首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the requirements for the export of leukotriene C4 (LTC4) from cultured human eosinophils. To define saturability and kinetics of LTC4 export, eosinophils were interacted with leukotriene A4 (LTA4) at 37 degrees C, and the methanolic extracts of the cell-associated and extracellular compartments were then analyzed for LTC4 content by reverse phase high performance liquid chromatography with on-line monitoring of absorbance at 280 nm. When LTA4 was added at concentrations from 0 to 100 microM for 10 min at 37 degrees C, the amount of LTC4 released extracellularly became constant at an LTA4 concentration of 7.5 microM or greater even though the amount of intracellular LTC4 continued to increase. When eosinophils were incubated with 50 microM LTA4 for 0-60 min at 37 degrees C and then held at 0 degrees C for the remainder of the 60-min interval, 54.2 and 77.3% (n = 3), respectively, of the total LTC4 was released extracellularly after 15 and 30 min of incubation at 37 degrees C. Eosinophils incubated with 50 microM LTA4 at 0 degrees C for 1 h synthesized 290 pmol of LTC4 (n = 3) which was approximately half-maximal, all of which was retained intracellularly. We utilized the time and temperature dependence of LTC4 export to preload eosinophils with both LTC4 and leukotriene C5 (LTC5) by sequentially supplying them with specific substrates. With increasing concentrations of intracellular LTC5, there was dose-dependent inhibition of the subsequent release of LTC4 at 37 degrees C, with the sum of the released glutathionyl leukotrienes remaining constant. In addition, only minimal competition for LTC4 release occurred when cells were preloaded with both LTC4 and the conjugate of 1-chloro-2,4-dinitrobenzene and reduced glutathione, S-(dinitrophenyl)glutathione. The criteria of saturability, time dependence of LTC4 release at 37 degrees C, competition of LTC4 with LTC5 for release, and the inhibition of LTC4 release at 0 degrees C establish the export of LTC4 from cells as a novel and specific biochemical step distinct from both LTA4 uptake and the conjugation of LTA4 with reduced glutathione by LTC4 synthase to form LTC4.  相似文献   

2.
The protein kinase inhibitor, 1-(5-isoquinolinesulfonyl) piperazine (C-I), inhibits superoxide release from human neutrophils (PMN) stimulated with phorbol myristate acetate or synthetic diacylglycerol, without inhibiting superoxide release from PMN stimulated with the chemoattractants C5a or N-formyl-methionyl-leucyl-phenylalanine (f-Met-Leu-Phe). In this study, we investigated the effect of C-I on human PMN chemotaxis to C5a, f-Met-Leu-Phe, leukotriene B4 (LTB4), and fluoresceinated N-formyl-methionyl-leucyl-phenylalanine-lysine (f-Met-Leu-Phe-Lys-FITC). PMN, preincubated for 5 min at 37 degrees C with 0 to 200 microM C-I, were tested for their migratory responses to the chemoattractants. C-I (greater than or equal to 1 microM) significantly inhibited PMN chemotaxis to f-Met-Leu-Phe, f-Met-Leu-Phe-Lys-FITC, and C5a without affecting random migration. Maximal inhibition of chemotaxis to these attractants occurred with greater than or equal to 50 microM C-I, at which chemotaxis was inhibited by 80 to 95%. The C-I inhibition was reversible. In contrast, 200 microM C-I did not inhibit the number of PMN migrating to LTB4, although, the leading front of PMN migration to LTB4 was inhibited by C-I. C-I inhibited PMN orientation to C5a and f-Met-Leu-Phe without affecting orientation to LTB4. C-I did not inhibit the binding of radiolabeled f-Met-Leu-Phe or f-Met-Leu-Phe-Lys-FITC to PMN. These findings suggest that the chemotactic responses of PMN to f-Met-Leu-Phe and C5a involve a protein kinase-dependent reaction which is inhibited by C-I.  相似文献   

