首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A widely distributed antigen developmentally regulated in the nervous system   总被引:11,自引:0,他引:11  
We have identified a glycoprotein (BEN) of 95-100 x 10(3) Mr using a monoclonal antibody. This protein is transiently expressed at the cell surface of the peripherally projecting neurons, i.e. motoneurons of the spinal cord and cranial nuclei, sensory neurons of the dorsal root and cranial sensory ganglia and sympathetic, parasympathetic and enteric neurons. In vitro cultures of dorsal root and sympathetic ganglia have shown that BEN is expressed on neurons but not on glial cells. On motor and sensory neurons, BEN first appears at the level of the cell body just after withdrawal from the cell cycle. Soon afterwards, expression of the antigen extends to the elongating axon. After a few days, BEN is no longer expressed by the motor and sensory neurons, disappearing first from the cell body and then progressively from the fibres. The loss of expression is concomitant with the onset of intense proliferation of satellite and Schwann cells. This modulated expression within the nervous system is unlike that of any surface glycoprotein so far described in vertebrates. Preliminary biochemical analysis indicates that, although it bears the adhesion-associated epitope HNK-1, BEN does not share characteristics with any previously described axonal glycoprotein. Consequently, we speculate that this glycoprotein might be a novel molecule implicated in selective adhesion phenomena, such as axonal fasciculation.  相似文献   

2.
3.
4.
5.
6.
The specific binding of vasoactive intestinal peptide (VIP) to its specific receptors as well as the stimulatory effect of the neuropeptide on cyclic AMP accumulation were studied in jejuno-ileal epithelial cells from 14-, 20- and 60-day-old rats. The potency and specificity of the VIP receptor-effector system did not vary during development. However, the concentration of VIP receptors and the efficiency of VIP stimulation of cyclic AMP generation increased from suckling to adult conditions, and VIP levels in jejuno-ileal tissue followed a parallel course.  相似文献   

7.
8.
9.
10.
11.
12.
It is known that the mammalian brain contains many kinds of proteoglycans, but almost all of them remain to be characterized. In this study, we prepared a monoclonal antibody against a phosphate-buffered saline-soluble brain proteoglycan (MAb 6B4). MAb 6B4 recognized a 600- to 1000-kDa chondroitin sulfate proteoglycan with a 250-kDa core protein (6B4 proteoglycan). The core protein of 6B4 proteoglycan carried the HNK-1 epitope. Immunohistochemical analysis of the adult rat brain indicated that this proteoglycan was expressed on the cell surfaces of a subset of neurons. In the hindbrain, 6B4 proteoglycan was highly expressed on the cerebellar Purkinje cells and Golgi cells, and at particular nuclei including the pontine nuclei and lateral reticular nucleus. Almost all of these nuclei were connected to the cerebellum through the mossy fiber system. A developmental study indicated that the expression of this proteoglycan changed dramatically during the formation of the cerebellar mossy fiber system. The mossy fibers from the pontine nuclei expressed 6B4 proteoglycan transiently from Embryonic Day 20 (E20) to Postnatal Day 30 (P30), during which time the axonal outgrowth and glomerular synapse formation occurred. The Purkinje cells, glomeruli, and Golgi cells began to be stained with MAb 6B4 from P10, P16, and P20, respectively. These expression stages correspond with the onset of their synapse formation. These results suggest that 6B4 proteoglycan is closely involved in the development of the cerebellar mossy fiber system.  相似文献   

13.
14.
The expression of two forms of pp60c-src, pp60 and pp60+, was measured in the central nervous system (CNS) and the peripheral nervous system. Both forms were expressed in the CNS, whereas only pp60 was primarily detected in the peripheral nervous system. Our findings suggest that pp60+ may play a role in events important to the CNS.  相似文献   

15.
16.
17.
18.
The distribution of dynorphin in the central nervous system was investigated in rats pretreated with relatively high doses (300–400 μg) of colchicine administered intracerebroventricularly. To circumvent the problems of antibody cross-reactivity, antisera were generated against different portions as well as the full dynorphin molecule (i.e., residues 1–13, 7–17, or 1–17). For comparison, antisera to [Leu]enkephalin (residues 1–5) were also utilized. Dynorphin was found to be widely distributed throughout the neuraxis. Immunoreactive neuronal perikarya exist in hypothalamic magnocellular nuclei, periaqueductal gray, scattered reticular formation sites, and other brain stem nuclei, as well as in spinal cord. Additionally, dynorphin-positive fibers or terminals occur in the cerebral cortex, olfactory bulb, nucleus accumbens, caudate-putamen, globus pallidus, hypothalamus, substantia nigra, periaqueductal gray, many brain stem sties, and the spinal cord. In many areas studied, dynorphin and enkephalin appeared to form parallel but probably separate anatomical systems. The results suggest that dynorphin occurs in neuronal systems that are immunocytochemically distinct from those containing other opioid peptides.  相似文献   

19.
Based on the evidence that the antinociceptive effects of acetaminophen could be mediated centrally, tissue distribution of the drug after systemic administration was determined in rat anterior and posterior cortex, striatum, hippocampus, hypothalamus, brain stem, ventral and dorsal spinal cord. In a first study, rats were treated with acetaminophen at 100, 200 or 400 mg/kg per os (p.o.), and drug levels were determined at 15, 45, 120, 240 min by high performance liquid chromatography (HPLC) coupled with electrochemical detection (ED). In a second study, 45 min after i.v. administration of [3H]acetaminophen (43 microCi/rat; 0.65 microg/kg), radioactivity was counted in the same structures, plus the septum, the anterior raphe area and the cerebellum. Both methods showed a homogeneous distribution of acetaminophen in all structures studied. Using the HPLC-ED method, maximal distribution appeared at 45 min. Tissue concentrations of acetaminophen then decreased rapidly except at the dose of 400 mg/kg where levels were still high 240 min after administration, probably because of the saturation of clearance mechanisms. Tissue levels increased with the dose up to 200 mg/kg and then leveled off up to 400 mg/kg. Using the radioactive method, it was found that the tissue/blood ratio was remarkably constant throughout the CNS, ranking from 0.39 in the dorsal spinal cord to 0.46 in the cerebellum. These results, indicative of a massive impregnation of all brain regions, are consistent with a central antinociceptive action of acetaminophen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号