共查询到20条相似文献,搜索用时 0 毫秒
1.
Ecto-enzymes capable of hydrolyzing ATP and ADP (NTPDase) are present in the central nervous system of various species. In the present investigation we studied the synaptosomal NTPDase (ATP diphosphohydrolase, apyrase, E.C. 3.6.1.5) from fish, chicken and rats under different conditions and in the presence of several classical inhibitors. The cation concentration required for maximal activity was 0.5 mM for fish, 1.0 mM for chickens and 1.5 mM for rats with both substrates. The results showed that the pH optimum for all animal preparations was close to 8.0. The temperature used was 25–27°C for fish and 35–37°C for chicken and rat preparations. The inhibitors azide and fluoride only inhibited the preparation at high concentrations (10 mM). Lanthanum (0.1–0.4 mM), N-ethylmaleimide (0.4–3.0 mM) and ouabain (0.5–3.0 mM) had no effect on NTPDase activity from fish, chickens or rats. Orthovanadate (0.1–0.3 mM) only inhibited fish synaptosomal NTPDase. Trifluoperazine (0.05–0.2 mM) and suramin (0.03–0.3 mM) inhibited NTPDase at all concentrations tested. Suramin was the most potent compound in causing inhibition, presenting inhibition at 30 μM. Our results demonstrate that the synaptosomal NTPDase response to several factors is similar in fish, chickens and rats, and that the enzyme presents functional homology. 相似文献
2.
The participation of a nucleoside triphosphate diphosphohydrolase in the nucleotide hydrolysis by rat blood serum was evaluated. Nucleoside triphosphate diphosphohydrolase and phosphodiesterase are enzymes possibly involved in ATP and ADP hydrolysis. The specific activity of the phosphodiesterase activity (using thymidine 5'-monophosphate p-nitrophenyl ester as substrate) was 4.92 +/- 0.73 (mean +/- SD, n = 10) nmol p-nitrophenol.min(-1).mg(-1) protein and the specific activities for ATP and ADP were 1.31 +/- 0.37 (mean +/- SD, n = 7) and 1.36 +/- 0.25 (mean +/- SD, n = 5) nmol Pi.min(-1).mg(-1) protein, respectively. A competition plot demonstrated that ATP and ADP hydrolysis occurs at the same active site. The effect of suramin and phenylalanine on ATP, ADP and thymidine 5'-monophosphate p-nitrophenyl ester hydrolysis was investigated. The results were opposite considering the hydrolysis of ATP and ADP and that of the substrate marker for the enzyme phosphodiesterase. These results are indicative of the presence of, at least, two enzymes participating in the serum nucleotide hydrolysis. The presence of cAMP did not affect the hydrolysis velocity of ATP and ADP, while thymidine 5'-monophosphate p-nitrophenyl ester hydrolysis was inhibited by cAMP by approximately 47%, suggesting that the hydrolysis of the ATP and ADP, under our assay conditions, occurs at a different site from the phosphodiesterase site. Both enzyme activities, in the rat blood serum, may be involved in the modulation of the nucleotide/nucleoside ratio in the circulation, serving an in vivo homeostatic and antithrombotic function. In addition, the phosphodiesterase may act on DNA or RNA liberated upon tissue injury and/or cell death. 相似文献
3.