3.
The epoxide 5(S) trans-5,6 oxido, 7,9 trans-11,14,17 cis eicosatetraenoic acid (leukotriene A5) was chemically synthesized and demonstrated to be both a substrate and an inhibitor of partially purified rat and human LTA4 hydrolase. Both rat and human LTA4 hydrolase utilized leukotriene A5 less effectively as a substrate than leukotriene A4. Incubation of leukotriene A5 (10 microM) or leukotriene A4 (10 microM) with rat neutrophils demonstrated formation of 123 pmol LTB5/min/10(7) cells and 408 pmol LTB4/min/10(7) cells respectively. Purified rat neutrophil LTA4 hydrolase incubated with 100 microM leukotriene A5 produced 22 nmol LTB5/min/mg protein and when incubated with 100 microM leukotriene A4 produced 50 nmol LTB4/min/mg protein. Human neutrophil LTA4 hydrolase incubated with 100 microM leukotriene A5 produced 24 nmol LTB5/min/mg protein and when incubated with 100 microM leukotriene A4 produced 52 nmol LTB4/min/mg protein. Leukotriene A5 was an inhibitor of the formation of leukotriene B4 from leukotriene A4 by both the rat and human neutrophil LTA4 hydrolase. Excess leukotriene A5 prevented covalent coupling of [3H] leukotriene A4 to LTA4 hydrolase suggesting inhibition may involve covalent coupling of leukotriene A5 to the LTA4 hydrolase.  相似文献   

4.
Leukotriene B4 (LTB4), formed by the 5-lipoxygenase pathway in human polymorphonuclear leukocytes (PMN), may be an important mediator of inflammation. Recent studies suggest that human leukocytes can convert LTB4 to products that are less biologically active. To examine the catabolism of LTB4, we developed (using high performance liquid chromatography) a sensitive, reproducible assay for this mediator and its omega-oxidation products (20-OH- and 20-COOH-LTB4). With this assay, we have found that human PMN (but not human monocytes, lymphocytes, or platelets) convert exogenous LTB4 almost exclusively to 20-OH- and 20-COOH-LTB4 (identified by gas chromatography-mass spectrometry). Catabolism of exogenous LTB4 by omega-oxidation is rapid (t1/2 approximately 4 min at 37 degrees C in reaction mixtures containing 1.0 microM LTB4 and 20 X 10(6) PMN/ml), temperature-dependent (negligible at 0 degrees C), and varies with cell number as well as with initial substrate concentration. The pathway for omega-oxidation in PMN is specific for LTB4 and 5(S),12(S)-dihydroxy-6,8,10,14-eicosatetraenoic acid (only small amounts of other dihydroxylated-derivatives of arachidonic acid are converted to omega-oxidation products). Even PMN that are stimulated by phorbol myristate acetate to produce large amounts of superoxide anion radicals catabolize exogenous leukotriene B4 primarily by omega-oxidation. Finally, LTB4 that is generated when PMN are stimulated with the calcium ionophore, A23187, is rapidly catabolized by omega-oxidation. Thus, human PMN not only generate and respond to LTB4, but also rapidly and specifically catabolize this mediator by omega-oxidation.  相似文献   

5.
Peritoneal macrophages (PM), obtained from 39 healthy women with normal laparoscopy findings, were stimulated with the ionophore A23187 or/and arachidonic acid (AA) both in adherence and in suspension. AA lipoxygenase metabolites were determined by reversed-phase HPLC. The major metabolites identified were 5-hydroxyeicosatetraenoic acid (5-HETE), leukotriene (LT)B4 and LTC4. The 20-hydroxy-LTB4, 20-carboxy-LTB4, and 15-HETE were not detected. Incubations of adherent PM with 2 microM A23187 induced the formation of LTB4, 110 +/- 19 pmol/10(6) cells, 5-HETE, 264 +/- 53 pmol/10(6) cells and LTC4, 192 +/- 37 pmol/10(6) cells. When incubated with 30 microM exogenous AA, adherent PM released similar amounts of 5-HETE (217 +/- 67 pmol/10(6) cells), but sevenfold less LTC4 (27 +/- 12 pmol/10(6) cells) (p less than 0.01). In these conditions LTB4 was not detectable. These results indicate that efficient LT synthesis in PM requires activation of the 5-lipoxygenase/LTA4 synthase, as demonstrated previously for blood phagocytes. When stimulated with ionophore, suspensions of Ficoll-Paque-purified PM produced the same lipoxygenase metabolites. The kinetics of accumulation of the 5-lipoxygenase/LTA4 synthase products in A23187-stimulated adherent cells varied for the various metabolites. LTB4 reached a plateau by 5 min, whereas LTC4 levels increased up to 60 min, the longest incubation time studied. Levels of 5-HETE were maximal at 5 min, and then slowly decreased with time. Thus, normal PM, in suspension or adherence, have the capacity to produce significant amounts of 5-HETE, LTB4, and LTC4. The profile of lipoxygenase products formed by the PM and the reactivity of this cell to AA and ionophore A23187 are similar to those of the human blood monocyte, but different from those of the human alveolar macrophage.  相似文献   

