首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of starvation and refeeding on intestinal cell proliferation at several sites of the rat gastrointestinal tract were studied and used as a model of altered cell proliferation in order to investigate the relationship between the rate of cell production and plasma gastrin and enteroglucagon. There was a marked fall in crypt cell production rate after four days starvation, with the proximal sites of the gut being most affected. The response to refeeding varied with site, suggesting that there was more than one mechanism for the control of intestinal cell proliferation. Plasma gastrin and enteroglucagon both fell to one fifth of their control level after starvation. Plasma gastrin increased slowly after refeeding, whilst plasma enteroglucagon increased rapidly to values significantly above control. Plasma gastrin was only correlated with crypt cell production in the duodenum, while plasma enteroglucagon was correlated with crypt cell production rate at several sites, indicating that enteroglucagon may be involved in the control of intestinal cell production.  相似文献   

2.
The relationship between the daily pattern of food consumption and the proliferation rate of the oesophagus, stomach, forestomach, small intestine and colon of Ha/ICR mice was examined. Proliferative activity was determined by [3H]TdR incorporation on a wet weight tissue basis, along with selective counting of labelled nuclei. Under conditions of ad libitum feeding with a 12 hr light cycle (lights on at 0600) mice eat most of their food during the dark period. A distinct circadian rhythm was observed in the oesophagus, stomach, forestomach and colon with the peak of [3H]TdR incorporation between 0400 and 0600 and the nadir between 1600 and 1800. Although a circadian fluctuation was observed in the small intestine, its amplitude was much less than in other areas. This rhythmic change in proliferation rate could be phase shifted by allowing the mice to feed only between 0800 and 1600 for 14 days. Under these conditions the peak in proliferative activity occurred between 1800 and 2000. Fasting reduced the daily level of proliferative activity in all of the digestive tract sites studied, and for all areas except the oesophagus greatly reduced or eliminated the circadian fluctuation. The forestomach and colon were the most influenced by fasting with 24 hr [3H]TdR incorporation reduced to 30-40% of the control value. Refeeding following a 48 hr fast produced a rapid increase in proliferative activity peaking at levels well above the control value at 16 hr after the onset of refeeding. The major exception to this was the small intestine which slowly returned to the control value during the first 24 hr. Partial refeeding produced a diminished refeeding response. Once the normal pattern of food consumption was re-established following refeeding the normal proliferative fluctuations were again observed.  相似文献   

3.
Autoradiographic studies and scintillation counting of crypt material after pulse labelling with 3H-thymidine showed that during continuous irradiation with 290 rads/day a reduced proliferative activity is present in the crypts of rat small intestine after 1 day of irradiation and of normal activity during the remaining period (5 days) irradiation. After cessation of irradiation an increase in proliferative activity can be observed after 1 day of recovery. From the time (36-48 hr after starting of the irradiation) that the number of villus cells is reduced an expansion of the proliferation zone in the crypt was observed. Both effects last until 1 day of recovery after cessation of irradiation. The process of crypt cell maturation and of villus cell function has also been studied during and after continuous irradiation by micro-chemical enzyme analyses in isolated crypts and villi. It was found that the expansion of the proliferation zone in the crypt is accompanied by a decrease in activity of only those enzymes (i.e. non-specific esterases) which normally become active during crypt cell maturation. The activity of enzymes normally present mainly in the functional villus cells remained relatively unaffected by changes in crypt cell kinetics. A hypothesis of different regulation mechanisms of the proliferative activity in the intestinal crypt and a possible explanation of the different behaviour of various enzyme activities as a result of changes in crypt cell proliferation is discussed.  相似文献   

