首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methionine residues in proteins are susceptible to oxidation by reactive oxygen species, but can be repaired via reduction of the resulting methionine sulfoxides by methionine-S-sulfoxide reductase (MsrA) and methionine-R-sulfoxide reductase (MsrB). However, the identity of all methionine sulfoxide reductases involved, their cellular locations and relative contributions to the overall pathway are poorly understood. Here, we describe a methionine-R-sulfoxide reduction system in mammals, in which two MsrB homologues were previously described. We found that human and mouse genomes possess three MsrB genes and characterized their protein products, designated MsrB1, MsrB2, and MsrB3. MsrB1 (Selenoprotein R) was present in the cytosol and nucleus and exhibited the highest methionine-R-sulfoxide reductase activity because of the presence of selenocysteine (Sec) in its active site. Other mammalian MsrBs contained cysteine in place of Sec and were less catalytically efficient. MsrB2 (CBS-1) resided in mitochondria. It had high affinity for methionine-R-sulfoxide, but was inhibited by higher concentrations of the substrate. The human MsrB3 gene gave rise to two protein forms, MsrB3A and MsrB3B. These were generated by alternative splicing that introduced contrasting N-terminal and C-terminal signals, such that MsrB3A was targeted to the endoplasmic reticulum and MsrB3B to mitochondria. We found that only mitochondrial forms of mammalian MsrBs (MsrB2 and MsrB3B) could compensate for MsrA and MsrB deficiency in yeast. All mammalian MsrBs belonged to a group of zinc-containing proteins. The multiplicity of MsrBs contrasted with the presence of a single mammalian MsrA gene as well as with the occurrence of single MsrA and MsrB genes in yeast, fruit flies, and nematodes. The data suggested that different cellular compartments in mammals maintain a system for repair of oxidized methionine residues and that this function is tuned in enzyme- and stereo-specific manner.  相似文献   

2.
Kim HY  Gladyshev VN 《Biochemistry》2005,44(22):8059-8067
Oxidized forms of methionine residues in proteins can be repaired by methionine-S-sulfoxide reductase (MsrA) and methionine-R-sulfoxide reductase (MsrB). In mammals, three MsrBs are present, which are targeted to various subcellular compartments. In contrast, only a single mammalian MsrA gene is known whose products have been detected in both cytosol and mitochondria. Factors that determine the location of the protein in these compartments are not known. Here, we found that MsrA was present in cytosol, nucleus, and mitochondria in mouse cells and tissues and that the major enzyme forms detected in various compartments were generated from a single-translation product rather than by alternative translation initiation. Both cytosolic and mitochondrial forms were processed with respect to the N-terminal signal peptide, and the distribution of the protein occurred post-translationally. Deletion of amino acids 69-108, 69-83, 84-108, or 217-233, which contained elements important for MsrA structure and function, led to exclusive mitochondrial location of MsrA, whereas a region that affected substrate binding but was not part of the overall fold had no influence on the subcellular distribution. The data suggested that proper structure-function organization of MsrA played a role in subcellular distribution of this protein in mouse cells. These findings were recapitulated by expressing various forms of mouse MsrA in Saccharomyces cerevisiae, suggesting conservation of the mechanisms responsible for distribution of the mammalian enzyme among different cellular compartments.  相似文献   

3.
dAKAP1 (AKAP121, S-AKAP84), a dual specificity PKA scaffold protein, exists in several forms designated as a, b, c, and d. Whether dAKAP1 targets to endoplasmic reticulum (ER) or mitochondria depends on the presence of the N-terminal 33 amino acids (N1), and these N-terminal variants are generated by either alternative splicing and/or differential initiation of translation. The mitochondrial targeting motif, which is localized between residues 49 and 63, is comprised of a hydrophobic helix followed by positive charges ( Ma, Y., and Taylor, S. (2002) J. Biol. Chem. 277, 27328-27336 ). dAKAP1 is located on the cytosolic surface of mitochondria outer membrane and both smooth and rough ER membrane. A single residue, Asp(31), within the first 33 residues of dAKAP1b is required for ER targeting. Asp(31), which functions as a separate motif from the mitochondrial targeting signal, converts the mitochondrial-targeting signal into a bipartite ER-targeting signal, without destroying the mitochondria-targeting signal. Therefore dAKAP1 possesses a single targeting element capable of targeting to both mitochondria and ER, with the ER signal overlapping the mitochondria signal. The specificity of ER or mitochondria targeting is determined and switched by the availability of the negatively charged residue, Asp(31).  相似文献   

4.