A mathematical model was built to account for the kinetic of extracellular ATP (ATPe) and extracellular ADP (ADPe) concentrations from goldfish hepatocytes exposed to hypotonicity. The model was based on previous experimental results on the time course of ATPe accumulation, ectoATPase activity, and cell viability [Pafundo et al., 2008].The kinetic of ATPe is controlled by a lytic ATP flux, a non-lytic ATP flux, and ecto-ATPase activity, whereas ADPe kinetic is governed by a lytic ADP flux and both ecto-ATPase and ecto-ADPase activities. Non-lytic ATPe efflux was included as a diffusion equation modulated by ATPe activation (positive feedback) and ADPe inhibition (negative feedback).The model yielded physically meaningful and stable steady-state solutions, was able to fit the experimental time evolution of ATPe and simulated the concomitant kinetic of ADPe. According to the model during the first minute of hypotonicity the concentration of ATPe is mainly governed by both lytic and non-lytic ATP efflux, with almost no contribution from ecto-ATPase activity. Later on, ecto-ATPase activity becomes important in defining the time dependent decay of ATPe levels. ADPe inhibition of the non-lytic ATP efflux was strong, whereas ATPe activation was minimal. Finally, the model was able to predict the consequences of partial inhibition of ecto-ATPase activity on the ATPe kinetic, thus emulating the exposure of goldfish cells to hypotonic medium in the presence of the ATP analog AMP-PCP. The model predicts this analog to both inhibit ectoATPase activity and increase non-lytic ATP release. 相似文献
4.
We investigated NTPDase-like activity [ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases)] in liver and kidney membrane from silver catfish ( Rhamdia quelen), chicken ( Gallus gallus) and rat ( Rattus norvegicus) under different conditions and in the presence of several inhibitors. The cation concentration required for maximal activity was 0.5, 1.5 and 2.0 mM for fish, chicken and rat liver, respectively (with ATP and ADP as substrates). The maximal activity in the kidney was observed at calcium concentrations of 0.5, 2.0, 1.5 mM (ATP) and 0.5, 1.5, 1.0 (ADP) for fish, chickens and rats, respectively. The results showed that the pH optimum for all animals and for the two tissues was close to 8.0. The temperature chosen was 25 °C for fish and 36 °C for chicken and rat preparations. Ouabain had no effect on the NTPDase-like activity of fish, chickens or rats. NTPDase activity was decreased in the presence of lanthanum in the chicken (ADP) and rat (ATP and ADP) liver. In the kidney, lanthanum inhibited fish ATP and rat ATP and ADP (0.2 mM) hydrolysis. N-ethylmaleimide (NEM) had an inhibitory effect on the kidney of all species at the concentration of 3.0 mM (ADP). Orthovanadate only inhibited fish membrane NTPDase; azide only inhibited the preparation at high concentrations (10 mM) and fluoride inhibited it at 10 mM (fish and chicken) and 5 mM (rat). Trifluoperazine (0.05–0.2 mM) and suramin (0.03–0.3 mM) inhibited NTPDase at all concentrations tested. These results suggest that NTPDase-like activity shows a different behavior among the vertebrate species and tissues studied. Additionally, we propose that NTPDase1 is the main enzyme present in this preparation. 相似文献
5.
Extracellular nucleotides affect female reproductive functions, fertilization, and pregnancy. The aim of this study was to investigate biochemical characteristics of ATP and ADP hydrolysis and identify E-NTPDases in myometrial cell membranes from Wistar albino rats. The apparent K m values were 506.4?±?62.1 and 638.8?±?31.3?μM, with a calculated V max (app) of 3,973.0?±?279.5 and 2,853.9?±?79.8?nmol/min/mg for ATP and ADP, respectively. The enzyme activity described here has common properties characteristic for NTPDases: divalent cation dependence; alkaline pH optimum for both substrates, insensitivity to some of classical ATPase inhibitors (ouabain, oligomycine, theophylline, levamisole) and significant inhibition by suramine and high concentration of sodium azides (5?mM). According to similar apparent K m values for both substrates, the ATP/ADP hydrolysis ratio, and Chevillard competition plot, NTPDase1 is dominant ATP/ADP hydrolyzing enzyme in myometrial cell membranes. RT-PCR analysis revealed expression of three members of ectonucleoside triphosphate diphosphohydrolase family (NTPDase 1, 2, and 8) in rat uterus. These findings may further elucidate the role of NTPDases and ATP in reproductive physiology. 相似文献
6.