4.
The intestinal epithelium undergoes a marked adaptive response following loss of functional small bowel surface area characterized by increased crypt cell proliferation and increased enterocyte migration from crypt to villus tip, resulting in villus hyperplasia and enhanced nutrient absorption. Hedgehog (Hh) signaling plays a critical role in regulating epithelial-mesenchymal interactions during morphogenesis of the embryonic intestine. Our previous studies showed that blocking Hh signaling in neonatal mice results in increased small intestinal epithelial crypt cell proliferation and altered enterocyte fat absorption and morphology. Hh family members are also expressed in the adult intestine, but their role in the mature small bowel is unclear. With the use of a model of intestinal adaptation following partial small bowel resection, the role of Hh signaling in the adult gut was examined by determining the effects of blocking Hh signaling on the regenerative response following loss of functional surface area. Hh-inactivating monoclonal antibodies or control antibodies were administered to mice that sustained a 50% intestinal resection. mRNA analyses of the preoperative ileum by quantitative real-time PCR revealed that Indian hedgehog was the most abundant Hh family member. The Hh receptor Patched was more abundant than Patched 2. Analyses of downstream targets of Hh signaling demonstrated that Gli3 was twofold more abundant than Gli1 and Gli2 and that bone morphogenetic protein (BMP)2 was most highly expressed compared with BMP1, -4, and -7. Following intestinal resection, the expression of Hh, Patched, Gli, and most BMP genes was markedly downregulated in the remnant ileum, and, in anti-Hh antibody-treated mice, expression of Patched 2 and Gli 1 was further suppressed. In Hh antibody-treated mice following resection, the enterocyte migration rate from crypt to villus tip was increased, and by 2 wk postoperation, apoptosis was increased in the adaptive gut. However, crypt cell proliferation, villus height, and crypt depth were not augmented. These data indicate that Hh signaling plays a role in adult gut epithelial homeostasis by regulating epithelial cell migration from crypt to villus tip and by enhancing apoptosis.  相似文献   

5.
Autoradiographic studies and scintillation counting of crypt material after pulse labelling with 3H-thymidine showed that during continuous irradiation with 290 rads/day a reduced proliferative activity is present in the crypts of rat small intestine after 1 day of irradiation and of normal activity during the remaining period (5 days) irradiation. After cessation of irradiation an increase in proliferative activity can be observed after 1 day of recovery. From the time (36–48 hr after starting of the irradiation) that the number of villus cells is reduced an expansion of the proliferation zone in the crypt was observed. Both effects last until 1 day of recovery after cessation of irradiation. The process of crypt cell maturation and of villus cell function has also been studied during and after continuous irradiation by micro-chemical enzyme analyses in isolated crypts and villi. It was found that the expansion of the proliferation zone in the crypt is accompanied by a decrease in activity of only those enzymes (i.e. non-specific esterases) which normally become active during crypt cell maturation. The activity of enzymes normally present mainly in the functional villus cells remained relatively unaffected by changes in crypt cell kinetics. A hypothesis of different regulation mechanisms of the proliferative activity in the intestinal crypt and a possible explanation of the different behaviour of various enzyme activities as a result of changes in crypt cell proliferation is discussed.  相似文献   

6.
We have evaluated the rate of crypt cell production and uptake of radiolabeled recombinant human urogastrone (125I-rhUG) in the intestinal tissues of the mouse at 3, 5, 7, 9, and 12 days following irradiation of the abdomen with 9 Gy. At autopsy, the animals were injected intraperitoneally with 1 microgram/g body weight of the metaphase arrest agent, vincristine sulfate, and 25 muCi of 125I-rhUG (specific activity 1.7 muCi/micrograms) to quantify the rate of crypt cell production and uptake of radiolabeled urogastrone, respectively. The results indicated that the rate of crypt cell production was increased significantly in the irradiated animals compared to the unirradiated animals and showed a peak on the 3rd and 5th postirradiation days in small intestine and colon, respectively. The uptake of 125I-rhUG was increased significantly on the 3rd postirradiation day in the intestinal tissues but showed a bimodal pattern with peaks on the 3rd and 9th postirradiation days. These results suggest that there may be a close association between epithelial cell proliferation and uptake of 125I-rhUG, particularly in the early part of recovery of intestinal mucosa following irradiation. However, these data do not discriminate whether the increased uptake of 125I-rhUG is the cause or the effect of proliferation induced by an irradiation stimulus. Further analysis also revealed that there was no relationship between crypt depth and 125I-rhUG uptake. However, crypt depth was inversely correlated with villus height in the proximal small intestine but not in the ileum. Villus height was correlated inversely with 125I-rhUG uptake in the ileum and jejunum but not the duodenum. The rate of crypt cell production was strongly correlated with crypt depth throughout the intestine and inversely correlated with villus height. This suggests that villus-to-crypt inhibitory feedback may be a primary regulator of cellular proliferation in the crypts and the association of 125I-rhUG uptake with proliferation indirectly reflects this interaction.  相似文献   

