首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell death and survival of neural progenitor (NP) cells are determined by signals that are largely unknown. We have analyzed pro-apoptotic signaling in individual NP cells that have been derived from mouse embryonic stem cells. NP formation was concomitant with elevated apoptosis and increased expression of ceramide and prostate apoptosis response 4 (PAR-4). Morpholino oligonucleotide-mediated antisense knockdown of PAR-4 or inhibition of ceramide biosynthesis reduced stem cell apoptosis, whereas PAR-4 overexpression and treatment with ceramide analogs elevated apoptosis. Apoptotic cells also stained for proliferating cell nuclear antigen (a nuclear mitosis marker protein), but not for nestin (a marker for NP cells). In mitotic cells, asymmetric distribution of PAR-4 and nestin resulted in one nestin(-)/PAR-4(+) daughter cell, in which ceramide elevation induced apoptosis. The other cell was nestin(+), but PAR-4(-), and was not apoptotic. Asymmetric distribution of PAR-4 and simultaneous elevation of endogenous ceramide provides a possible mechanism underlying asymmetric differentiation and apoptosis of neuronal stem cells in the developing brain.  相似文献   

2.
WangFD BianW 《Cell research》2001,11(2):135-141
INTRODUCTIONZinc is essential for normal brain development,evidenced by the fact that zinc deficiency in lactating mothers is characterized by a high incidence ofneuroanatomical maiformatinns and functional abnormalities in suckling offspring[1-3]. By colltrast,relatively little is known about the relationship be{tween maternal zinc nutrition and fetal brain development[2, 4, 5]. Dvergsten et al[6-81 investigated theeffects of maternal zinc deficiency on postnatal development of the rat ce…  相似文献   

3.
Nestin,an intermediate filament protein,is expressed in the neural stem cells of the developingcentral nervous system.This tissue-specific expression is driven by the neural stem cell-specific enhancer inthe second intron of the nestin gene.In this study,we showed that the mouse nestin gene was expressed inpluripotent embryonic carcinoma (EC) P19 and F9 cells,not in the differentiated cell types.This cell type-specific expression was conferred by the enhancer in the second intron.Mutation of the conserved POUfactor-binding site in the enhancer abolished the reporter gene expression in EC cells.Oct4,a Class V POUfactor,was found to be coexpressed with nestin in EC cells.Electrophoretic mobility-shift assays and supershiftassays showed that a unique protein-DNA complex was formed specifically with nuclear extracts of ECcells,and Oct4 protein was included.Together,these results suggest the functional relevance between theconserved POU factor-binding site and the expression of the nestin gene in pluripotent EC cells.  相似文献   

4.
Characterization and promoter analysis of the mouse nestin gene   总被引:1,自引:0,他引:1  
Cheng L  Jin Z  Liu L  Yan Y  Li T  Zhu X  Jing N 《FEBS letters》2004,565(1-3):195-202
The intermediate filament protein nestin is expressed in the neural stem cells of the developing central nervous system (CNS). Promoter analysis revealed that the minimal promoter of the mouse nestin gene resides in the region -11 to +183 of the 5'-non-coding and upstream flanking region, and that two adjacent Sp1-binding sites are necessary for promoter activity. Electrophoretic mobility-shift assays (EMSA) and supershift assays showed that Sp1 and Sp3 proteins selectively bind to the upstream Sp1 site. These results demonstrate an important functionality of Sp1 and Sp3 in regulating the expression of the mouse nestin gene.  相似文献   