鼠脑驱动蛋白是一类利用ATP水解释放的能量在微管系统上高连续性运动的常规驱动蛋白。了解ATP水解的化学能如何转化为机械动能是驱动蛋白研究中的重大课题。为此,鼠脑驱动蛋白单体(rK354)的晶体通过浸泡的方式引入ATP的结构类似物AMPPNP。rK354-AMPPNP复合物和rK354-ADP复合物结构的比较,揭示了开关区域Ⅱ的Glu237起连接ATP的γ-磷酸和驱动蛋白微管结合区的枢纽作用。 相似文献
7.
The nucleotide (ATP-ADP)/nucleoside (adenosine) ratio in the circulation can modulate the processes of vasoconstriction, vasodilatation and platelet aggregation. The main objective of the present study with rat blood serum was to evaluate the possibility of changes in nucleotide hydrolysis by phenylalanine (Phe) and phenylpyruvate (PP), the levels of which could increase in the circulation of individuals with phenylketonuria. Results demonstrated that Phe in the range 1.0-5.0 mM inhibited the ADP hydrolysis by rat serum. The effect of inhibition by Phe on ATP hydrolysis appeared only at a concentration of 5.0 mM. PP had no significant effect upon nucleotide hydrolysis. Kinetic analysis indicated that the inhibition of ADP and ATP hydrolysis by Phe in rat blood serum is uncompetitive. Conversely, Phe and PP did not affect the hydrolysis of p-nitrophenyl-5'-TMP by rat serum. 相似文献
8.
N-linked glycosylation is important for the function, cellular localization, and oligomerization of membrane-bound ecto-nucleoside triphosphate diphosphohydrolases (eNTPDases). NTPDase3 is a prototypical cell membrane-associated eNTPDase, which is equally related and enzymatically intermediate to the other two cell surface membrane NTPDases (NTPDase1 and 2). The protein sequence of NTPDase3 contains seven putative N-glycosylation sites located in the ecto-domain. Only one of these putative glycosylation sites, asparagine 81 in NTPDase3, which is located near apyrase conserved region 1 (ACR1), is invariant in all the cell surface membrane eNTPDases. Using site-directed mutagenesis, mutants were constructed to eliminate this highly conserved N-glycosylation site in NTPDase3. The results indicate that glycosylation at this position is essential for full enzymatic activity, with mutant ATPase activity decreased more than ADPase activity. Enzymatic deglycosylation of this site is shown to be responsible for the inactivation of the wild-type enzyme by treatment with peptide N-glycosidase-F. In addition, glycosylation of this conserved site is necessary for the stabilization/stimulation of nucleotidase activity upon treatment with the lectin concanavalin A. However, lack of glycosylation at this site did not result in large changes in tertiary or quaternary structure, as measured by Cibacron blue binding, chemical cross-linking, and native gel electrophoretic analysis. Since this N-glycosylation site is invariant in cell membrane eNTPDases, it is postulated that glycosylation of this residue near ACR1 is crucial for full enzymatic activity of the cell membrane NTPDases. 相似文献
9.
