首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Folding abnormalities of the triple helix have been demonstrated in collagen diseases such as osteogenesis imperfecta in which the mutation leads to the substitution of a single Gly in the (Gly-X-Y)n sequence pattern by a larger residue. Model peptides can be used to clarify the details of normal collagen folding and the consequences of the interruption of that folding by a Gly substitution. NMR and CD studies show that placement of a (GPO)4 nucleation domain at the N terminus rather than the C terminus of a native collagen sequence allows the formation of a stable triple helix but alters the folding mechanism. Although C- to N-terminal directional folding occurs when the nucleation domain is at the C terminus, there is no preferential folding direction when the nucleation domain is at the N terminus. The lack of zipper-like directional folding does not interfere with triple-helix formation, and when a Gly residue is replaced by Ser to model an osteogenesis imperfecta mutation, the peptide with the N-terminal (GPO)4 domain can still form a good triple helix N-terminal to the mutation site. These peptide studies raise the possibility that mutant collagen could fold in a C to N direction in a zipper-like manner up to the mutation site and that completion of the triple helix N-terminal to the mutation would involve an alternative mechanism.  相似文献   

2.
Collagen triple helices fold slowly and inefficiently, often requiring adjacent globular domains to assist this process. In the Streptococcus pyogenes collagen-like protein Scl2, a V domain predicted to be largely α-helical, occurs N-terminal to the collagen triple helix (CL). Here, we replace this natural trimerization domain with a de novo designed, hyperstable, parallel, three-stranded, α-helical coiled coil (CC), either at the N terminus (CC-CL) or the C terminus (CL-CC) of the collagen domain. CD spectra of the constructs are consistent with additivity of independently and fully folded CC and CL domains, and the proteins retain their distinctive thermal stabilities, CL at ~37 °C and CC at >90 °C. Heating the hybrid proteins to 50 °C unfolds CL, leaving CC intact, and upon cooling, the rate of CL refolding is somewhat faster for CL-CC than for CC-CL. A construct with coiled coils on both ends, CC-CL-CC, retains the ~37 °C thermal stability for CL but shows less triple helix at low temperature and less denaturation at 50 °C. Most strikingly however, in CC-CL-CC, the CL refolds slower than in either CC-CL or CL-CC by almost two orders of magnitude. We propose that a single CC promotes folding of the CL domain via nucleation and in-register growth from one end, whereas initiation and growth from both ends in CC-CL-CC results in mismatched registers that frustrate folding. Bioinformatics analysis of natural collagens lends support to this because, where present, there is generally only one coiled-coil domain close to the triple helix, and it is nearly always N-terminal to the collagen repeat.  相似文献   

3.
The kinetics of triple helix formation from single non-crosslinked peptide chains were studied for the collagen models (ProProGly)10 and (ProHypGly)10 in a broad concentration range and compared with those in nucleated trimers. At very low peptide concentrations the reaction order is 3 but decreases at higher concentrations. For (ProProGly)10 the third order rate constant is 800 M(-2) x s(-1) at 7 degrees C, which corresponds to a very long half time of 15 hours at 60 microM chain concentration. For (ProHypGly)10 the rate constant is about 1000-fold higher, which is consistent with the stabilizing effect of 4-hydroxyproline in collagens. The concentration dependence of the reaction order is explained by a nucleation mechanism in which a very unstable dimer is in fast equilibrium with the monomeric chains and addition of the third chain occurs in a rate-limiting step. At high concentrations nucleation is faster than propagation of helix formation and propagation becomes rate-limiting. To test this hypothesis an artificial nucleus was introduced by fusion of (ProProGly)10 with the trimeric foldon domain of T4 phage or the crosslinking domain of collagen III GlyProProGlyProCysCysGlyGlyGly. These domains were recombinantly attached to the C terminus of (GlyProPro)10 and link the three chains in a similar way to the C-terminal propeptide domain in collagen III. This results in a local intrinsic chain concentration of about 1 M. A first order reaction is observed for the folding of the triple helix in (GlyProPro)10foldon with a half time of 8.3 minutes, which approximately matches the rate of folding from single chains at 1 M peptide concentration. A high activation energy of 54 kJ/mol is found for this reaction, whereas the temperature dependence of the nucleation step is close to zero, confirming earlier findings on natural collagens that cis-trans isomerization of peptide bonds is the rate-limiting step in propagation.  相似文献   

