首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use a combination of spectroscopic, calorimetric, viscometric and computer modeling techniques to characterize the binding of the aminoglycoside antibiotic, tobramycin, to the polymeric RNA duplex, poly(rI).poly(rC), which exhibits the characteristic A-type conformation that is conserved among natural and synthetic double-helical RNA sequences. Our results reveal the following significant features: (i) CD-detected binding of tobramycin to poly(rI).poly(rC) reveals an apparent site size of four base-pairs per bound drug molecule; (ii) tobramycin binding enhances the thermal stability of the host poly(rI).poly(rC) duplex, the extent of which decreases upon increasing in Na(+) concentration and/or pH conditions; (iii) the enthalpy of tobramycin- poly(rI).poly(rC) complexation increases with increasing pH conditions, an observation consistent with binding-induced protonation of one or more drug amino groups; (iv) the affinity of tobramycin for poly(rI).poly(rC) is sensitive to both pH and Na(+) concentration, with increases in pH and/or Na(+) concentration resulting in a concomitant reduction in binding affinity. The salt dependence of the tobramycin binding affinity reveals that the drug binds to the host RNA duplex as trication. (v) The thermodynamic driving force for tobramycin- poly(rI).poly(rC) complexation depends on pH conditions. Specifically, at pH< or =6.0, tobramycin binding is entropy driven, but is enthalpy driven at pH > 6.0. (vi) Viscometric data reveal non-intercalative binding properties when tobramycin complexes with poly(rI).poly(rC), consistent with a major groove-directed mode of binding. These data also are consistent with a binding-induced reduction in the apparent molecular length of the host RNA duplex. (vii) Computer modeling studies reveal a tobramycin-poly(rI). poly(rC) complex in which the drug fits snugly at the base of the RNA major groove and is stabilized, at least in part, by an array of hydrogen bonding interactions with both base and backbone atoms of the host RNA. These studies also demonstrate an inability of tobramycin to form a stable low-energy complex with the minor groove of the poly(rI).poly(rC) duplex. In the aggregate, our results suggest that tobramycin-RNA recognition is dictated and controlled by a broad range of factors that include electrostatic interactions, hydrogen bonding interactions, drug protonation reactions, and binding-induced alterations in the structure of the host RNA. These modulatory effects on tobramycin-RNA complexation are discussed in terms of their potential importance for the selective recognition of specific RNA structural motifs, such as asymmetric internal loops or hairpin loop-stem junctions, by aminoglycoside antibiotics and their derivatives.  相似文献   

2.
B C Sang  D M Gray 《Biochemistry》1987,26(23):7210-7214
Circular dichroism (CD) data indicated that fd gene 5 protein (G5P) formed complexes with double-stranded poly(dA.dT) and poly[d(A-T).d(A-T)]. CD spectra of both polymers at wavelengths above 255 nm were altered upon protein binding. These spectral changes differed from those caused by strand separation. In addition, the tyrosyl 228-nm CD band of G5P decreased more than 65% upon binding of the protein to these double-stranded polymers. This reduction was significantly greater than that observed for binding to single-stranded poly(dA), poly(dT), and poly[d(A-T)] but was similar to that observed for binding of the protein to double-stranded RNA [Gray, C.W., Page, G.A., & Gray, D.M. (1984) J. Mol. Biol. 175, 553-559]. The decrease in melting temperature caused by the protein was twice as great for poly[d(A-T).d(A-T)] as for poly(dA.dT) in 5 mM tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl), pH 7. Upon heat denaturation of the poly(dA.dT)-G5P complex, CD spectra showed that single-stranded poly(dA) and poly(dT) formed complexes with the protein. The binding of gene 5 protein lowered the melting temperature of poly(dA.dT) by 10 degrees C in 5 mM Tris-HCl, pH 7, but after reducing the binding to the double-stranded form of the polymer by the addition of 0.1 M Na+, the melting temperature was lowered by approximately 30 degrees C. Since increasing the salt concentration decreases the affinity of G5P for the poly(dA) and poly(dT) single strands and increases the stability of the double-stranded polymer, the ability of the gene 5 protein to destabilize poly(dA.dT) appeared to be significantly affected by its binding to the double-stranded form of the polymer.  相似文献   