In isolated rat hepatocytes, ATP and ADP (10(-6) M) rapidly mobilize intracellular Ca2+ and increase the concentration of free cytosolic Ca2+ ([Ca2+]i) within 1-2 s. The increase in [Ca2+]i is maximal (2.5- to 3-fold) by about 10 s and is dose-dependent, with ATP and ADP being half-maximally effective at 8 X 10(-7) and 3 X 10(-7) M, respectively. At submaximal concentrations, the rise in [Ca2+]i is transient due to hydrolysis of the agonist. The increase in [Ca2+]i in response to ATP or ADP can be potentiated by low concentrations of glucagon (10(-9) M). In addition, the [Ca2+]i rise can be antagonized in a time- and dose-dependent manner by the tumor promoter 4 beta-phorbol 12 beta-myristate 13 alpha-acetate. Adenosine, at concentrations as high as 10(-4) M, does not alter [Ca2+]i. AMP is ineffective at 10(-5) M, but at 10(-4) M it increases [Ca2+]i approximately 1.5-fold after a 30-s lag and at a slow rate. Conversely, high concentrations (10(-4) M) of adenosine and AMP increases cell cAMP about 2- to 3-fold. ATP and ADP, at concentrations (10(-6) M) which near-maximally increase [Ca2+]i, do not affect hepatocyte cAMP. ATP and ADP increase the cellular level of myoinositol 1,4,5-trisphosphate (IP3), the putative second messenger for Ca2+ mobilization. The increase in IP3 is dose-dependent and precedes or is coincident with the [Ca2+]i rise. There is an approximate 20% increase in IP3 with concentrations of ATP or ADP which near-maximally induce other physiological responses. It is concluded that submicromolar concentrations of ATP and ADP mobilize intracellular Ca2+ and activate phosphorylase in hepatocytes due to generation of IP3. These effects may involve P2-purinergic receptors. In contrast adenosine and AMP interact with P1 (A2)-purinergic receptors to increase cAMP. 相似文献
10.
Abstract: The release of adenosine and ATP evoked by electrical field stimulation in rat hippocampal slices was investigated with the following two patterns of stimulation: (1) a brief, high-frequency burst stimulation (trains of stimuli at 100 Hz for 50 ms applied every 2 s for 1 min), to mimic a long-term potentiation (LTP) stimulation paradigm, and (2) a more prolonged (3 min) and low-frequency (5 Hz) train stimulation, to mimic a long-term depression (LTD) stimulation paradigm. The release of ATP was greater at a brief, high-frequency burst stimulation, whereas the release of [ 3H]adenosine was slightly greater at a more prolonged and low-frequency stimulation. To investigate the source of extracellular adenosine, the following two pharmacological tools were used; α,β-methylene ADP (AOPCP), an inhibitor of ecto-5′-nucleotidase, to assess the contribution of the catabolism of released adenine nucleotides as a source of extracellular adenosine, and S-(4-nitrobenzyl)-6-thioinosine (NBTI), an inhibitor of adenosine transporters, to assess the contribution of the release of adenosine, as such, as a source of extracellular adenosine. At low-frequency stimulation, NBTI inhibited by nearly 50% the evoked outflow of [ 3H]adenosine, whereas AOPCP inhibited [ 3H]adenosine outflow only marginally. In contrast, at high-frequency stimulation, AOPCP inhibited by 30% the evoked release of [ 3H]adenosine, whereas NBTI produced a 40% inhibition of [ 3H]adenosine outflow. At both frequencies, the kinetics of evoked [ 3H]adenosine outflow was affected in different manners by AOPCP and NBTI; NBTI mainly depressed the rate of evoked [ 3H]adenosine outflow, whereas AOPCP mainly inhibited the later phase of evoked [ 3H]adenosine accumulation. These results show that there is a simultaneous, but quantitatively different, release of ATP and adenosine from rat hippocampal slices stimulated at frequencies that can induce plasticity phenomena such as LTP (100 Hz) or LTD (5 Hz). The source of extracellular adenosine is also different according to the frequency of stimulation; i.e., at a brief, high-frequency stimulation there is a greater contribution of released adenine nucleotides for the formation of extracellular adenosine than at a low frequency with a more prolonged stimulation. 相似文献
11.
In the present report we describe an apyrase (ATP diphosphohydrolase, EC 3.6.1.5) in rat blood platelets. The enzyme hydrolyses almost identically quite different nucleoside di- and triphosphates. The calcium dependence and pH requirement were the same for the hydrolysis of ATP and ADP and the apparent Km values were similar for both Ca 2+-ATP and Ca 2+-ADP as substrates. Ca 2+-ATP and Ca 2+-ADP hydrolysis could not be attributed to the combined action of different enzymes because adenylate kinase, inorganic pyrophosphatase and nonspecific phosphatases were not detected under our assay conditions. The Ca 2+-ATPase and Ca 2+-ADPase activity was insensitive to ATPase, adenylate kinase and alkaline phosphatase classical inhibitors, thus excluding these enzymes as contaminants. The results demonstrate that rat blood platelets contain an ATP diphosphohydrolase involved in the hydrolysis of ATP and ADP which are vasoactive and platelet active adenine nucleotides. 相似文献
12.