4.
N J Bulleid  J A Dalley    J F Lees 《The EMBO journal》1997,16(22):6694-6701
The folding and assembly of procollagen occurs within the cell through a series of discrete steps leading to the formation of a stable trimer consisting of three distinct domains: the N-propeptide, the C-propeptide and the collagen triple helix flanked at either end by short telopeptides. We have established a semi-permeabilized cell system which allows us to study the initial stages in the folding and assembly of procollagen as they would occur in the intact cell. By studying the folding and assembly of the C-propeptide domain in isolation, and a procollagen molecule which lacks the C-propeptide, we have shown that this domain directs the initial association event and is required to allow triple helix formation. However, the essential function of this domain does not include triple helix nucleation or alignment, since this can occur when the C-propeptide is substituted with a single transmembrane domain. Also the telopeptide region is not involved in triple helix nucleation; however, a minimum of two hydroxyproline-containing Gly-X-Y triplets at the C-terminal end of the triple helix are required for nucleation to occur. Thus, the C-propeptide is required solely to ensure association of the monomeric chains; once these are brought together, the triple helix is able to nucleate and fold to form a correctly aligned triple helix.  相似文献   

5.
Buevich AV  Dai QH  Liu X  Brodsky B  Baum J 《Biochemistry》2000,39(15):4299-4308
Understanding the folding of the proline-rich collagen triple helix requires consideration of the effects of proline cis-trans isomerization and may shed light on the misfolding of collagen in connective tissue diseases. Folding was monitored in real time by heteronuclear 2D NMR spectroscopy for the (15)N labeled positions in the triple-helical peptide T1-892 [GPAGPAGPVGPAGARGPAGPOGPOGPOGPOGV]. In the equilibrium unfolded monomer form, each labeled residue showed multiple peaks with interconversion rates consistent with cis-trans isomerization of Gly-Pro and Pro-Hyp bonds. Real-time NMR studies on the folding of T1-892 showed slow decay of monomer peaks and a concomitant increase in trimer peaks. Gly25 in the C-terminal rich (Gly-Pro-Hyp)(4) domain folds first, consistent with its being a nucleation domain. Analysis of the kinetics indicates that the folding of Gly25 is biphasic and the slower step represents cis-trans isomerization of imino acids. This illustrates that nucleation is limited by cis-trans isomerization. Monitoring Gly6, Gly10, Ala12, and Gly13 monomer and trimer peaks captures the C- to N-terminal propagation of the triple helix, which is also limited by Gly-Pro cis-trans isomerization events. The zipper-like nature of the propagation process is confirmed by the slower rate of folding of Ala6 compared to Gly13, reflecting the larger number of isomerization events encountered by the more N-terminal Ala6. The cis-trans isomerization events at multiple proline residues is a complex statistical process which can be visualized by these NMR studies.  相似文献   

6.
Structurally abnormal type I collagen was identified in the dermis, bone, and cultured fibroblasts obtained from a baby with lethal perinatal osteogenesis imperfecta. Two-dimensional gel electrophoresis of the CNBr peptides demonstrated that the alpha 1(I)CB7 peptide from the alpha 1(I)-chain of type I collagen existed in a normal form and a mutant form with a more basic charge distribution. This heterozygous peptide defect was not detected in the collagens from either parent. The defect was localized to a 224-residue region at the NH2 terminus of the alpha 1(I)CB7 peptide by mammalian collagenase digestion. Analysis of unhydroxylated collagens produced in cell culture indicated that the mutant alpha 1(I)CB7 migrated faster on electrophoresis suggesting that the abnormality may be a small deletion or a mutation that alters sodium dodecyl sulfate binding. The post-translational hydroxylation of lysine residues was increased in the CB7 peptide and also in peptides CB3 and CB8 which are toward the NH2 terminus of the alpha 1(I)-chain. The COOH-terminal CB6 peptide was normally hydroxylated. These findings support the proposal that the lysine overhydroxylation resulted from a perturbation of helix propagation from the COOH to NH2 terminus of the collagen trimer caused by the structural defect in alpha 1(I)CB7.  相似文献   