3.
Interaction of sanguinarine with A-form RNA structures of poly(rI)poly(rC) and poly(rA).poly(rU) has been studied by spectrophotometric, spectrofluorimetric, UV melting profiles, circular dichroism and viscometric analysis. The binding of sanguinarine to A-form duplex RNA structures is characterised by the typical bathochromic and hypochromic effects in the absorption spectrum, increasing steady state fluorescence intensity, an increase in fluorescence quantum yield of sanguinarine, an increase in fluorescence polarization anisotropy, an increase of thermal transition temperature, an increase in the contour length of sonicated rod-like RNA structure and perturbation in circular dichroic spectrum. Scatchard analysis indicates that sanguinarine binds to each polymer in a non-cooperative manner. Comparative binding parameters determined from absorbance titration by Scatchard analysis, employing the excluded site model, indicate a higher binding affinity of sanguinarine to poly(rI).poly(rC) structure than to poly(rA).poly(rU) structure. On the basis of these observations, it is concluded that the alkaloid binds to both the RNA structures by a mechanism of intercalation.  相似文献   

4.
The triple helix formation of poly(C) - guanosine - poly(C+) was investigated by the help of an LKB scanning micro-calorimeter. The existence of the triple helix could also be shown by recording the melting curves. The ultraviolet absorption at different wave lengths namely 275 nm, 260 nm, and 245 nm was plotted as a function of the temperature. Furthermore formation of the triple helix was shown by plotting the ultraviolet absorption at 245 nm during the increasing addition of guanosine solution to a fixed amount of poly(C) in the solution. Finally the formation of the triple helix was demonstrated by plotting the ultraviolet absorption at 245 nm of a certain mixture of the components while the pH value of the solution was continuously lowered. All these methods show that the monomer interacts with the polymer double helix to form a triple helix. The calorimetric measurements show that the reaction enthalpy is concentration dependent. Above a threshold concentration a rapid increase of the reaction enthalpy is observed. This increase occurs in a very narrow concentration interval. Above this interval a final value of the reaction enthalpy is reached. The amount of the reaction enthalpy for the interaction of guanosine with poly(C) - poly(C+) double helix is 5.5 Kcal (mol base triplet)-1.  相似文献   

5.
A key step in the rational design of new RNA binding small molecules necessitates a complete elucidation of the molecular aspects of the binding of existing molecules to RNA structures. This work focuses towards the understanding of the interaction of a DNA intercalator, quinacrine and a minor groove binder 4',6-diamidino-2-phenylindole (DAPI) with the right handed Watson-Crick base paired A-form and the left-handed Hoogsteen base paired H(L)-form of poly(rC).poly(rG) evaluated by multifaceted spectroscopic and viscometric techniques. The energetics of their interaction has also been elucidated by isothermal titration calorimetry. Results of this study converge to suggest that (i) quinacrine intercalates to both A-form and H(L)-form of poly(rC).poly(rG); (ii) DAPI shows both intercalative and groove-binding modes to the A-form of the RNA but binds by intercalative mode to the H(L)-form. Isothermal calorimetric patterns of quinacrine binding to both the forms of RNA and of DAPI binding to the H(L)-form are indicative of single binding while the binding of DAPI to the A-form reveals two kinds of binding. The binding of both the drugs to both conformations of RNA is exothermic; while the binding of quinacrine to both conformations and DAPI to the A-form (first site) is entropy driven, the binding of DAPI to the second site of A-form and H(L)-conformation is enthalpy driven. Temperature dependence of the binding enthalpy revealed that the RNA-ligand interaction reactions are accompanied by small heat capacity changes that are nonetheless significant. We conclude that the binding affinity characteristics and energetics of interaction of these DNA binding molecules to the RNA conformations are significantly different and may serve as data for the development of effective structure selective RNA-based antiviral drugs.  相似文献   

