susceptible to falling.  相似文献   

15.
The purpose of this study was to evaluate whether preoperative gait adaptations persist one year after THR in the same set of subjects. The hypothesis tested was that hip dynamic range of motion and peak external moments during walking return to normal after THR. Hip kinematics and kinetics were measured for 28 subjects before and one year after THR and compared to those of 25 subjects with radiographically normal hips. All THR subjects improved clinically after surgery with Harris hip scores improving from 33-85 (average 53) to 61-100 (average 95) (sign test p<0.001). Preoperatively dynamic hip range of motion (ROM), and all peak external moments were reduced compared to normal (Mann-Whitney p< or =0.040). Improvement was seen in the ROM and all but the frontal plane, and external rotation peak moments (Friedman p< or =0.023). The preoperative and postoperative values of the ROM, and peak flexion, abduction and external rotation moments were all significantly correlated (Spearman p<0.020) indicating a possible learned effect from before THR surgery. Postoperative THR subjects continued to have a significantly lower than normal ROM, and peak adduction and peak internal rotation moments (Mann-Whitney p< or =0.003). Despite good to excellent clinical functional outcome, gait in THR patients does not return to normal by one year after surgery. Aggressive muscle strengthening is currently not emphasized after THR surgery. Some THR patients may benefit from more intensive rehabilitation before and after surgery.  相似文献   

16.
There is a paucity of data in the literature on the restraining effects of the glenohumeral (GH) ligaments; cadaveric testing is one of the best methods for determining the function of these types of tissues. The aim of this work was to commission a custom-made six degrees of freedom (dof) joint loading apparatus and to establish a protocol for laxity testing of cadaveric shoulder specimens. Nine cadaveric shoulder specimens were used in this study and each specimen had all muscle resected leaving the scapula, humerus (transected at mid-shaft) and GH capsule. Specimens were mounted on the testing apparatus with the joint in the neutral position and at 30°, 60° and 90° GH abduction in the coronal, scapula and 30° forward flexion planes. For each orientation, 0–1 N m in 0.1 N m increments was applied in internal/external rotation and the angular displacement recorded. The toe-region of the moment–displacement curves ended at approximately ±0.5 N m. The highest rotational range of motion for the joint was 140° for ±1.0 N m at 30° GH abduction in the scapula plane. The range of motion shifted towards external rotation with increasing levels of abduction. The results provide the optimum loading regime to pre-condition shoulder specimens and minimise viscoelastic effects in the ligaments prior to laxity testing (>0.5 N m at 30° GH abduction in any of the three planes). Knowledge of the mechanical properties of the GH capsuloligamentous complex has implications for modelling of the shoulder as well surgical planning and intervention.  相似文献   

17.

Background

The lack of recovery of active external rotation of the shoulder is an important problem in children suffering from brachial plexus lesions involving the suprascapular nerve. The accessory nerve neurotization to the suprascapular nerve is a standard procedure, performed to improve shoulder motion in patients with brachial plexus palsy.

Methods

We operated on 65 patients with obstetric brachial plexus palsy (OBPP), aged 5-35 months (average: 19 months). We assessed the recovery of passive and active external rotation with the arm in abduction and in adduction. We also looked at the influence of the restoration of the muscular balance between the internal and the external rotators on the development of a gleno-humeral joint dysplasia. Intraoperatively, suprascapular nerve samples were taken from 13 patients and were analyzed histologically.

Results

Most patients (71.5%) showed good recovery of the active external rotation in abduction (60°-90°). Better results were obtained for the external rotation with the arm in abduction compared to adduction, and for patients having only undergone the neurotization procedure compared to patients having had complete plexus reconstruction. The neurotization operation has a positive influence on the glenohumeral joint: 7 patients with clinical signs of dysplasia before the reconstructive operation did not show any sign of dysplasia in the postoperative follow-up.