7.
Vascular Ehlers-Danlos syndrome (EDS) type IV is the most severe form of EDS. In many cases the disease is caused by a point mutation of Gly in type III collagen. A slower folding of the collagen helix is a potential cause for over-modifications. However, little is known about the rate of folding of type III collagen in patients with EDS. To understand the molecular mechanism of the effect of mutations, a system was developed for bacterial production of homotrimeric model polypeptides. The C-terminal quarter, 252 residues, of the natural human type III collagen was attached to (GPP)7 with the type XIX collagen trimerization domain (NC2). The natural collagen domain forms a triple helical structure without 4-hydroxylation of proline at a low temperature. At 33 °C, the natural collagenous part is denatured, but the C-terminal (GPP)7-NC2 remains intact. Switching to a low temperature triggers the folding of the type III collagen domain in a zipper-like fashion that resembles the natural process. We used this system for the two known EDS mutations (Gly-to-Val) in the middle at Gly-910 and at the C terminus at Gly-1018. In addition, wild-type and Gly-to-Ala mutants were made. The mutations significantly slow down the overall rate of triple helix formation. The effect of the Gly-to-Val mutation is much more severe compared with Gly-to-Ala. This is the first report on the folding of collagen with EDS mutations, which demonstrates local delays in the triple helix propagation around the mutated residue.  相似文献   

8.
Xu Y  Bhate M  Brodsky B 《Biochemistry》2002,41(25):8143-8151
Peptide T1-892 is a triple-helical peptide designed to include two distinct domains: a C-terminal (Gly-Pro-Hyp)(4) sequence, together with an N-terminal 18-residue sequence from the alpha1(I) chain of type I collagen. Folding experiments of T1-892 using CD spectroscopy were carried out at varying concentrations and temperatures, and fitting of kinetic models to the data was used to obtain information about the folding mechanism and to derive rate constants. Proposed models include a heterogeneous population of monomers with respect to cis-trans isomerization and a third-order folding reaction from competent monomer to the triple helix. Fitting results support a nucleation domain composed of all or most of the (Gly-Pro-Hyp)(4) sequence, which must be in trans form before the monomer is competent to initiate triple-helix formation. The folding of competent monomer to a triple helix is best described by an all-or-none third-order reaction. The temperature dependence of the third-order rate constant indicates a negative activation energy and provides information about the thermodynamics of the trimerization step. These CD studies complement NMR studies carried out on the same peptide at high concentrations, illustrating how the rate-limiting folding step is affected by changes in concentration. This sequence preference of repeating Gly-Pro-Hyp units for the initiation of triple-helix formation in peptide T1-892 may be related to features in the triple-helix folding of collagens.  相似文献   

9.
Collagens are a group of extracellular matrix proteins with essential functions for skin integrity. Anchoring fibrils are made of type VII collagen (Col7) and link different skin layers together: the basal lamina and the underlying connective tissue. Col7 has a central collagenous domain and two noncollagenous domains located at the N and C terminus (NC1 and NC2), respectively. A cysteine-rich region of hitherto unknown function is located at the transition of the NC1 domain to the collagenous domain. A synthetic model peptide of this region was investigated by CD and NMR spectroscopy. The peptide folds into a collagen triple helix, and the cysteine residues form disulfide bridges between the different strands. The eight cystine knot topologies that are characterized by exclusively intermolecular disulfide bridges have been analyzed by molecular modeling. Two cystine knots are energetically preferred; however, all eight disulfide bridge arrangements are essentially possible. This novel cystine knot is present in type IX collagen, too. The conserved motif of the cystine knot is CX3CP. The cystine knot is N-terminal to the collagen triple helix in both collagens and therefore probably impedes unfolding of the collagen triple helix from the N terminus.  相似文献   