6.
Mechanical stability of single DNA molecules   总被引:10,自引:0,他引:10       下载免费PDF全文
Using a modified atomic force microscope (AFM), individual double-stranded (ds) DNA molecules attached to an AFM tip and a gold surface were overstretched, and the mechanical stability of the DNA double helix was investigated. In lambda-phage DNA the previously reported B-S transition at 65 piconewtons (pN) is followed by a second conformational transition, during which the DNA double helix melts into two single strands. Unlike the B-S transition, the melting transition exhibits a pronounced force-loading-rate dependence and a marked hysteresis, characteristic of a nonequilibrium conformational transition. The kinetics of force-induced melting of the double helix, its reannealing kinetics, as well as the influence of ionic strength, temperature, and DNA sequence on the mechanical stability of the double helix were investigated. As expected, the DNA double helix is considerably destabilized under low salt buffer conditions (相似文献   

7.
The synthesis and interactions of the d- and l-enantiomers of the amino acid amide derivatives [Formula: see text] (I) and lysyl dipeptides [Formula: see text] (II) with poly rI.poly rC, poly rA.poly rU and calf thymus DNA is reported. The following results were found. (1) The degree of stabilization of the helices as measured by the T(m) (;melting' temperature) of the helix-coil transition was dependent on the nature of the amino acid. (2) For the poly rI.poly rC helix, the l-enantiomers of salts (I) and (II) stabilized more than the d-enantiomers. The same was true for calf thymus DNA in the presence of salts (II) and for poly rA.poly rU in the presence of salts (II) and the proline derivatives of salts (I). (3) As R increased in size and became more apolar, the amount of stabilization of the poly rI.poly rC helix in the presence of salts (I) decreased. On the other hand, the amount of stabilization increased with more polar substituents. An attempt was then made to determine whether the difference in stabilization of the double-stranded helices at the T(m) in the presence of the l- and d-enantiomers of salts (I) is due to the interaction with the helix, the random coil or both. A new method was developed for determining the binding of small ions to polyions that involves a competition between an insoluble polystyrene ion-exchange resin and the soluble polyion for the counterion. Dissociation constants are obtained for the complexes of single- and double-stranded helices with the salts (I). The results are illuminating and indicate that with certain helices, i.e. poly rA.poly rU, the interactions of salts (I) with the single strands may not be ignored. It is concluded that the high optical specificity found in Nature, i.e. d-ribose in nucleic acids and l-amino acids in proteins, cannot be attributed solely to monomer-polymer interactions described by Gabbay (1968).  相似文献   

8.
Raman spectra of polyribocytidylic acid show the formation of an ordered single-stranded structure [poly(rC)] at neutral pH and an ordered double-stranded structure containing hemiprotonated bases [poly(rC)·poly(rC+)] in the range 5.5 > pH > 3.7. Below 40°C, poly(rC) contains stacked bases and a backbone geometry of the A-type, both of which are gradually eliminated by increasing the temperature to 90°C. Below 80°C, poly(rC)·poly(rC+) contains bases which are hydrogen bonded and stacked and a backbone geometry also of the A-type. In this structure the bases of each strand are shown to be structurally identical, i.e., hemiprotonated, and therefore distinct from both neutral and protonated cytosines. Infrared and Raman spectra indicate the existence of a center of symmetry with respect to the paired cytosine residues, which suggests that the additional proton per base pair is shared equally by the two hydrogen-bonded bases. Denaturation of poly(rC)·poly(rC+) occurs cooperatively (tm ≈ 80°C) with elimination of base stacking, base pairing, and the A-helix geometry. Each of the separated strands of the denatured complex is shown to contain comparable amounts of both neutral and protonated cytosines, most likely in alternating sequence [poly(rC, rC+)]. In both poly(rC, rC+) and poly(rC), at 90°C, the backbones do not exhibit the phosphodiester Raman frequencies characteristic of other disordered polyribonucleotide chains. This is interpreted to mean that the single strands, though devoid of base stacking and A-type structure, contain uniformly ordered backbones of a specific type. Fully protonated poly(rC+), on the other hand, forms no ordered structure and may be characterized as a disordered (random chain) polynucleotide at all temperatures. Several Raman lines of poly(rC) are absent from the spectrum of poly(rC)·poly(rC+) and vice versa. These frequencies, assigned mainly to vibrations of the ribose groups, suggest that the furanose ring conformations are different in the single-stranded and double-stranded structures of polyribocytidylic acid. Several other Raman group frequencies have been identified and correlated with the polymer secondary structures.  相似文献   