Background  

Methionine sulfoxide reduction is an important protein repair pathway that protects against oxidative stress, controls protein function and has a role in regulation of aging. There are two enzymes that reduce stereospecifically oxidized methionine residues: MsrA (methionine-S-sulfoxide reductase) and MsrB (methionine-R-sulfoxide reductase). In many organisms, these enzymes are targeted to various cellular compartments. In mammals, a single MsrA gene is known, however, its product is present in cytosol, nucleus, and mitochondria. In contrast, three mammalian MsrB genes have been identified whose products are located in different cellular compartments.  相似文献   

5.
6.
Toxoplasma gondii replicates within a specialized vacuole surrounded by the parasitophorous vacuole membrane (PVM). The PVM forms intimate interactions with host mitochondria and endoplasmic reticulum (ER) in a process termed PVM-organelle association. In this study we identify a likely mediator of this process, the parasite protein ROP2. ROP2, which is localized to the PVM, is secreted from anterior organelles termed rhoptries during parasite invasion into host cells. The NH(2)-terminal domain of ROP2 (ROP2hc) within the PVM is exposed to the host cell cytosol, and has characteristics of a mitochondrial targeting signal. In in vitro assays, ROP2hc is partially translocated into the mitochondrial outer membrane and behaves like an integral membrane protein. Although ROP2hc does not translocate across the ER membrane, it does exhibit carbonate-resistant binding to this organelle. In vivo, ROP2hc expressed as a soluble fragment in the cytosol of uninfected cells associates with both mitochondria and ER. The 30-amino acid (aa) NH(2)-terminal sequence of ROP2hc, when fused to green fluorescent protein (GFP), is sufficient for mitochondrial targeting. Deletion of the 30-aa NH(2)-terminal signal from ROP2hc results in robust localization of the truncated protein to the ER. These results demonstrate a new mechanism for tight association of different membrane-bound organelles within the cell cytoplasm.  相似文献   

7.
Protein targeting to specified cellular compartments is essential to maintain cell function and homeostasis. In eukaryotic cells, two major pathways rely on N‐terminal signal peptides to target proteins to either the endoplasmic reticulum (ER) or mitochondria. In this study, we show that the ER signal peptides of the prion protein‐like protein shadoo, the neuropeptide hormone somatostatin and the amyloid precursor protein have the property to mediate alternative targeting to mitochondria. Remarkably, the targeting direction of these signal peptides is determined by structural elements within the nascent chain. Each of the identified signal peptides promotes efficient ER import of nascent chains containing α‐helical domains, but targets unstructured polypeptides to mitochondria. Moreover, we observed that mitochondrial targeting by the ER signal peptides correlates inversely with ER import efficiency. When ER import is compromised, targeting to mitochondria is enhanced, whereas improving ER import efficiency decreases mitochondrial targeting. In conclusion, our study reveals a novel mechanism of dual targeting to either the ER or mitochondria that is mediated by structural features within the nascent chain.  相似文献   