10.
Degradation of bovine nasal cartilage induced by interleukin-1 (IL-1) was used to study catabolic events in the tissue over 16 days. Culture medium was fractionated by two-dimensional electrophoresis (isoelectric focusing and SDS-PAGE). Identification of components by peptide mass fingerprinting revealed released fragments representing the NC4 domain of the type IX collagen alpha1 chain at days 12 and 16. A novel peptide antibody against a near N-terminal epitope of the NC4 domain confirmed the finding and indicated the presence of one of the fragments already at day 9. Mass spectrometric analysis of the two most abundant fragments revealed that the smallest one contained almost the entire NC4 domain cleaved between arginine 258 and isoleucine 259 in the sequence -ETCNELPAR258-COOH NH2-ITP-. A larger fragment contained the NC4 domain and the major part of the COL3 domain with a cleavage site between glycine 400 and threonine 401 in COL3 (-RGPPGPPGPPGPSG400-COOH NH2-TIG-). The presence of multiple collagen alpha1 (IX) N-terminal sequences demonstrates that the released molecules were cleaved at sites very close to the original N terminus either prior to or due to IL-1 treatment. Matrix metalloproteinase 13 (MMP-13) is active and cleaves fibromodulin in the time interval studied. Cartilage explants treated with MMP-13 were shown to release collagen alpha1 (IX) fragments with the same sizes and with the same cleavage sites as those obtained upon IL-1 treatment. These data describe cleavage by an MMP-13 activity toward non-collagenous and triple helix domains. These potentially important degradation events precede the major loss of type II collagen.  相似文献   

11.
It is shown that in 0,5 M NaCl 8 M CH3COOH heat absorption and the second structure alteration in a heated solution proceed between two stages following one another, and besides, salts not only decrease the macromolecule denaturation temperature in total, but produce different destabilization effect on different regions. The presence of the thermostable domain in the macromolecule helical part permits investigation of the folding mechanism of the triple collagen helix under partial denaturation. The localization and biological role of the stable domain in the triple helix formation are suggested.  相似文献   

12.
Missense mutations in the collagen triple helix that replace one Gly residue in the (Gly-X-Y)(n) repeating pattern by a larger amino acid have been shown to delay triple helix folding. One hypothesis is that such mutations interfere with the C- to N-terminal directional propagation and that the identity of the residues immediately N-terminal to the mutation site may determine the delay time and the degree of clinical severity. Model peptides are designed to clarify the role of tripeptide sequences N-terminal to the mutation site, with respect to length, stability, and nucleation propensity, to complete triple helix folding. Two sets of peptides with different N-terminal sequences, one with the natural sequence alpha1(I) 886-900, which is just adjacent to the Gly(901) mutation, and one with a GPO(GAO)(3) sequence, which occurs at alpha1(I) 865-879, are studied by CD and NMR. Placement of the five tripeptides of the natural alpha1(I) collagen sequence N-terminal to the Gly to Ala mutation site results in a peptide that is folded only C-terminal to the mutation site. In contrast, the presence of the Hyp-rich sequence GPO(GAO)(3) N-terminal to the mutation allows complete refolding in the presence of the mutation. The completely folded peptide contains an ordered central region with unusual hydrogen bonding while maintaining standard triple helix structure at the N- and C-terminal ends. These peptide results suggest that the location and sequences of downstream regions favorable for renucleation could be the key factor in the completion of a triple helix N-terminal to a mutation.  相似文献   

13.
Two substitutions for glycine in the triple-helical domain were found in type I procollagen synthesized by skin fibroblasts from two probands with lethal osteogenesis imperfecta. One was a substitution of valine for glycine alpha 1-637, and the other was a substitution of arginine for glycine alpha 2-694. The effects of the mutations on the zipper-like folding of the collagen triple helix were similar, since there was post-translational overmodification of the collagenase A fragments (amino acids 1-775) but not of more COOH-terminal fragments of the protein. The mutations differed markedly, however, on their effects on thermal unfolding of the triple helix. The collagenase A fragment from the collagen containing the arginine alpha 2-694 substitution was cleaved at about amino acid 700 when incubated with trypsin at 30-35 degrees C. Therefore, there was micro-unfolding of the triple helix at a site close to the glycine substitution. Surprisingly, however, the collagenase A fragment with the valine alpha 1-637 substitution was also cleaved at about amino acid 700 under the same conditions. The results, therefore, demonstrated that although most glycine substitutions delay folding of the triple helix in regions that are NH2-terminal to the site of the substitution, the effects on unfolding can be transmitted to regions that are COOH-terminal to the site of the glycine substitution.  相似文献   