Conclusion

The neurotization procedure helps to recover the active external rotation in the shoulder joint and has a good prevention influence on the dysplasia in our sample. The nerve quality measured using histopathology also seems to have a positive impact on the clinical results.  相似文献   

18.
This study investigates the altered thoracohumeral kinematics when forearm rotation is restricted while performing five activities requiring pronation and supination. Two splints simulated both a fixed-supinated or fixed-neutral forearm in six healthy subjects; the three-dimensional coupled relationship among motion about the forearm, elbow, and shoulder were analyzed. In using a screwdriver, the normal range of forearm rotation of 77.6° (SD = 30.8°) was reduced in the fixed-supinated to 11.3° (SD = 2.9°) and fixed-neutral to 18.2° (SD = 6.2°). This restriction from the fixed-supinated and fixed-neutral forearms was compensated at the shoulder by a significant increase in the total range of (1) ad/abduction by 57.3° and 62.8° respectively (p < .001), (2) forward-reverse flexion (24.3° and 18.2° respectively; p < .05) and (3) internal-external rotation (37.1° and 44.2° respectively; p < .001). A similar result was demonstrated for the doorknob activity. The elbow did not significantly contribute to forearm rotation (p = .14), and is believed to be due to the elbow axis being orthogonal and oblique to the forearm axis. For open kinetic-chain activities, with a fixed-supinated forearm performing there was a significant coupled increase in ad/abduction (p < .05) and int/external rotation (p < .05) for the phone and feeding tasks, with the phone task also having a significantly increased forward shoulder flexion (p < .05). For the fixed-neutral forearm, significant compensatory movement was only seen in the feeding task with increased ad/abduction and internal-external shoulder rotation (p < .05) and the card inserting task with increased ad/abduction and forward-reverse shoulder flexion. Limited forearm function requires compensatory motion from adjacent joints to perform activities that require pronation and supination.  相似文献   

19.
Quantitative measures derived from raw myoelectric signal (MES) data must be normalized to allow for comparisons both within and between subjects. The most common method of normalization involves dividing the root mean square (RMS) amplitude of the MES recorded during a given activity by the RMS of the MES elicited during a maximal voluntary isometric contraction (MVIC) of that particular muscle. The objective of this study was to use surface-recorded MES amplitude to determine the combination of electrode site, test position, head posture, and smoothing window that elicits the highest and most reliable MES amplitudes during an MVIC of the upper trapezius (UT) muscle. Ten volunteers had surface electrodes positioned at five sites on the UT of their dominant side. Three trials of each of three MVIC test positions were performed both with the head in neutral and rotated 45 degrees to the contralateral side. A repeated-measures ANOVA was used for statistical hypothesis testing. Coefficients of variation were used to quantify the between-factor variability introduced in each case. In addition, the data were re-analyzed using moving windows of 100 to 500 ms in length, and an ANOVA was used to determine the effect of window length on both the amplitude and variability of the estimates of maximum voluntary activation (MVE). Head position had no significant effect on RMS amplitude of the MVIC in any of the test positions. There was a significant electrode site by test position interaction effect. Bonferroni post-hoc analyses were performed on this interaction by fixing test position and testing electrode site, revealing that Sites 1 (2 cm lateral to the midpoint between C7 spinous process and the posterolateral border of the acromion) and 4 (2 cm posterior to Site 1) recorded significantly higher RMS values for all test positions, and were not significantly different from each other. Fixing electrode site, the test position analysis revealed that abduction of the humerus, and abduction with external rotation of the humerus produced significantly higher RMS values than shoulder elevation at both Sites 1 and 4, and that abduction produced a significantly higher RMS amplitude than abduction in external rotation at Site 1. The results confirmed that Sites 1 and 4 consistently produced the highest MES amplitudes for all movements. Pure abduction consistently elicited maximal RMS values; however there is concern regarding supraspinatus cross talk during this movement. Site 1 was found to produce the most reliable data. A moving window of 100 ms was found to generate MVE estimates that were significantly higher than windows ranging from 200 ms to 500 ms in length. There was no effect of window length on the reliability of the MVEs. Based on this study, it was concluded that abduction or abduction with the arms in lateral rotation should be used as normalization contraction positions for the upper trapezius muscle. During this movement, Site 1 data smoothed with a moving window of 100 ms produces the highest amplitude MVE data but window lengths greater than 200 ms produce more stable estimates in terms of being able to compare studies in which moving windows are used to compute RMS.  相似文献   

20.
The aim of the study was to investigate whether there was a difference in the electromyographic (EMG) activity of human shoulder muscles between the dominant and nondominant side during movement and to explore whether a possible side-difference depends on the specific task. We compared the EMG activity with surface and intramuscular electrodes in eight muscles of both shoulders in 20 healthy subjects whose hand preference was evaluated using a standard questionnaire. EMG signals were recorded during abduction and external rotation. During abduction, the normalized EMG activity was significantly smaller on the dominant side compared to the nondominant side for all the muscles except for infraspinatus and lower trapezius (P 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号