7.
Luminal nutrition is important for the maintenance of small intestinal structure and function. The equilibrium between crypt cell production and villous cell loss in the mucosal epithelium of the small intestine is altered under certain conditions such as after a small bowel resection. Immediately after resection, there is a marked increase in crypt cell proliferation giving rise to an adaptive hyperplasia in the remnant intestine and for this response luminal nutrition is a critical factor. We have previously demonstrated the presence of a growth-stimulating (GS) activity in a heat-stable acidic extract of the rat proximal intestine 24, 48, and 96 h after resection, which is coincidental with an increase in crypt cell proliferation as measured by thymidine kinase activity. Eight days after resection when the GS activity is no longer detectable, the thymidine kinase activity returns to control values. The molecular weights of the peptides associated with this GS activity are 4500 and 1500, as determined by Sephadex gel filtration. Of note is that the oral intake of food is necessary for the appearance of the GS activity postoperatively. The presence of the GS activity has also been demonstrated upon refeeding after a fast, as well as at weaning in the rat, two physiological situations known to be associated with increased proliferation in the small intestine. This GS activity in the proximal intestine first detected in the resection model may represent a general mechanism by which food controls the cell renewal pattern of the small intestine.  相似文献   

8.
Hyaluronic acid (HA), a component of the extracellular matrix, affects gastrointestinal epithelial proliferation in injury models, but its role in normal growth is unknown. We sought to determine the effects of exogenous HA on intestinal and colonic growth by intraperitoneal injection of HA twice a week into C57BL/6 mice from 3 to 8 wk of age. Similarly, to determine the effects of endogenous HA on intestinal and colonic growth, we administered PEP-1, a peptide that blocks the binding of HA to its receptors, on the same schedule. In mice treated with exogenous HA, villus height and crypt depth in the intestine, crypt depth in the colon, and epithelial proliferation in the intestine and colon were increased. In mice treated with PEP-1, intestinal and colonic length were markedly decreased and crypt depth and villus height in the intestine, crypt depth in the colon, and epithelial proliferation in the intestine and colon were decreased. Administration of HA was associated with increased levels of EGF (intestine) and IGF-I (colon), whereas administration of PEP-1 was associated with decreased levels of IGF-I (intestine) and epiregulin (colon). Exogenous HA increases intestinal and colonic epithelial proliferation, resulting in hyperplasia. Blocking the binding of endogenous HA to its receptors results in decreased intestinal and colonic length and a mucosal picture of hypoplasia, suggesting that endogenous HA contributes to the regulation of normal intestinal and colonic growth.  相似文献   

9.
Caveolin-1 (Cav-1) is a protein marker for caveolae organelles, and acts as a scaffolding protein to negatively regulate the activity of signaling molecules by binding to and releasing them in a timely fashion. We have previously shown that loss of Cav-1 promotes the proliferation of mouse embryo fibroblasts (MEFs) in vitro. Here, to investigate the in vivo relevance of these findings, we evaluated the turnover rates of small intestine crypt stem cells from WT and Cav-1 deficient mice. Interestingly, we show that Cav-1 null crypt stem cells display higher proliferation rates, as judged by BrdU and PCNA staining. In addition, we show that Wnt/?-catenin signaling, which normally controls intestinal stem cell self-renewal, is up-regulated in Cav-1 deficient crypt stem cells. Because the small intestine constitutes one of the main targets of radiation, we next evaluated the role of Cav-1 in radiation-induced damage. Interestingly, after exposure to 15 Gy of ?-radiation, Cav-1 deficient mice displayed a decreased survival rate, as compared to WT mice. Our results show that after radiation treatment, Cav-1 null crypt stem cells of the small intestine exhibit far more apoptosis and accelerated proliferation, leading to a faster depletion of crypts and villi. As a consequence, six days after radiation treatment, Cav-1 -/- mice lost all their crypt and villus structures, while WT mice still showed some crypts and intact villi. In summary, we show that ablation of Cav-1 gene expression induces an abnormal amplification of crypt stem cells, resulting in increased susceptibility to ?-radiation. Thus, our studies provide the first evidence that Cav-1 normally regulates the proliferation of intestinal stem cells in vivo.  相似文献   