14.
Troponin is a pivotal regulatory protein that binds Ca(2+) reversibly to act as the muscle contraction on-off switch. To understand troponin function, the dynamic behavior of the Ca(2+)-saturated cardiac troponin core domain was mapped in detail at 10 °C, using H/D exchange-mass spectrometry. The low temperature conditions of the present study greatly enhanced the dynamic map compared with previous work. Approximately 70% of assessable peptide bond hydrogens were protected from exchange sufficiently for dynamic measurement. This allowed the first characterization by this method of many regions of regulatory importance. Most of the TnI COOH terminus was protected from H/D exchange, implying an intrinsically folded structure. This region is critical to the troponin inhibitory function and has been implicated in thin filament activation. Other new findings include unprotected behavior, suggesting high mobility, for the residues linking the two domains of TnC, as well as for the inhibitory peptide residues preceding the TnI switch helix. These data indicate that, in solution, the regulatory subdomain of cardiac troponin is mobile relative to the remainder of troponin. Relatively dynamic properties were observed for the interacting TnI switch helix and TnC NH(2)-domain, contrasting with stable, highly protected properties for the interacting TnI helix 1 and TnC COOH-domain. Overall, exchange protection via protein folding was relatively weak or for a majority of peptide bond hydrogens. Several regions of TnT and TnI were unfolded even at low temperature, suggesting intrinsic disorder. Finally, change in temperature prominently altered local folding stability, suggesting that troponin is an unusually mobile protein under physiological conditions.  相似文献   

15.
The mechanism of chain selection and trimerization of fibril-associated collagens with interrupted triple helices (FACITs) differs from that of fibrillar collagens that have special C-propeptides. We recently showed that the second carboxyl-terminal non-collagenous domain (NC2) of homotrimeric collagen XIX forms a stable trimer and substantially stabilizes a collagen triple helix attached to either end. We then hypothesized a general trimerizing role for the NC2 domain in other FACITs. Here we analyzed the NC2 domain of human heterotrimeric collagen IX, the only member of FACITs with all three chains encoded by distinct genes. Upon oxidative folding of equimolar amounts of the α1, α2, and α3 chains of NC2, a stable heterotrimer with a disulfide bridge between α1 and α3 chains is formed. Our experiments show that this heterotrimerization domain can stabilize a short triple helix attached at the carboxyl-terminal end and allows for the proper oxidation of the cystine knot of type III collagen after the short triple helix.  相似文献   

16.
A study has been done of the effect of neutral salts (NaCl and CaCl2) on the mechanism of type I collagen triple helix folding and unfolding in concentrated acetic acid solutions (2-8.8 M). It is shown that in these conditions, thermoabsorption and secondary structure change in heated solutions proceed in two consecutive stages. Salts exert a different destabilizing effect on different sites of the macromolecule, promoting the detection of a thermostable domain. The presence of a thermostable domain permits one to carry out reversible denaturation of collagen and to study the mechanism of the triple helix folding. Proceeding from the mechanism of the triple helix folding, an assumption has been made on the localization of the thermostable domain and its biological role.  相似文献   