9.
A study of the interaction between poly(dG)-poly(dC) and poly(rC) demonstrates that, at neutral pH and high ionic strength, there is replacement of the dC strand by poly(rC). At acid pH, formation of a triple-stranded complex which equally may involve the replacement phenomenon is observed. There is no evidence for interaction at neutral pH between poly(dG)-poly(dC) and oligo(rC), while a three-stranded complex is formed at acid pH. These data are consistent with the studies of comparative stabilities of double stranded deoxy or ribo polymers and deoxy-ribo hybrids.  相似文献   

10.
A key step in the rational design of new RNA binding small molecules necessitates a complete elucidation of the molecular aspects of the binding of existing molecules to RNA structures. This work focuses towards the understanding of the interaction of a DNA intercalator, quinacrine and a minor groove binder 4′,6-diamidino-2-phenylindole (DAPI) with the right handed Watson–Crick base paired A-form and the left-handed Hoogsteen base paired HL-form of poly(rC)·poly(rG) evaluated by multifaceted spectroscopic and viscometric techniques. The energetics of their interaction has also been elucidated by isothermal titration calorimetry. Results of this study converge to suggest that (i) quinacrine intercalates to both A-form and HL-form of poly(rC)·poly(rG); (ii) DAPI shows both intercalative and groove-binding modes to the A-form of the RNA but binds by intercalative mode to the HL-form. Isothermal calorimetric patterns of quinacrine binding to both the forms of RNA and of DAPI binding to the HL-form are indicative of single binding while the binding of DAPI to the A-form reveals two kinds of binding. The binding of both the drugs to both conformations of RNA is exothermic; while the binding of quinacrine to both conformations and DAPI to the A-form (first site) is entropy driven, the binding of DAPI to the second site of A-form and HL-conformation is enthalpy driven. Temperature dependence of the binding enthalpy revealed that the RNA–ligand interaction reactions are accompanied by small heat capacity changes that are nonetheless significant. We conclude that the binding affinity characteristics and energetics of interaction of these DNA binding molecules to the RNA conformations are significantly different and may serve as data for the development of effective structure selective RNA-based antiviral drugs.  相似文献   