5.
Nagai A  Kim WK  Lee HJ  Jeong HS  Kim KS  Hong SH  Park IH  Kim SU 《PloS one》2007,2(12):e1272
Human bone marrow contains two major cell types, hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs). MSCs possess self-renewal capacity and pluripotency defined by their ability to differentiate into osteoblasts, chondrocytes, adipocytes and muscle cells. MSCs are also known to differentiate into neurons and glial cells in vitro, and in vivo following transplantation into the brain of animal models of neurological disorders including ischemia and intracerebral hemorrhage (ICH) stroke. In order to obtain sufficient number and homogeneous population of human MSCs, we have clonally isolated permanent and stable human MSC lines by transfecting primary cell cultures of fetal human bone marrow MSCs with a retroviral vector encoding v-myc gene. One of the cell lines, HM3.B10 (B10), was found to differentiate into neural cell types including neural stem cells, neurons, astrocytes and oligodendrocytes in vitro as shown by expression of genetic markers for neural stem cells (nestin and Musashi1), neurons (neurofilament protein, synapsin and MAP2), astrocytes (glial fibrillary acidic protein, GFAP) and oligodendrocytes (myelin basic protein, MBP) as determined by RT-PCR assay. In addition, B10 cells were found to differentiate into neural cell types as shown by immunocytochical demonstration of nestin (for neural stem cells), neurofilament protein and beta-tubulin III (neurons) GFAP (astrocytes), and galactocerebroside (oligodendrocytes). Following brain transplantation in mouse ICH stroke model, B10 human MSCs integrate into host brain, survive, differentiate into neurons and astrocytes and induce behavioral improvement in the ICH animals. B10 human MSC cell line is not only a useful tool for the studies of organogenesis and specifically for the neurogenesis, but also provides a valuable source of cells for cell therapy studies in animal models of stroke and other neurological disorders.  相似文献   

6.
7.
Abstract: A protein target of mouse calcyclin, p30, which we call calcyclin-binding protein (CacyBP), was identified in mouse brain and Ehrlich ascites tumor (EAT) cells. The amino acid sequence of the CacyBP chymotryptic peptide was used to prepare synthetic oligonucleotides that served as a probe to screen the mouse brain cDNA library. A 1.4-kb positive clone was detected, isolated, and sequenced. The analyzed clone contains an open reading frame encoding a protein of a molecular mass of ~26 kDa. The nucleotide and predicted amino acid sequences indicate that CacyBP is a novel protein. The results obtained from northern blots show that the CacyBP gene is expressed predominantly in mouse brain and EAT cells. Using a pGEX vector the recombinant CacyBP was expressed in Escherichia coli, and its properties were analyzed. The recombinant protein interacts with calcyclin at a physiologically relevant range of Ca2+ in solution during affinity chromatography and on blots. Because CacyBP, like calcyclin, is present in the brain, the interaction of these two proteins might be involved in calcium signaling pathways in neuronal tissue.  相似文献   

8.
Nestin is an intermediate filament protein that is known as a neural stem/progenitor cell marker. It is expressed in undifferentiated central nervous system (CNS) cells during development, but also in normal adult CNS and in CNS tumor cells. Additionally, nestin is expressed in endothelial cells (ECs) of CNS tumor tissues and of adult tissues that replenish by angiogenesis. However, the regulation of nestin expression in vascular endothelium has not been analyzed in detail. This study showed that nestin expression was observed in proliferating endothelial progenitor cells (EPCs), but not in mature ECs. In adherent cultured cells derived from bone marrow cells, EPCs that highly expressed nestin also expressed the endothelial marker CD31 and the proliferation marker Ki67. ECs cultured without growth factors showed attenuated nestin immunoreactivity as they matured. Transgenic mice that carried the enhanced green fluorescent protein under the control of the CNS-specific second intronic enhancer of the nestin gene showed no reporter gene expression in EPCs. This indicated that the mechanisms of nestin gene expression were different in EPCs and CNS cells. Immunohistochemistry showed nestin expression in neovascular cells from two distinct murine models. Our results demonstrate that nestin can be used as a marker protein for neovascularization. (J Histochem Cytochem 58:721–730, 2010)  相似文献   

