首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
We proposed that inhibition of mitochondrial adenine nucleotide translocator (ANT) by long chain acyl-CoA (LCAC) underlies the mechanism associating obesity and type 2 diabetes. Here we test that after long-term exposure to a high-fat diet (HFD): (i) there is no adaptation of the mitochondrial compartment that would hinder such ANT inhibition, and (ii) ANT has significant control of the relevant aspects of oxidative phosphorylation. After 7 weeks, HFD induced a 24+/-6% increase in hepatic LCAC concentration and accumulation of the oxidative stress marker N(epsilon)-(carboxymethyl)lysine. HFD did not significantly affect mitochondrial copy number, oxygen uptake, membrane potential (Deltapsi), ADP/O ratio, and the content of coenzyme Q(9), cytochromes b and a+a(3). Modular kinetic analysis showed that the kinetics of substrate oxidation, phosphorylation, proton leak, ATP-production and ATP-consumption were not influenced significantly. After HFD-feeding ANT exerted considerable control over oxygen uptake (control coefficient C=0.14) and phosphorylation fluxes (C=0.15), extra- (C=0.23) and intramitochondrial (C=-0.56) ATP/ADP ratios, and Deltapsi (C=-0.11). We conclude that although HFD induces accumulation of LCAC and N(epsilon)-(carboxymethyl)lysine, oxidative phosphorylation does not adapt to these metabolic challenges. Furthermore, ANT retains control of fluxes and intermediates, making inhibition of this enzyme a more probable link between obesity and type 2 diabetes.  相似文献   

4.
The effect of insulin was studied as applied to the inhibited under conditions of adrenalectomy process of oxidative phosphorylation in the rat liver and heart mitochondria. It is established that adrenalectomy does not change oxidative activity of mitochondria but inhibits the process of phosphorylation, which results in the decreased values of the ADP/O coefficient and the respiratory control. Insulin administered to the adrenalectomized rats 3h before the experiments reduces the disturbed oxidative phosphorylation in mitochondria of the liver and heart by intensifying the degree of ADP phosphorylation.  相似文献   

5.
The aim of this investigation was to study the effect of intramitochondrial acyl-CoA on the respiration of rabbit heart mitochondria over the whole range of stationary respiratory rates between States 4 and 3. The creatine phosphokinase system was used for stabilization of extramitochondrial adenine nucleotide concentration. It was shown that acyl-CoA depressed respiration more effectively in the intermediate range of respiration between States 4 and 3. The effect of acyl-CoA was negligible near State 4 and in State 3. These data are in line with our previous results concerning the dependence of the adenine nucleotide translocator control coefficient on the rate of mitochondrial respiration. Thus, our data suggest that long-chain acyl-CoA may regulate oxidative phosphorylation in heart mitochondria in vivo.  相似文献   

6.
Preincubation of newborn rat liver mitochondria with ATP increases their state 3 respiration rate [J. K. Pollak (1975) Biochem. J. 150, 477-488; J. R. Aprille, and G. K. Asimakis (1980) Arch. Biochem. Biophys. 201, 564-575]. To determine which reactions contribute to control the rate of succinate oxidation with and without prior exposure to ATP, the effects of inhibitors specific for various reactions were studied. The adenine nucleotide translocator does not control the respiration in newborn more than in the adult mitochondria. The supply of reducing equivalents to the respiratory chain is an important step controlling the rate of oxidative phosphorylation by mitochondria from newborn rat liver, especially after preincubation with ATP. On the contrary, titrations with oligomycin show that the preincubation with ATP markedly decreases the control exerted by the ATPase-ATP synthase complex. That the rate of ATP synthesis is one of the steps controlling the rate of oxidative phosphorylation in newborn rat liver mitochondria is in striking contrast to the behavior of adult rat liver mitochondria. Other differences include a greater permeability to protons and a marked increase in sensitivity to mersalyl, indicating an easier accessibility of the proteins involved in oxidative phosphorylation to the thiol reagent.  相似文献   

7.
8.
A study on the effect of anandamide (AEA) in energy coupling of rat liver mitochondria is presented. Micromolar concentrations of AEA, while almost ineffective on substrate supported oxygen consumption rate and on uncoupler stimulated respiration, strongly inhibited the respiratory state III. AEA did not change the rate and the extent of substrate generated membrane potential, but markedly delayed rebuilding by respiration of the potential collapsed by ADP addition. Overall, these data suggest that anandamide inhibits the oxidative phosphorylation process. Direct measurement of the FoF1 ATP synthase activity showed that the oligomycin sensitive ATP synthesis was inhibited by AEA, (IC50, 2.5 μM), while the ATP hydrolase activity was unaffected. Consistently, AEA did not change the membrane potential generated by ATP hydrolysis.  相似文献   