Here we described an nucleoside triphosphate diphosphohydrolase (NTPDase) activity in living trophozoites of Trichomonas gallinae. The enzyme hydrolyzes a variety of purine and pyrimidine nucleoside di- and triphosphates in an optimum pH range of 6.0-8.0. This enzyme activity was activated by high concentrations of divalent cations, such as calcium and magnesium. Contaminant activities were ruled out because the enzyme was not inhibited by classical inhibitors of ATPases (ouabain, 5.0 mM sodium azide, oligomycin) and alkaline phosphatases (levamisole). A significant inhibition of ATP hydrolysis (38%) was observed in the presence of 20 mM sodium azide. Sodium orthovanadate inhibited ATP and ADP hydrolysis (24% and 78%), respectively. The apparent K(M) (Michaelis constant) values were 667.62+/-13 microM for ATP and 125+/-5.3 microM for ADP. V(max) (maximum velocity) values were 0.44+/-0.007 nmol Pi min(-1) per 10(6) trichomonads and 0.91+/-0.12 nmol Pi min(-1) per 10(6) trichomonads for ATP and ADP, respectively. Moreover, we showed a marked decrease in ATP, ADP and AMP hydrolysis when the parasites were grown in the presence of penicillin and streptomycin. The existence of an NTPDase activity in T. gallinae may be involved in pathogenicity, protecting the parasite from the cytolytic effects of the extracellular nucleotides. 相似文献
13.
Changes of the extra- and intramitochondrial ATP/ADP ratios as a function of the respiratory state were measured in incubations with rat liver mitochondria. ATPase or creatine/creatine kinase was used to change the extramitochondrial ATP/ADP ratio; the separation of the mitochondrial pellet was performed by a Millipore filtration technique. Under all conditions tested, the intramitochondrial ratio changed in the same direction as the extramitochondrial one, except in the presence of atractylate where this correlation was not observed. Furthermore, it could be shown that the oxygen uptake and pyruvate carboxylase activity correlated with the intramitochondrial ATP/ADP ratio and not with the extramitochondrial one. These results do not support the proposal that the adenine nucleotide translocase is rate limiting for respiration. 相似文献
14.
We have recently reported the existence of ATPase activity capable of hydrolyzing extracellular ATP and localized at the external cell membrane of goldfish hepatocytes [Am. J. Physiol. (1998) 274 R1031]. In the present study, we investigated whether one or more enzymes of the ATP diphosphohydrolase family (called E-NTPDases) are responsible for the hydrolysis of extracellular ATP and other nucleotides. Using soluble extracts from goldfish liver, enzyme activity was detected in the presence of ATP (32.1±4.0 nmol Pi liberated mg protein −1 min −1), ADP (20.7±3.3 nmol Pi liberated mg protein −1 min −1) and UTP (20.7±1.2 nmol Pi liberated mg protein −1 min −1). In line with the presence of this hydrolytic activity, liver samples separated by non-denaturing gel electrophoresis and subsequently exposed to either ATP, ADP or UTP yielded a single band with enzyme activity and similar electrophoretic mobility. Subsequent SDS-PAGE electrophoresis of the active bands resulted in the appearance of two protein bands with molecular masses of 70 and 64 kDa. Inmunoblotting of soluble extracts and microsomes obtained from goldfish liver, using a monoclonal antibody against CD39 (a well-known E-NTPDase), detected a single 97-kDa protein. The enzyme activity measured in solution and in native gels, together with structural information from denaturing gels plus immunoblots, points to the existence, in goldfish liver, of at least two different E-NTPDases. 相似文献
15.