10.
Angiotensin converting enzyme (ACE) has been shown to be involved in regulation of apoptosis in nonintestinal tissues. This study examined the role of ACE in the modulation of intestinal adaptation utilizing ACE knockout mice (ACE-/-). A 60% small bowel resection (SBR) was used, since this model results in a significant increase in intestinal epithelial cell (EC) apoptosis as well as proliferation. Baseline villus height, crypt depth, and intestinal EC proliferation were higher, and EC apoptosis rates were lower in ACE-/- compared with ACE+/+ mice. After SBR, EC apoptosis rates remained significantly lower in ACE-/- compared with ACE+/+ mice. Furthermore, villus height and crypt depth after SBR continued to be higher in ACE-/- mice. The finding of a lower bax-to-bcl-2 protein ratio in ACE-/- mice may account for reduced EC apoptotic rates after SBR in ACE-/- compared with ACE+/+ mice. The baseline higher rate of EC proliferation in ACE-/- compared with ACE+/+ mice may be due to an increase in the expression of several EC growth factor receptors. In conclusion, ACE appears to have an important role in the modulation of intestinal EC apoptosis and proliferation and suggests that the presence of ACE in the intestinal epithelium has a critical role in guiding epithelial cell adaptive response.  相似文献   

11.
The relationship between the daily pattern of food consumption and the proliferation rate of the qesophagus, stomach, forestomach, small intestine and colon of Ha/ICR mice was examined. Proliferative activity was determined by [3H]TdR incorporation on a wet weight tissue basis, along with selective counting of labelled nuclei. Under conditions of ad libitum feeding with a 12 hr light cycle (lights on at 0600) mice eat most of their food during the dark period. A distinct circadian rhythm was observed in the oesophagus, stomach, forestomach and colon with the peak of [3H]TdR incorporation between 0400 and 0600 and the nadir between 1600 and 1800. Although a circadian fluctuation was observed in the small intestine, its amplitude was much less than in other areas. This rhythmic change in proliferation rate could be phase shifted by allowing the mice to feed only between 0800 and 1600 for 14 days. Under these conditions the peak in proliferative activity occurred between 1800 and 2000. Fasting reduced the daily level of proliferative activity in all of the digestive tract sites studied, and for all areas except the oesophagus greatly reduced or eliminated the circadian fluctuation. the forestomach and colon were the most influenced by fasting with 24 hr [3H]TdR incorporation reduced to 30–40% of the control value. Refeeding following a 48 hr fast produced a rapid increase in proliferative activity peaking at levels well above the control value at 16 hr after the onset of refeeding. the major exception to this was the small intestine which slowly returned to the control value during the first 24 hr. Partial refeeding produced a diminished refeeding response. Once the normal pattern of food consumption was re-established following refeeding the normal proliferative fluctuations were again observed.  相似文献   

12.
Cell kinetics in the mouse small intestine during immediate postnatal life   总被引:8,自引:0,他引:8  
The cell proliferation kinetics in the small intestine of newborn Balb/c mice were studied, from day 1 through to day 21 after birth. The size of the functional compartment and the proliferation compartment was determined as well as the cell production rate in the crypt using the micro-dissection technique combined with metaphase arrest method. The effect of weaning on cell proliferation was studied. The results suggest that: (1)There is continuous increase in cell proliferation and in the size of the functional and proliferative compartment over the 21 days. (2) The cell proliferation proceeds at a slower rate than in adult animals. (3) There is a sharp increase in cell production rate during the third week of postnatal life. (4) The cell proliferation was faster in conventionally weaned litters than the non-weaned group. (5) The intestinal mucosa in newborn mice is not in a steady-state conditions as in adults; cell production rate exceeds cell loss.  相似文献   