11.
Electro-optical studies of conformation and interaction of polynucleotides   总被引:1,自引:0,他引:1  
Measurements by the technique of electric birefringence with pulsed sinusoidal electric fields on polyriboadenylic acid (poly-A) and polyribouridylic acid (poly-U) indicate that the kinetics of the double-stranded helix formation of poly (A + U) in the presence of Mg2+ is second order and consists of two steps: nucleation and propagation of base pairs from nuclei. The nucleation involves approximately 7 base pairs. It seems that the requirement of 7 base pairs to start the formation of a double-stranded helix is not peculiar to poly (A + U) but is associated with double-stranded helices of polynucleotides in general. This implies that it may be associated with spatial requirements of the phosphate-sugar backbone, rather than with the particular bases linked to the backbone. The decline in rate of poly (A + U) formation observed above a critical temperature is the consequence of changes in the poly-A conformation setting in at this critical temperature, rather than resulting from an increase in the reversibility of the base-pair propagation step of double-stranded helix formation. The dominant role of the conformation of poly-A in the double-stranded helix formation of poly (A + U) is further borne out by the pH dependence of the rate which completely parallels the conformation changes known to occur in poly-A as a function of pH. This indirectly suggests that at neutral pH poly-A is a single-stranded helix. The rotary diffusion coefficients attest to the flexibility of this helix, while the stacked nature of the base pairs at low temperatures is revealed by the identical increments in the specific Kerr constant on going from poly-A to poly (A + U) and from poly (A + U) to poly (A + 2U) helices. Results suggest that Mg2+ binds to the phosphate part of the backbone. Poly-U binds Mg2+ more strongly than poly-A; this difference in binding strength is attributed to differences in conformation (random coil versus helix). It is also borne out by the present results that the degree of order in the structure of poly-U, even at low temperatures and neutral pH, is at best an order of magnitude smaller than that of poly-A under similar conditions. Furthermore, the earlier proposed double-stranded structure of poly-U is called into question. A hairpinlike structure seems to agree with results of this investigation. Finally, the results support the contention that the ion atmosphere polarization is responsible for orientation of polyelectrolytes in the presence of alternating electric fields in the neighborhood of 25 kc./sec. frequency.  相似文献   

12.
The binding of the recA gene product from E. coli to double-stranded and single-stranded nucleic acids has been investigated by following the change in melting temperature of duplex DNA and the fluorescence of single-stranded DNA or poly(dA) modified by reaction with chloroacetaldehyde. At low ionic strength, in the absence of Mg2+ ions, RecA protein binds preferentially to duplex DNA or poly(dA-dT). This leads to an increase of the DNA melting temperature. Stabilization of duplex DNA decreases when ionic strength or pH increases. In the presence of Mg2+ ions, preferential binding to single-stranded polynucleotides is observed. Precipitation occurs when duplex DNA begins to melt in the presence of RecA protein. From competition experiments, different single-stranded and double-stranded polydeoxynucleotides can be ranked according to their ability to bind RecA protein. Structural changes induced in nucleic acids upon RecA binding are discussed together with conformational changes induced in RecA protein upon magnesium binding.  相似文献   

13.
Duplex DNA containing oligo(dG.dC)-rich clusters can be isolated by specific binding to poly(rC)-Sephadex. This binding, probably mediated by the formation of an oligo(dG.dC)rC+ triple helix, is optimal at pH 5 in 50% formamide, 2 M LiCl; the bound DNA is recovered by elution at pH 7.5. Using this method we find that the viral DNAs PM2, lambda and SV40 contain at least 1, 1 and 2 sites for binding to poly(rC)-Sephadex, respectively. These binding sites have been mapped in the case of SV40; the binding sites can in turn be used for physical mapping studies of DNAs containing (dG.dC) clusters. Inspection of the sequence of the bound fragments of SV40 DNA shows that a (dG.dC)6-7 tract is required for the binding of duplex DNA to poly(rC)-Sephadex. Although about 60% of rabbit DNA cleaved with restriction endonuclease KpnI binds to poly(rC)-Sephadex, no binding is observed for the 5.1 kb DNA fragment generated by KpnI digestion, which contains the rabbit beta-globin gene. This indicates that oligo(dG.dC) clusters are not found close to the rabbit beta-globin gene.  相似文献   