9.
Granule cells in the hippocampus, a region critical for memory and learning, are generated mainly during the early postnatal period but neurogenesis continues in adulthood. Postnatal neuronal production is carried out by primary progenitors that express glial fibrillary acidic protein (GFAP) and they are assumed to function as stem cells. A central question regarding postnatal dentate neurogenesis is how astrocyte-like progenitors produce neurons. To reveal cell division patterns and the process of neuronal differentiation of astrocyte-like neural progenitors, we performed time-lapse imaging in cultured hippocampal slices from early postnatal transgenic mice with mouse GFAP promoter-controlled enhanced green fluorescent protein (mGFAP-eGFP Tg mice) in combination with a retrovirus carrying a red fluorescent protein gene. Our results showed that the majority of GFAP-eGFP+ progenitor cells that express GFAP, Sox2 and nestin divided symmetrically to produce pairs of GFAP+ cells (45%) or pairs of neuron-committed cells (45%), whereas a minority divided asymmetrically to generate GFAP+ cells and neuron-committed cells (10%). The present results suggest that a substantial number of GFAP-expressing progenitors functions as transient amplifying progenitors, at least in an early postnatal dentate gyrus, although a small population appears to be stem cell-like progenitors. From the present data, we discuss possible cell division patterns of adult GFAP+ progenitors.  相似文献   

10.
Nestin is an intermediate filament protein expressed by neuroepithelial stem cells and which has been proposed to represent also a marker for putative islet stem cells. The aim of this study was to characterize the cell type(s) expressing nestin in the rat pancreas. By immunohistochemistry, nestin positivity was localized exclusively in mesenchymal cells of normal and regenerating adult pancreas. In the latter condition, the number of nestin-positive cells and the intensity of nestin immunoreactivity were greatly increased. Most nestin-positive cells had the morphology of stellate cells, a type of pericyte associated with blood vessels which has been previously reported to occur in liver and pancreas. In addition, nestin positivity was present in endothelial cells from neocapillaries during pancreas regeneration, and in all blood vessels during morphogenesis in fetal pancreas. Nestin expression was not found in the ductal epithelial cells from which islet cells originate in fetal and regenerating pancreas. In primary pancreatic tissue explants, nestin-positive mesenchymal cells rapidly attached to plastic and proliferated. These cells also expressed desmin, vimentin, and glial fibrillary acidic protein which are known to represent stellate cell markers. In summary, nestin in the pancreas is primarily a marker for reactive stellate cells, or pericytes, and endothelial cells during active angiogenesis.  相似文献   

11.
12.
Neural stem cells were identified in the rat heart and during scar formation and healing participated in sympathetic fiber sprouting and angiogenesis. In the setting of diabetes, impaired wound healing represents a typical pathological feature. These findings provided the impetus to test the hypothesis that experimental diabetes adversely influenced the phenotype of cardiac neural stem cells. Streptozotocin (STZ)‐induced diabetic rats were associated with elevated plasma glucose levels, significant loss of body weight and left ventricular contractile dysfunction. In the heart of STZ‐diabetic rats, the density of nestin immunoreactive processes emanating from cardiac neural stem cells were reduced. The latter finding was reaffirmed as nestin protein expression was significantly decreased in the heart of STZ‐diabetic rats and associated with a concomitant reduction of nestin mRNA. Employing the TUNEL assay, the loss of nestin expression in STZ‐diabetic rats was not attributed to widespread cardiac neural stem cell apoptosis. Insulin administration to STZ‐diabetic rats with established hyperglycaemia led to a modest recovery of nestin protein expression in cardiac neural stem cells. By contrast, the administration of insulin immediately after STZ injection improved plasma glucose levels and significantly attenuated the loss of nestin protein expression. These data highlight the novel observation that nestin protein expression in cardiac neural stem cells was significantly reduced in STZ‐induced type I diabetic rats. The aberrant cardiac neural stem cell phenotype may compromise their biological role and predispose the diabetic heart to maladaptive healing following ischemic injury. J. Cell. Physiol. 220: 440–449, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
We have previously demonstrated that the neural stem-cell marker nestin is expressed in hair follicle stem cells. Nestin-expressing cells were initially identified in the hair follicle bulge area (BA) using a transgenic mouse model in which the nestin promoter drives the green fluorescent protein (ND-GFP). The hair-follicle ND-GFP-expressing cells are keratin 15-negative and CD34-positive and could differentiate to neurons, glia, keratinocytes, smooth muscle cells and melanocytes in vitro. Subsequently, we showed that the nestin-expressing stem cells could affect nerve and spinal cord regeneration after injection in mouse models. In the present study, we separated the mouse vibrissa hair follicle into three parts (upper, middle and lower). Each part of the follicle was cultured separately in DMEM-F12 containing B-27 and 1% methylcellulose supplemented with basic FGF. After 2 mo, the nestin-expressing cells from each of the separated parts of the hair follicle proliferated and formed spheres. Upon transfer of the spheres to RPMI 1640 medium containing 10% FBS, the nestin-expressing cells in the spheres differentiated to neurons, as well as glia, keratinocytes, smooth muscle cells and melanocytes. The differentiated cells were produced by spheres which formed from nestin-expressing cells from all segments of the hair follicle. However, the differentiation potential is greatest in the upper part of the follicle. This result is consistent with trafficking of nestin-expressing cells throughout the hair follicle from the bulge area to the dermal papilla that we previously observed. The nestin-expressing cells from the upper part of the follicle produced spheres in very large amounts, which in turn differentiated to neurons and other cell types. The results of the present study demonstrate that multipotent, nestin-expressing stem cells are present throughout the hair follicle and that the upper part of the follicle can produce the stem cells in large amounts that could be used for nerve and spinal cord repair.  相似文献   