13.
Expression of a mutated cystic fibrosis transmembrane conductance regulator (CFTR) has been shown to enhance proliferation within CF airways, and cells expressing a mutated CFTR have been shown to be less susceptible to apoptosis. Because the CFTR is expressed in the epithelial cells lining the gastrointestinal tract and all CF mouse models are characterized by gastrointestinal obstruction, we hypothesized that CFTR null mice would have increased epithelial cell proliferation and reduced apoptosis within the small intestine. The rate of intestinal epithelial cell migration from crypt to villus was increased in CFTR null mice relative to mice expressing the wild-type CFTR. This difference in migration could be explained by an increase in epithelial cell proliferation but not by a difference in apoptosis within the crypts of Lieberkühn. In addition, using two independent sets of CF cell lines, we found that epithelial cell susceptibility to apoptosis was unrelated to the presence of a functional CFTR. Thus increased proliferation but not alterations in apoptosis within epithelial cells might contribute to the pathophysiology of CF.  相似文献   

14.
15.
Postnatal enlargement of the mammalian intestine comprises cylindrical and luminal growth, associated with crypt fission and crypt/villus hyperplasia, respectively, which subsequently predominate before and after weaning. The bipartite adhesion G protein–coupled receptor CD97 shows an expression gradient along the crypt–villus axis in the normal human intestine. We here report that transgenic mice overexpressing CD97 in intestinal epithelial cells develop an upper megaintestine. Intestinal enlargement involves an increase in length and diameter but does not affect microscopic morphology, as typical for cylindrical growth. The megaintestine is acquired after birth and before weaning, independent of the genotype of the mother, excluding altered availability of milk constituents as driving factor. CD97 overexpression does not regulate intestinal growth factors, stem cell markers, and Wnt signaling, which contribute to epithelial differentiation and renewal, nor does it affect suckling-to-weaning transition. Consistent with augmented cylindrical growth, suckling but not adult transgenic mice show enlarged crypts and thus more crypt fissions caused by a transient increase of the crypt transit-amplifying zone. Intestinal enlargement by CD97 requires its seven-span transmembrane/cytoplasmic C-terminal fragment but not the N-terminal fragment binding partner CD55. In summary, ectopic expression of CD97 in intestinal epithelial cells provides a unique model for intestinal cylindrical growth occurring in breast-fed infants.  相似文献   

16.
The mouse intestinal epithelium represents a unique mammalian system for examining the relationship between cell division, commitment, and differentiation. Proliferation and differentiation are rapid, perpetual, and spatially well-organized processes that occur along the crypt-to-villus axis and involve clearly defined cell lineages derived from a common multipotent stem cell located near the base of each crypt. Nucleotides -1178 to +28 of the rat intestinal fatty acid binding protein gene were used to establish three pedigrees of transgenic mice that expressed SV-40 large T antigen (TAg) in epithelial cells situated in the uppermost portion of small intestinal crypts and in already committed, differentiating enterocytes as they exited these crypts and migrated up the villus. T antigen production was associated with increases in crypt cell proliferation but had no apparent effect on commitment to differentiate along enterocytic, enteroendocrine, or Paneth cell lineages. Single- and multilabel-immunocytochemical studies plus RNA blot hybridization analyses suggested that the differentiation programs of these lineages were similar in transgenic mice and their normal littermates. This included enterocytes which, based on the pattern of [3H]thymidine and 5-bromo-2'-deoxyuridine labeling and proliferating nuclear antigen expression, had reentered the cell cycle during their migration up the villus. The state of cellular differentiation and/or TAg production appeared to affect the nature of the cell cycle; analysis of the ratio of S-phase to M-phase cells (collected by metaphase arrest with vincristine) and of the intensities of labeling of nuclei by [3H]thymidine indicated that the duration of S phase was longer in differentiating, villus-associated enterocytes than in the less well-differentiated crypt epithelial cell population and that there may be a block at the G2/M boundary. Sustained increases in crypt and villus epithelial cell proliferation over a 9-mo period were not associated with the development of gut neoplasms--suggesting that tumorigenesis in the intestine may require that the initiated cell have many of the properties of the gut stem cell including functional anchorage.  相似文献   