17.
Parmar AS  Nunes AM  Baum J  Brodsky B 《Biopolymers》2012,97(10):795-806
Type XXV collagen, or collagen‐like amyloidogenic component, is a component of amyloid plaques, and recent studies suggest this collagen affects amyloid fibril elongation and has a genetic association with Alzheimer's disease. The relationship between the collagen triple helix and amyloid fibrils was investigated by studying peptide models, including a very stable triple helical peptide (Pro‐Hyp‐Gly)10, an amyloidogenic peptide GNNQQNY, and a hybrid peptide where the GNNQQNY sequence was incorporated between (GPO)n domains. Circular dichroism and nuclear magnetic resonance (NMR) spectroscopy showed the GNNQQNY peptide formed a random coil structure, whereas the hybrid peptide contained a central disordered GNNQQNY region transitioning to triple‐helical ends. Light scattering confirmed the GNNQQNY peptide had a high propensity to form amyloid fibrils, whereas amyloidogenesis was delayed in the hybrid peptide. NMR data suggested the triple‐helix constraints on the GNNQQNY sequence within the hybrid peptide may disfavor the conformational change necessary for aggregation. Independent addition of a triple‐helical peptide to the GNNQQNY peptide under aggregating conditions delayed nucleation and amyloid fibril growth. The inhibition of amyloid nucleation depended on the Gly‐Xaa‐Yaa sequence and required the triple‐helix conformation. The inhibitory effect of the collagen triple‐helix on an amyloidogenic sequence, when in the same molecule or when added separately, suggests Type XXV collagen, and possibly other collagens, may play a role in regulating amyloid fibril formation. © 2012 Wiley Periodicals, Inc. Biopolymers 97: 795–806, 2012.  相似文献   

18.
The C-terminal non-collagenous domain of the surfactant glycoprotein SP-A was shown to be essential for its correct folding and assembly, as judged by the secretion of various deletion mutants transiently expressed in COS cells. A deletion mutant coding for this domain was successfully secreted while the expression of the collagenous domain only did not lead to any detectable secretion. Deletion mutants lacking small parts of the non-collagenous domain interfered more or less with the correct folding and assembly of the molecule, thus either reducing or inhibiting the secretion. These data suggest that three prefolded non-collagenous domains register and act as a nucleation center for the folding of the collagenous triple helix which proceeds in a zipper-like fashion towards the N-terminus.  相似文献   

19.
In a designed fusion protein the trimeric domain foldon from bacteriophage T4 fibritin was connected to the C terminus of the collagen model peptide (GlyProPro)(10) by a short Gly-Ser linker to facilitate formation of the three-stranded collagen triple helix. Crystal structure analysis at 2.6 A resolution revealed conformational changes within the interface of both domains compared with the structure of the isolated molecules. A striking feature is an angle of 62.5 degrees between the symmetry axis of the foldon trimer and the axis of the triple helix. The melting temperature of (GlyProPro)(10) in the designed fusion protein (GlyProPro)(10)foldon is higher than that of isolated (GlyProPro)(10,) which suggests an entropic stabilization compensating for the destabilization at the interface.  相似文献   

20.
Collagen IX is a heterotrimer of three alpha-chains, which consists of three COL domains (collagenous domains) (COL1-COL3) and four NC domains (non-collagenous domains) (NC1-NC4), numbered from the C-terminus. Although collagen IX chains have been shown to associate via their C-terminal NC1 domains and form a triple helix starting from the COL1 domain, it is not known whether chain association can occur at other sites and whether other collagenous and non-collagenous regions are involved. To address this question, we prepared five constructs, two long variants (beginning at the NC4 domain) and three short variants (beginning at the COL2 domain), all ending at the NC2 domain (or NC2 replaced by NC1), to study association and selection of collagen IX alpha-chains. Both long variants were able to associate with NC1 or NC2 at the C-terminus and form various disulfide-bonded trimers, but the specificity of chain selection was diminished compared with full-length chains. Trimers of the long variant ending at NC2 were shown to be triple helical by CD. Short variants were not able to assemble into disulfide-bonded trimers even in the presence of both conserved cysteine residues from the COL1-NC1 junction. Our results demonstrate that collagen IX alpha-chains can associate in the absence of COL1 and NC1 domains to form a triple helix, but the COL2-NC2 region alone is not sufficient for trimerization. The results suggest that folding of collagen IX is a co-operative process involving multiple COL and NC domains and that the COL1-NC1 region is important for chain specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号