9.
10.
11.
12.
Intrauterine growth retardation (IUGR) has been linked to the development of type 2 diabetes in adulthood. We have developed an IUGR model in the rat whereby the animals develop diabetes between 3 and 6 mo of age that is associated with insulin resistance. Alterations in hepatic glucose metabolism are known to contribute to the hyperglycemia of diabetes; however, the mechanisms underlying this phenomenon have not been fully explained. To address this issue, intact liver mitochondria were isolated from IUGR and control offspring at different ages to examine the nature and time course of possible defects in oxidative metabolism. Phosphoenolpyruvate carboxykinase (PEPCK) expression was also measured in livers of IUGR and control offspring. Rates of ADP-stimulated (state 3) oxygen consumption were increased for succinate in the fetus and for alpha-ketoglutarate and glutamate at day 1, reflecting possible compensatory metabolic adaptations to acute hypoxia and acidosis in IUGR rats. By day 14, oxidation of glutamate and alpha-ketoglutarate had returned to normal, and by day 28, oxidation rates of pyruvate, glutamate, succinate, and alpha-ketoglutarate were significantly lower than those of controls. Rotenone-sensitive NADH-O2 oxidoreductase activity was similar in control and IUGR mitochondria at all ages, showing that the defect responsible for decreased pyruvate, glutamate, and alpha-ketoglutarate oxidation in IUGR liver precedes the electron transport chain and involves pyruvate and alpha-ketoglutarate dehydrogenases. Increased levels of manganese superoxide dismutase suggest that an antioxidant response has been mounted, and hydroxynonenal (HNE) modification of pyruvate dehydrogenase E2-(catalytic) and E3-binding protein subunits suggests that HNE-induced inactivation of this key enzyme may play a role in the mechanism of injury. The level of PEPCK mRNA was increased 250% in day 28 IUGR liver, indicating altered gene expression of the gluconeogenic enzyme that precedes overt hyperglycemia. These results indicate that uteroplacental insufficiency impairs mitochondrial oxidative phosphorylation in the liver and that this derangement predisposes the IUGR rat to increased hepatic glucose production by suppressing pyruvate oxidation and increasing gluconeogenesis.  相似文献   

13.
14.
15.
Free fatty acids (FFA) are known to uncouple oxidative phosphorylation in mitochondria. However, their mechanism of action has not been elucidated as yet. In this study we have investigated in detail the patterns of uncoupling by the FFA oleate and palmitate in rat liver mitochondria and submitochondrial particles. The patterns of uncoupling by FFA were compared to uncoupling induced by the ionophores valinomycin (in the presence of K+) and gramicidin (in the presence of Na+) and the proton translocator carbonyl cyanide m-chlorophenylhydrazone (CCCP). The most striking difference in the pattern of uncoupling relates to the effect on the proton electrochemical potential gradient, delta mu H. Uncoupling by ionophores, particularly valinomycin, is associated with and most likely caused by a major reduction of delta mu H. In contrast, uncoupling by FFA is not associated with a significant reduction of delta mu H, indicating another mechanism of uncoupling. We suggest the use of the term decouplers for uncoupling agents such as FFA and general anesthetics that do not collapse the delta mu H [Rottenberg, H. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 3313-3317]. The protonophore CCCP and to some extent the ionophore gramicidin indicate a mixed mode of uncoupling since their effect on delta mu H is moderate when compared to that of valinomycin. Another distinguishing feature of uncouplers that collapse the delta mu H is their ability to stimulate ADP-stimulated respiration (state 3) further. Decouplers such as FFA and general anesthetics do not stimulate state 3 respiration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Isolated rat liver mitochondria have been treated with the general anaesthetic propofol (2,6-diisopropylphenol, 200 microM) and the physiological NO donor nitrosoglutathione (GSNO, 200 or 250 microM). The efficiency of the oxidative phosphorylation has been evaluated by measuring the respiration and ATP synthesis rates and the behavior of transmembrane electrical potential. In mitochondria energized by succinate, the simultaneous presence of both propofol and GSNO gives rise to a synergic action in affecting the resting and the ADP-stimulated respiration, the respiratory control ratio, the ATP synthesis, and the formation and utilization of the electrochemical transmembrane potential.  相似文献   

17.
The effect of ethanol on the uncoupling activity of palmitate and recoupling activities of carboxyatractylate and glutamate was studied in liver mitochondria at various Mg2+ concentrations and medium pH values (7.0, 7.4, and 7.8). Ethanol taken at concentration of 0.25 M had no effect on the uncoupling activity of palmitic acid in the presence of 2 mM MgCl2 and decreased the recoupling effects of carboxyatractylate and glutamate added to mitochondria either just before or after the fatty acid. However, ethanol did not modify the overall recoupling effect of carboxyatractylate and glutamate taken in combination. The effect of ethanol decreased as medium pH was decreased to 7.0. Elevated concentration of Mg2+ (up to 8 mM) inhibits the uncoupling effect of palmitate. Ethanol eliminates substantially the recoupling effect of Mg2+ under these conditions, but does not influence the recoupling effects of carboxyatractylate and glutamate. It is inferred that ADP/ATP and aspartate/glutamate antiporters are involved in uncoupling function as single uncoupling complex with the common fatty acid pool. Fatty acid molecules gain the ability to migrate under the action of ethanol: from ADP/ATP antiporter to aspartate/glutamate antiporter on addition of carboxyatractylate and in opposite direction on addition of glutamate. Possible mechanisms of fatty acid translocation from one transporter to another are discussed.  相似文献   

18.
19.
20.
The dynamics of primary aliphatic amines (ethylamine, propylamine) effects on the processes of oxidative phosphorylation in rat liver mitochondria was estimated. The inhibiting action of ethylamine and propylamine on the oxidative phosphorylation processes in the rat liver mitochondria was revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号