14.
With the application of radioactive formaldehyde and glycine the ability of aminomethylol compounds to combine with S1 nuclease treated DNA at 25 degrees and pH 5.8--7.4 has been shown. The reaction leads to modification of 22--26% of base pairs without changes of the DNA UV-absorption spectrum. Besides that the flexibility coefficient, the kinetics of despiralization under the action of formaldehyde and the stability of DNA molecule towards the S1 nuclease action permit to conclude that modification does not cause DNA despiralization. In experiments with the use of synthetic double-stranded polynucleotides poly(dA) times poly(dT), poly(rC) times poly(rl), poly(rG) times poly(dC) and poly(dC-dG) times poly(dC-dG) it has been shown that binding of methylol compounds to nucleic acids is due to reaction with guanine residues. Methylol derivatives of glycine reacts with guanine residues of double-stranded DNA only 10 times slower than with the monomer--deoxyguanosine-5'-phosphate. The studied reaction is reversible and the half-period of modified DNA reduction is found to be 5 hours at 25 degrees and pH 6.5. The rate constants of forward and reverse reactions and equilibrium constants of the reaction between methylolglycine and native DNA were determined.  相似文献   

15.
Protonation-induced conformational changes in natural DNAs of diverse base composition under the influence of low pH, low temperature, and low ionic strength have been studied using various spectroscopic techniques. At pH3.40, 10mM [Na+], and at 5 degrees C, all natural DNAs irrespective of base composition adopted an unusual and stable conformation remarkably different from the canonical B-form conformation. This protonated conformation has been characterized to have unique absorption and circular dichroic spectral characteristics and exhibited cooperative thermal melting profiles with decreased thermal melting temperatures compared to their respective B-form counterparts. The nature of this protonated structure was further investigated by monitoring the interaction of the plant alkaloid, berberine that was previously shown from our laboratory to differentially bind to B-form and H(L)-form of poly[d(G-C)] [Bioorg. Med. Chem.2003, 11, 4861]. Binding of berberine to protonated conformation of natural DNAs resulted in intrinsic circular dichroic changes as well as generation of induced circular dichroic bands for the bound berberine molecule with opposite signs and magnitude compared with B-form structures. Nevertheless, the binding of the alkaloid to both the B and protonated forms was non-linear and non-cooperative as revealed from Scatchard plots derived from spectrophotometric titration data. Steady state fluorescence studies on the other hand showed remarkable increase of the rather weak intrinsic fluorescence of berberine on binding to the protonated structure compared to the B-form structure. Taken together, these results suggest that berberine can detect the formation of significant population of H(L)-form structures under the influence of protonation irrespective of heterogeneous base compositions in natural DNAs.  相似文献   

16.
1. The interaction between quinacrine mustard and mononucleotides and polynucleotides was investigated by fluorimetry and absorbance spectrophotometry. 2. The fluorescence spectrum of quinacrine mustard is independent of the ionic strength and pH. The dependence of the quinacrine mustard fluorescence intensity on ionic strength, pH and anions is described. 3. The fluorescence intensity of quinacrine mustard was enhanced with the mononucleotide adenylic acid and polynucleotides such as poly(rA), poly(rU) and poly(rA,rU). 4. Quenching of the fluorescence intensity of quinacrine mustard occurred with the mononucleotide guanylic acid and with poly(rG) and poly(rC,rG). 5. The mononucleotide cytidylic acid or poly(rC) showed no effect on the fluorescence intensity of quinacrine mustard. 6. The interaction between the dye and native DNA species was also dependent on the presence of base-specific binding sites in the DNA. The higher the (G+C) content was in the native DNA tested the higher was the quenching effect on the fluorescence intensity of quinacrine mustard. 7. No interaction was found between the dye and methylated DNA. The binding between quinacrine mustard and apurinic DNA was confirmed to be in the phosphate groups of the purines.  相似文献   