In the present report we describe an ATP diphosphohydrolase (apyrase EC 3.6.1.5) in rat cardiac sarcolemma. It is Ca2+ dependent and is insensitive to ouabain, orthovanadate, N-ethylmaleimide (NEM), lanthanum, and oligomycin that are classical ATPase inhibitors. Sodium azide that is a mitochondrial inhibitor at low concentrations, did not affect the enzyme activity at 5.0 mM or below. In contrast, at high concentrations (> 10 mM) sodium azide inhibited the enzyme. Levamisole, a specific inhibitor of alkaline phosphatase and P1, P5-di(adenosine 5-)pentaphosphate (Ap5A), a specific inhibitor of adenylate kinase did not inhibit the enzyme. Mercury chloride showed a parallel inhibition of the hydrolysis of both substrates of apyrase. Similar inhibition profiles are powerful evidence for a common catalytic site for the hydrolysis of both substrates. The enzyme has an optimum pH range of 7.5–8.0 and catalyzes the hydrolysis of triphospho- and diphosphonucleosides other than ATP or ADP. The apparent Km (Michaelis constant) and Vmax (maximal velocity) are 62.1 ± 5.2 M and 1255.7 ± 178 mol inorganic phosphate liberated/min/mg with ATP and 59.4 ± 4.3 M and 269.2 ± 39 mol inorganic phosphate liberated/min/mg with ADP. Enzyme markers indicated that this apyrase is associated with the plasma membrane. A deposition of lead phosphate granules on the outer surface of the sarcolemmal vesicles was observed by electron microscopy in the presence of either ATP or ADP as substrate. It is suggested that the ATP diphosphohydrolase could regulate the concentration of extracellular adenosine, and thus is important in the control of vascular tone and coronary flow. 相似文献
16.
Summary All species of desiccation tolerant angiosperms studied conserved some ATP in air-dry viable leaves. Otherwise there was no uniformity of response to drying: ATP content remained high in some species, but fell markedly in the others. ATP levels stayed high in Boea hygroscopica and Borya constricta until relative water content fell below 30%. ATP content recovered in the first 2 h of rehydration in Boea, but recovery was gradual in Borya, taking more than 16 h.Abbreviations
ADP
adenosine 5-diphosphate
-
ATP
adenosine 5-triphosphate
-
BES
N,N-bis[2-hydroxyethyl]-2-aminoethanesulfonic acid
-
HEPES
N-2-hydroxyethylpiperazine-N 1-2-ethanesulfonic acid
-
RH
relative humidity
-
RWC
relative water content 相似文献
17.
ATP/ADP isopentenyltransferase (IPTs) genes encode key enzymes involved in cytokinin synthesis. In this study, the functions of ATP/ADP PpIPTs in peach were investigated. According to the genome sequence, we have found and verified that there are four members of this gene family in peach, namely, PpIPT1, PpIPT3, PpIPT5, and PpIPT7. Overexpression of each of these genes in Arabidopsis resulted in increased levels of cytokinins in the transgenic plants, confirming their roles in cytokinin synthesis. Numerous altered phenotypes were observed in the transgenic plants, including vigorous growth and enhanced salt resistance. ATP/ADP PpIPTs were expressed in tissues throughout the plant, but the expression patterns differed between the genes. Only PpIPT3 was upregulated within 2 h after the application of nitrate to N-deprived peach seedlings, and the increase was resistant to pre-treatment of a specific nitrate metabolism inhibitor. Results showed that ATP/ADP PpIPT expression levels decreased significantly in pulp within 2 weeks after flowering and remained low. However, pulp cytokinin levels were quite high during this time. Only PpIPT5 in seed increased significantly within 2 weeks after flowering, which was consistent with cytokinin levels during early fruit development, suggesting that PpIPT5 in seed is the key gene for cytokinin biosynthesis during early fruit development. ATP/ADP PpIPT expression also increased significantly during later fruit development in seed. 相似文献
18.