14.
We have previously demonstrated that the neural stem-cell marker nestin is expressed in hair follicle stem cells. Nestin-expressing cells were initially identified in the hair follicle bulge area (BA) using a transgenic mouse model in which the nestin promoter drives the green fluorescent protein (ND-GFP). The hair-follicle ND-GFP-expressing cells are keratin 15-negative and CD34-positive and could differentiate to neurons, glia, keratinocytes, smooth muscle cells and melanocytes in vitro. Subsequently, we showed that the nestin-expressing stem cells could affect nerve and spinal cord regeneration after injection in mouse models. In the present study, we separated the mouse vibrissa hair follicle into three parts (upper, middle and lower). Each part of the follicle was cultured separately in DMEM-F12 containing B-27 and 1% methylcellulose supplemented with basic FGF. After 2 mo, the nestin-expressing cells from each of the separated parts of the hair follicle proliferated and formed spheres. Upon transfer of the spheres to RPMI 1640 medium containing 10% FBS, the nestin-expressing cells in the spheres differentiated to neurons, as well as glia, keratinocytes, smooth muscle cells and melanocytes. The differentiated cells were produced by spheres which formed from nestin-expressing cells from all segments of the hair follicle. However, the differentiation potential is greatest in the upper part of the follicle. This result is consistent with trafficking of nestin-expressing cells throughout the hair follicle from the bulge area to the dermal papilla that we previously observed. The nestin-expressing cells from the upper part of the follicle produced spheres in very large amounts, which in turn differentiated to neurons and other cell types. The results of the present study demonstrate that multipotent, nestin-expressing stem cells are present throughout the hair follicle and that the upper part of the follicle can produce the stem cells in large amounts that could be used for nerve and spinal cord repair.  相似文献   

15.
The intermediate filament protein nestin is predominantly expressed in some stem/progenitor cells and appears to be a useful molecular tool to characterise tumours originating from precursor cells of neuroectodermal and mesenchymal lineages. Leydig cells originate in the adult testis by differentiation from stem cells and express a variety of neural and neuroendocrine markers. The possible expression of the neural stem cell marker nestin in Leydig cells and testicular tumour cells was determined by analysing the patterns of nestin expression in normal and pathological human testes by Western blot and immunohistochemical methods. In normal testis, nestin was found in some vascular endothelial cells, a subset of peritubular spindle-shaped cells and some Leydig cells; spermatogenic and Sertoli cells were unstained. In normal Leydig cells, nestin was distributed in the perinuclear cytoplasm and accumulated in the crystalloids of Reinke with ageing. In non-tumour pathologies (cryptorchidism, impaired spermatogenesis), the seminiferous tubules were immunonegative, whereas hyperplastic Leydig cells showed cytoplasmic immunolabelling. In testicular malignancies, nestin was localised in the Sertoli cells of the seminiferous tubules affected with intratubular germ cell neoplasia, in the hyperplastic Leydig cells associated with these tumours and in some components (mesenchymal and neuroepithelial cells) of teratomas; spermatocytic and non-spermatocytic seminomas were unstained. Some vascular endothelial cells were immunolabelled in all tumour samples. Thus, nestin is expressed in a population of normal and hyperplastic Leydig cells and in Sertoli cells in the presence of intratubular germ-cell neoplasia. Nestin may be a good marker for identifying components of testicular teratomas.The two first authors participated equally in this workThis work was supported by a grant from the Fondo de Investigaciones Sanitarias (FIS 02/3003 to M.V.T. Lobo)  相似文献   