17.
18.
Synthetic alternating GC-rich DNA polymers can adopt Hoogsteen base-paired structures (H(L)-form) under the influence of low pH and temperature. The interaction of aristololactam-beta-D-glucoside (ADG), a natural glucoside derivative of aristolochia group of alkaloids, with protonation-induced structures (H(L)-form) of poly(dG-dC).poly(dG-dC) and poly(dG-m(5)dC).poly(dG-m(5)dC) has been studied using different biophysical techniques. The binding of ADG to protonated DNA is characterized by typical hypochromism and bathochromism of the absorption spectrum of the alkaloid, quenching of steady state fluorescence intensity, decrease in quantum yield, increase in fluorescence polarization anisotropy values, increase in thermal transition temperature of polynucleotides following alkaloid binding and perturbation of circular dichroic spectrum of polynucleotides as a result of its interaction with the alkaloid. Scatchard analysis of the data indicates that ADG binds to protonated structures in a nonlinear noncooperative manner. The binding parameters determined from spectrophotometric titration data employing excluded site model indicate that protonated poly(dG-m(5)dC).poly(dG-m(5)dC) is more favorable for ADG binding than the corresponding nonmethylated analog. The binding of ADG to protonated structures renders a higher degree of stabilization against thermal denaturation compared to respective B-form-ADG interactions and induces a conformational switch to a bound altered form which is different from its interaction with B- and Z-form DNA structures. Thermodynamic parameters (Delta G degrees, Delta H degrees and Delta S degrees ) obtained by van't Hoff analysis of the data indicate that the binding of alkaloid to protonated structures is an exothermic process and the binding free energy arises primarily from a negative enthalpy change. Moreover, the binding leads to an increase in the contour length of protonated DNAs. These results suggest that ADG possibly binds to protonated DNAs by the mechanism of intercalation.  相似文献   

19.
The nucleic acid binding properties of the testis protein, TP, were studied with the help of physical techniques, namely, fluorescence quenching, UV difference absorption spectroscopy, and thermal melting. Results of quenching of tyrosine fluorescence of TP upon its binding to double-stranded and denatured rat liver nucleosome core DNA and poly(rA) suggest that the tyrosine residues of TP interact/intercalate with the bases of these nucleic acids. From the fluorescence quenching data, obtained at 50 mM NaCl concentration, the apparent association constants for binding of TP to native and denatured DNA and poly(rA) were calculated to be 4.4 X 10(3) M-1, 2.86 X 10(4) M-1, and 8.5 X 10(4) M-1, respectively. UV difference absorption spectra upon TP binding to poly(rA) and rat liver core DNA showed a TP-induced hyperchromicity at 260 nm which is suggestive of local melting of poly(rA) and DNA. The results from thermal melting studies of binding of TP to calf thymus DNA at 1 mM NaCl as well as 50 mM NaCl showed that although at 1 mM NaCl TP brings about a slight stabilization of the DNA against thermal melting, a destabilization of the DNA was observed at 50 mM NaCl. From these results it is concluded that TP, having a higher affinity for single-stranded nucleic acids, destabilizes double-stranded DNA, thus behaving like a DNA-melting protein.  相似文献   

20.
Triple helixes containing one homopurine poly dG or poly rG strand and two homopyrimidine poly dC or poly rC strands have been prepared and studied by FTIR spectroscopy in H2O and D2O solutions. The spectra are discussed by comparison with those of the corresponding third strands (auto associated or not) and of double stranded poly dG.poly dC and poly rG.poly rC in the same concentration range and salt conditions. The triplex formation is characterized by the study of the base-base interactions reflected by changes in the spectral domain involving the in-plane double bond vibrations of the bases. Modifications of the initial duplex conformation (A family form for poly rG.poly rC, B family form for poly dG.poly dC) when the triplex is formed have been investigated. Two spectral domains (950-800 and 1450-1350 cm-1) containing absorption bands markers of the N and S type sugar geometries have been extensively studied. The spectra of the triplexes prepared starting with a double helix containing only riboses (poly rC+.poly rG.poly rC and poly dC+.poly rG.poly rC) as well as that of poly rC+.poly dG.poly dC present exclusively markers of the North type geometry of the sugars. On the contrary in the case of the poly dC+.poly dG.poly dC triplex both N and S type sugars are shown to coexist. The FTIR spectra allow us to propose that in this case the sugars of the purine (poly dG) strand adopt the S type geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号