8.
9.
10.
Targeting signals are critical for proteins to find their specific cellular destination. Signals for protein targeting to the endoplasmic reticulum (ER), mitochondria, peroxisome and nucleus are distinct and the mechanisms of protein translocation across these membrane compartments also vary markedly. Recently, however, a number of proteins have been shown to be present in multiple cellular sites such as mitochondria and ER, cytosol and mitochondria, plasma membrane and mitochondria, and peroxisome and mitochondria suggesting the occurrence of multimodal targeting signals in some cases. Cytochrome P450 monooxygenases (CYPs), which play crucial roles in pharmacokinetics and pharmacodynamics of drugs and toxins, are the prototype of bimodally targeted proteins. Several members of family 1, 2 and 3 CYPs have now been reported to be associated with mitochondria and plasma membrane in addition to the ER. This review highlights the mechanisms of bimodal targeting of CYP1A1, 2B1, 2E1 and 2D6 to mitochondria and ER. The bimodal targeting of these proteins is driven by their N-terminal signals which carry essential elements of both ER targeting and mitochondria targeting signals. These multimodal signals have been termed chimeric signals appropriately to describe their dual targeting property. The cryptic mitochondrial targeting signals of CYP2B1, 2D6, 2E1 require activation by protein kinase A or protein kinase C mediated phosphorylation at sites immediately flanking the targeting signal and/or membrane anchoring regions. The cryptic mitochondria targeting signal of CYP1A1 requires activation by endoproteolytic cleavage by a cytosolic endoprotease, which exposes the mitochondrial signal. This review discusses both mechanisms of bimodal targeting and toxicological consequences of mitochondria targeted CYP proteins.  相似文献   

11.

Background

Methionine sulfoxide reductases (Msrs) are repair enzymes that protect proteins from oxidative stress by catalyzing stereospecific reduction of oxidized methionine residues. MsrB1 is a selenocysteine-containing cytosolic/nuclear Msr with high expression in liver and kidney.

Principal Findings

Here, we identified differences in MsrB1 gene structure among mammals. Human MsrB1 gene consists of four, whereas the corresponding mouse gene of five exons, due to occurrence of an additional intron that flanks the stop signal and covers a large part of the 3′-UTR. This intron evolved in a subset of rodents through intronization of exonic sequences, whereas the human gene structure represents the ancestral form. In mice, both splice forms were detected in liver, kidney, brain and heart with the five-exon form being the major form. We found that both mRNA forms were translated and supported efficient selenocysteine insertion into MsrB1. In addition, MsrB1 occurs in two protein forms that migrate as 14 and 5 kDa proteins. We found that each mRNA splice form generated both protein forms. The abundance of the 5 kDa form was not influenced by protease inhibitors, replacement of selenocysteine in the active site or mutation of amino acids in the cleavage site. However, mutation of cysteines that coordinate a structural zinc decreased the levels of 5 and 14 kDa forms, suggesting importance of protein structure for biosynthesis and/stability of these forms.

Conclusions

This study characterized unexpected diversity of protein and mRNA forms of mammalian selenoprotein MsrB1.  相似文献   

12.
Glycerol 3-phosphate acyltransferase-1 (GPAT1), catalyzes the committed step in phospholipid and triacylglycerol synthesis. Because both GPAT1 and carnitine-palmitoyltransferase 1 are located on the outer mitochondrial membrane (OMM) it has been suggested that their reciprocal regulation controls acyl-CoA metabolism at the OMM. To determine whether GPAT1, like carnitine-palmitoyltransferase 1, is enriched in both mitochondrial contact sites and OMM, and to correlate protein location and enzymatic function, we used Percoll and sucrose gradient fractionation of rat liver to obtain submitochondrial fractions. Most GPAT1 protein was present in a vesicular membrane fraction associated with mitochondria (MAV) but GPAT specific activity in this fraction was low. In contrast, highest GPAT1 specific activity was present in purified mitochondria. Contact sites from crude mitochondria, which contained markers for both endoplasmic reticulum (ER) and mitochondria, also showed high expression of GPAT1 protein but low specific activity, whereas contact sites isolated from purified mitochondria lacked ER markers and expressed highly active GPAT1. To determine how GPAT1 is targeted to mitochondria, recombinant protein was synthesized in vitro and its incorporation into crude and purified mitochondria was assayed. GPAT1 was rapidly incorporated into mitochondria, but not into microsomes. Incorporation was ATP-driven, and lack of GPAT1 removal by alkali and a chaotropic agent showed that GPAT1 had become an integral membrane protein after incorporation. These results demonstrate that two pools of GPAT1 are present in rat liver mitochondria: an active one, located in OMM and a less active one, located in membranes (ER-contact sites and mitochondrial associated vesicles) associated with both mitochondria and ER.  相似文献   