17.
Diurnal changes in proliferative activity were investigated in tumour and small intestinal epithelium of mice bearing a transplanted mammary carcinoma. In addition to mitotic and labelling index studies, the metaphase-arrest technique with vincristine (VCR) was employed. In the tumour there was no clear evidence of a significant diurnal rhythm in proliferative activity but in the small intestinal epithelium such a rhythm was clearly demonstrated. A higher cell production rate (kB) measured by metaphase-arrest and higher labelling and mitotic indices were seen in the mid to late part of the dark period. The peak mitotic index was seen 3 to 6 h after the labelling peak in the small intestine. The basal third of the crypt which is believed to include the stem cell compartment of this tissue showed larger diurnal fluctuations in both labelling index and kB than the rest of the proliferative compartment.  相似文献   

18.
Mosaic analysis using the spf(ash)-heterozygous female mouse was performed to clarify the cell lineage and cell behavior during small intestinal development with special attention given to the villus and crypt formation. The spf(ash) mutation, located on the X-chromosome, causes ornithine transcarbamylase (OTC) deficiency, which leads to mosaic expression of this enzyme in the small intestine of the heterozygous female mouse. In the small intestine in heterozygous fetuses, very small patches, which were aggregates of OTC-positive cells or negative cells, with no definite orientation to the villus structures were observed. In the neonatal small intestine, the intervillus region (the presumptive crypts) was polyclonal, and the majority of crypts were comprised exclusively cells of either genotype in 2-week-old small intestine. These results suggest that extensive migration and cell mixing of small intestinal epithelial cells, which have no definite correlation with the villus formation, occur in fetal stages of development, and that the crypt morphogenesis commences after birth independently of the monoclonality of the epithelial cells. Our data with the mosaic mice also reconfirmed the monoclonality of the adult small intestinal crypts demonstrated in mouse aggregation chimeras.  相似文献   

19.
The location of cell proliferation and differentiation in chicken small intestinal epithelium was examined using immunostaining, measurement of DNA synthesis and brush-border enzyme activities. Chicken enterocytes were removed sequentially from the villus using a modification of the Weiser (1973) method. Alkaline phosphatase activity was relatively constant along the villus tip-crypt axis but decreased in the crypt fractions, whereas sucrase and maltase activities showed higher activity in the upper half of the villus and lower activity in the lower half of the villus and in the crypt. Immunostaining of proliferating cell nuclear antigen indicated the presence of proliferating cells both in the crypt and along the villus, including some activity in the upper portion; the crypt region exhibited a significantly higher number of proliferating cells. Labelled thymidine incorporation into cell fractions after 2 h incubation exhibited a similar pattern of proliferation, with the most active region observed in the crypt and proliferation activity decreasing along the villus. However, some activity was found in the upper half of the villus. After 17 h incubation, cells from the middle region of the villi showed greater proliferation ability than the 2 h incubation. These results indicate that, unlike mammals, chicken enterocyte proliferation is not localized only in the crypt region, and that the site of enterocyte differentiation is not precisely localized. Accepted: 22 January 1998  相似文献   

20.
Proliferation, differentiation, and cell death were studied in small intestinal and colonic epithelia of rats after treatment with methotrexate. Days 1-2 after treatment were characterized by decreased proliferation, increased apoptosis, and decreased numbers and depths of small intestinal crypts in a proximal-to-distal decreasing gradient along the small intestine. The remaining crypt epithelium appeared flattened, except for Paneth cells, in which lysozyme protein and mRNA expression was increased. Regeneration through increased proliferation during days 3-4 coincided with villus atrophy, showing decreased numbers of villus enterocytes and decreased expression of the enterocyte-specific genes sucrase-isomaltase and carbamoyl phosphate synthase I. Remarkably, goblet cells were spared at villus tips and remained functional, displaying Muc2 and trefoil factor 3 expression. On days 8-10, all parameters had returned to normal in the whole small intestine. No methotrexate-induced changes were seen in epithelial morphology, proliferation, apoptosis, Muc2, and TFF3 immunostaining in the colon. The observed small intestinal sparing of Paneth cells and goblet cells following exposure to methotrexate is likely to contribute to epithelial defense during increased vulnerability of the intestinal epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号