This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [ 3H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients ( n = 31) and control organ donors ( n = 23). The neurogenic release of ATP and [ 3H]ACh was higher ( P < 0.05) in detrusor strips from BPH patients. The extracellular hydrolysis of ATP and, subsequent, adenosine formation was slower ( t1/2 73 vs. 36 min, P < 0.05) in BPH detrusor strips. The A 1 receptor-mediated inhibition of evoked [ 3H]ACh release by adenosine (100 μM), NECA (1 μM), and R-PIA (0.3 μM) was enhanced in BPH bladders. Relaxation of detrusor contractions induced by acetylcholine required 30-fold higher concentrations of adenosine. Despite VAChT-positive cholinergic nerves exhibiting higher A 1 immunoreactivity in BPH bladders, the endogenous adenosine tonus revealed by adenosine deaminase is missing. Restoration of A 1 inhibition was achieved by favoring (1) ATP hydrolysis with apyrase (2 U mL −1) or (2) extracellular adenosine accumulation with dipyridamole or EHNA, as these drugs inhibit adenosine uptake and deamination, respectively. In conclusion, reduced ATP hydrolysis leads to deficient adenosine formation and A 1 receptor-mediated inhibition of cholinergic nerve activity in the obstructed human bladder. Thus, we propose that pharmacological manipulation of endogenous adenosine levels and/or A 1 receptor activation might be useful to control bladder overactivity in BPH patients. 相似文献
19.
This study evaluated the effect of Ca2+ on the extramitochondrial hydrolysis of ATP and ADP by the extramitochondrial ATPase in isolated mitochondria and submitochondrial particles (SMPs) from human term placenta. The effect of different oxidizable substrates on the hydrolysis of ATP and ADP in the presence of sucrose or K+ was evaluated. Ca2+ increased phosphate release from ATP and ADP, but this stimulation showed different behavior depending on the oxidizable substrate present in the incubation media. Ca2+ stimulated the hydrolysis of ATP and ADP in the presence of sucrose. However, Ca2+ did not stimulate the hydrolysis of ADP in the medium containing K+. Ca2+ showed inhibition depending on the respiratory substrate. This study suggests that the energetic state of mitochondria controls the extramitochondrial ATPase activity, which is modulated by Ca2+ and respiratory substrates. 相似文献
20.
Recently we demonstrated the presence of aromatase (P450(arom)), estrogen synthetase, and the active production of estrogen in parietal cells of the rat stomach. We therefore investigated the steroidogenic pathways of estrogen and also other steroid metabolites in the gastric mucosa of male rats, by showing the mRNA expression of steroidogenic enzymes using RT-PCR and in situ hybridization histochemistry, and by measuring the blood concentration of steroids in the artery and the portal vein. RT-PCR analysis showed the strong mRNA expression of 17alpha-hydroxylase/17,20-lyase (P450(17alpha)), 17beta-hydroxysteroid dehydrogenase (HSD) type III and P450(arom), and the weak mRNA expression of 17beta-HSD type II, 5alpha-reductase type I and 3alpha-HSD. The other mRNAs of steroidogenic enzymes examined were not detected. In situ hybridization histochemistry demonstrated the localization of mRNAs for P450(17alpha), 17beta-HSD type III and P450(arom) in the parietal cells. Higher levels of progesterone and testosterone were found in the artery compared with the portal vein. Higher amounts of estrone and 17beta-estradiol, by contrast, were present in the portal vein compared with the artery. These results indicate that parietal cells of rat stomach convert circulating progesterone and/through androstenedione and testosterone to synthesize both estrone and 17beta-estradiol, which then enter the liver via the portal vein. 相似文献
|