13.
14.
Many organisms have been shown to possess a methionine sulfoxide reductase (MsrA), exhibiting high specificity for reduction the S form of free and protein-bound methionine sulfoxide to methionine. Recently, a different form of the reductase (referred to as MsrB) has been detected in several organisms. We show here that MsrB is a selenoprotein that exhibits high specificity for reduction of the R forms of free and protein-bound methionine sulfoxide. The enzyme was partially purified from mouse liver and a derivative of the mouse MsrB gene, in which the codon specifying selenocystein incorporation was replaced by the cystein codon, was prepared, cloned, and overexpressed in Escherichia coli. The properties of the modified MsrB protein were compared directly with those of MsrA. Also, we have shown that in Staphylococcus aureus there are two MsrA and one nonselenoprotein MsrB, which demonstrates the same substrate stereospecificity as the mouse MsrB.  相似文献   

15.
Mfn2 is a mitochondrial fusion protein with bioenergetic functions implicated in the pathophysiology of neuronal and metabolic disorders. Understanding the bioenergetic mechanism of Mfn2 may aid in designing therapeutic approaches for these disorders. Here we show using endoplasmic reticulum (ER) or mitochondria‐targeted Mfn2 that Mfn2 stimulation of the mitochondrial metabolism requires its localization in the ER, which is independent of its fusion function. ER‐located Mfn2 interacts with mitochondrial Mfn1/2 to tether the ER and mitochondria together, allowing Ca2+ transfer from the ER to mitochondria to enhance mitochondrial bioenergetics. The physiological relevance of these findings is shown during neurite outgrowth, when there is an increase in Mfn2‐dependent ER‐mitochondria contact that is necessary for correct neuronal arbor growth. Reduced neuritic growth in Mfn2 KO neurons is recovered by the expression of ER‐targeted Mfn2 or an artificial ER‐mitochondria tether, indicating that manipulation of ER‐mitochondria contacts could be used to treat pathologic conditions involving Mfn2.  相似文献   

16.
17.
Hydrophobic membrane proteins are cotranslationally targeted to the endoplasmic reticulum (ER) membrane, mediated by hydrophobic signal sequence. Mitochondrial membrane proteins escape this mechanism despite their hydrophobic character. We examined sorting of membrane proteins into the mitochondria, by using mitochondrial ATP-binding cassette (ABC) transporter isoform (ABC-me). In the absence of 135-residue N-terminal hydrophilic segment (N135), the membrane domain was integrated into the ER membrane in COS7 cells. Other sequences that were sufficient to import soluble protein into mitochondria could not import the membrane domain. N135 imports other membrane proteins into mitochondria. N135 prevents cotranslational targeting of the membrane domain to ER and in turn achieves posttranslational import into mitochondria. In a cell-free system, N135 suppresses targeting to the ER membranes, although it does not affect recognition of hydrophobic segments by signal recognition particle. We conclude that the N135 segment blocks the ER targeting of membrane proteins even in the absence of mitochondria and switches the sorting mode from cotranslational ER integration to posttranslational mitochondrial import.  相似文献   