16.
17.
A novel method was used to screen differentially a cDNA library for clones representing serum-regulated mRNA species of low abundance. To increase the amount of probe available for screening, the cDNA probe was cloned and amplified. Two separate cDNA 'probe' libraries were constructed in the Escherichia coli plasmid vector pDE613, using poly(A)+mRNA from murine cells at 0 and 16 h after stimulation of a G0 population. Radiolabelled plasmid DNA from each library was hybridized sequentially to colony blots of the third 'target' library, constructed with mRNA from serum-stimulated cells in the Bacillus subtilis vector pBD214. Differential screening of the target cDNA library with the two probe libraries identified novel murine cDNA clones, some representing cytoplasmic poly(A)+RNA species of low (0.01%) abundance, accumulating after serum stimulation of a quiescent mouse embryo fibroblast population. One cDNA clone was found to correspond to mitochondrial 16S rRNA and a second was identified as the murine equivalent of previously described cDNA clones for the hamster 78-kDa glucose-regulated protein (GRP78) and the rat immunoglobulin heavy-chain-binding protein. GRP78 mRNA has not previously been recognized as a serum-inducible message.  相似文献   

18.
Nestin is an intermediate filament protein originally described in neural stem cells and a variety of progenitor cells. More recently, nestin was detected in rat kidney podocytes. We show here that nestin is expressed in a developmentally regulated pattern in the kidney. Nestin was detected by immunohistochemistry in the condensing mesenchyme surrounding the ureter, in developing glomeruli, in podocytes of the adult kidney, and in a podocyte cell line. Nestin shared a striking overlap in expression with the Wilms' tumor suppressor Wt1. Nestin was significantly upregulated in a cell line with inducible Wt1 expression upon induction of Wt1. Cotransfection experiments in human embryonic kidney cells (HEK293) revealed stimulation of a nestin intron 2 enhancer element up to six-fold by the Wt1(-KTS) splice variant. Nestin expression was significantly reduced in an inducible mouse model of glomerular disease. This model is based on podocyte-specific overexpression of Pax2 and associated with a loss of Wt1 expression. Furthermore, also in the developing heart, nestin was found in an overlapping pattern with Wt1 in the epicardium and the forming coronary vessels. Strikingly, in the hearts of Wt1 knockout mice, nestin was barely detectable compared with the hearts of wild-type embryos. Our results show that nestin is expressed at different stages of kidney and cardiac development and suggest that its expression in these organs might be regulated by the Wilms' tumor suppressor Wt1.  相似文献   

19.
20.
The formation of stem cell-derived tumors (teratomas) is observed when engrafting undifferentiated embryonic stem (ES) cells, embryoid body-derived cells (EBCs), or mammalian embryos and is a significant obstacle to stem cell therapy. We show that in tumors formed after engraftment of EBCs into mouse brain, expression of the pluripotency marker Oct-4 colocalized with that of prostate apoptosis response-4 (PAR-4), a protein mediating ceramide-induced apoptosis during neural differentiation of ES cells. We tested the ability of the novel ceramide analogue N-oleoyl serinol (S18) to eliminate mouse and human Oct-4(+)/PAR-4(+) cells and to increase the proportion of nestin(+) neuroprogenitors in EBC-derived cell cultures and grafts. S18-treated EBCs persisted in the hippocampal area and showed neuronal lineage differentiation as indicated by the expression of beta-tubulin III. However, untreated cells formed numerous teratomas that contained derivatives of endoderm, mesoderm, and ectoderm. Our results show for the first time that ceramide-induced apoptosis eliminates residual, pluripotent EBCs, prevents teratoma formation, and enriches the EBCs for cells that undergo neural differentiation after transplantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号