18.
The nuclear gene MIP1 encodes the mitochondrial DNA polymerase responsible for replicating the mitochondrial genome in Saccharomyces cerevisiae. A number of other factors involved in replicating and segregating the mitochondrial genome are yet to be identified. Here, we report that a bacterial two-hybrid screen using the mitochondrial polymerase, Mip1p, as bait identified the yeast protein Sed1p. Sed1p is a cell surface protein highly expressed in the stationary phase. We find that several modified forms of Sed1p are expressed and the largest of these forms interacts with the mitochondrial polymerase in vitro. Deletion of SED1 causes a 3.5-fold increase in the rate of mitochondrial DNA point mutations as well as a 4.3-fold increase in the rate of loss of respiration. In contrast, we see no change in the rate of nuclear point mutations indicating the specific role of Sed1p function in mitochondrial genome stability. Indirect immunofluorescence analysis of Sed1p localization shows that Sed1p is targeted to the mitochondria. Moreover, Sed1p is detected in purified mitochondrial fractions and the localization to the mitochondria of the largest modified form is insensitive to the action of proteinase K. Deletion of the sed1 gene results in a reduction in the quantity of Mip1p and also affects the levels of a mitochondrially-expressed protein, Cox3p. Our results point towards a role for Sed1p in mitochondrial genome maintenance.  相似文献   

19.
Protein oxidation has been linked to accelerated aging and is a contributing factor to many diseases. Methionine residues are particularly susceptible to oxidation, but the resulting mixture of methionine R-sulfoxide (Met-RO) and methionine S-sulfoxide (Met-SO) can be repaired by thioredoxin-dependent enzymes MsrB and MsrA, respectively. Here, we describe a knock-out mouse deficient in selenoprotein MsrB1, the main mammalian MsrB located in the cytosol and nucleus. In these mice, in addition to the deletion of 14-kDa MsrB1, a 5-kDa selenoprotein form was specifically removed. Further studies revealed that the 5-kDa protein occurred in both mouse tissues and human HEK 293 cells; was down-regulated by MsrB1 small interfering RNA, selenium deficiency, and selenocysteine tRNA mutations; and was immunoprecipitated and recognized by MsrB1 antibodies. Specific labeling with (75)Se and mass spectrometry analyses revealed that the 5-kDa selenoprotein corresponded to the C-terminal sequence of MsrB1. The MsrB1 knock-out mice lacked both 5- and 14-kDa MsrB1 forms and showed reduced MsrB activity, with the strongest effect seen in liver and kidney. In addition, MsrA activity was decreased by MsrB1 deficiency. Liver and kidney of the MsrB1 knock-out mice also showed increased levels of malondialdehyde, protein carbonyls, protein methionine sulfoxide, and oxidized glutathione as well as reduced levels of free and protein thiols, whereas these parameters were little changed in other organs examined. Overall, this study established an important contribution of MsrB1 to the redox control in mouse liver and kidney and identified a novel form of this protein.  相似文献   

20.
Recognition of mitochondrial targeting signals (MTS) by receptor translocases of outer and inner membranes of mitochondria is one of the prerequisites for import of nucleus-encoded proteins into this organelle. The MTS for a majority of trypanosomatid mitochondrial proteins have not been well defined. Here we analyzed the targeting signal for trypanosome alternative oxidase (TAO), which functions as the sole terminal oxidase in the infective form of Trypanosoma brucei. Deleting the first 10 of 24 amino acids predicted to be the classical N-terminal MTS of TAO did not affect its import into mitochondria in vitro. Furthermore, ectopically expressed TAO was targeted to mitochondria in both forms of the parasite even after deletion of first 40 amino acid residues. However, deletion of more than 20 amino acid residues from the N terminus reduced the efficiency of import. These data suggest that besides an N-terminal MTS, TAO possesses an internal mitochondrial targeting signal. In addition, both the N-terminal MTS and the mature TAO protein were able to target a cytosolic protein, dihydrofolate reductase (DHFR), to a T. brucei mitochondrion. Further analysis identified a cryptic internal MTS of TAO, located within amino acid residues 115 to 146, which was fully capable of targeting DHFR to mitochondria. The internal signal was more efficient than the N-terminal MTS for import of this heterologous protein. Together, these results show that TAO possesses a cleavable N-terminal MTS as well as an internal MTS and that these signals act together for efficient import of TAO into mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号