6.
We have previously reported that cytochrome P-450LTB in the microsomes of human polymorphonuclear leukocytes (PMN) catalyzes three omega-oxidations of leukotriene B4 (LTB4), leading to the sequential formation of 20-OH-LTB4, 20-CHO-LTB4, and 20-COOH-LTB4 (Soberman, R.J., Sutyak, J.P., Okita, R.T., Wendelborn, D.F., Roberts, L.J., II, and Austen, K. F. (1988) J. Biol. Chem. 263, 7996-8002). The identification of the novel final intermediate, 20-CHO-LTB4, allowed direct analysis of its metabolism by PMN microsomes in the presence of adenine nucleotide cofactors. Microsomes in the presence of 100 microM NAD+ or 100 microM NADP+ converted 1.0 microM 20-CHO-LTB4 to 20-COOH-LTB4 with a Km of 2.4 +/- 0.8 microM (mean +/- S.E., n = 4) and a Vmax of 813.9 +/- 136.6 pmol.min-1.mg-1, for NAD+, as compared to 0.12 microM and 5.0 pmol.min-1.mg-1 (n = 2) for NADPH as a cofactor. The conversion of 1.0 microM of 20-CHO-LTB4 to 20-COOH-LTB4 in the presence of saturating concentrations (1.0 mM) of both NAD+ and NADP+ was not greater than the reaction in the presence of 1.0 mM of each cofactor separately, indicating that NAD+ and NADP+ were cofactors for the same enzyme. Antibody to cytochrome P-450 reductase did not inhibit the conversion of 20-CHO-LTB4 to 20-COOH-LTB4. When 1.0 microM 20-OH-LTB4 was added to microsomes in the presence of NADPH, approximately three-fourths of the product formed (63.7 +/- 5.1 pmol; mean +/- S.E., n = 3) was 20-CHO-LTB4 and approximately one-fourth (21.3 +/- 3.9 pmol; mean +/- S.E., n = 3) was 20-COOH-LTB4. In the presence of both NADPH and NAD+, only 20-COOH-LTB4 (85.5 +/- 9.9 pmol; mean +/- S.E., n = 3) was formed. PMN microsomes also contain an NADH-dependent aldehyde reductase which converts 20-CHO-LTB4 to 20-OH-LTB4, a member of the LTB4 family of molecules with biological activity. Based upon kinetic, cofactor and inhibition data, microsomal aldehyde dehydrogenase preferentially regulates the final and irreversible inactivation step in the LTB4 metabolic sequence.  相似文献   

7.
To establish a simple and sensitive quantitation of leukotriene B4 (LTB4), we developed a radioreceptor assay (RRA) using a highly specific [3H]leukotriene B4[( 3H]LTB4) binding to a guinea pig spleen homogenate. The assay detected LTB4 levels as low as 0.12 pmol per tube. Fifty percent inhibition of bound [3H]LTB4 was obtained by 2.5 nM of unlabeled LTB4. [3H]LTB4 competition studies indicated that 20-hydroxy-LTB4 was 8 times, 6-trans-LTB4 was 640 times and 20-carboxy-LTB4 was 1000 times less effective than LTB4. The peptide leukotrienes C4, D4 and E4 showed no effect on [3H]LTB4 binding. Recovery rates averaged 97% after ethanol extraction and evaporation of known amounts of LTB4. The intra-assay coefficients of variation for three samples were 2.4%, 7.2% and 8.4%, respectively. This assay was validated by measuring LTB4 released from human granulocytes stimulated with calcium ionophore A23187. The LTB4 level was maximal at 10 min (156.8 +/- 36.2 pmol/3 x 10(6) cells) and decreased rapidly after 15 min. This radioreceptor assay for leukotriene B4 is highly sensitive and is comparable to the reported sensitivity by radioimmunoassay. The method is simpler and less expensive than other methods such as high pressure liquid chromatography and is suitable for routine measurement of leukotriene B4.  相似文献   

8.
Polymorphonuclear leukocytes (PMN) have been identified as preferred target cells for Escherichia coli hemolysin in human blood (Bhakdi, S., Greulich, S., Muhly, M., Ebersp?cher, B., Becker, H., Thiele, A., and Hugo, F. (1989) J. Exp. Med. 169, 737-754). Leukotriene and 5-hydroxyeicosatetraenoic acid generation was investigated in human PMN challenged with E. coli hemolysin in the absence or presence of free arachidonic acid or eicosapentaenoic acid (EPA). In the absence of exogenous free fatty acids, E. coli hemolysin (0.01-10 hemolytic units/ml) induced moderate generation of leukotriene B4 (LTB4) and its omega-oxidation products. The presence of free arachidonic acid (10 microM) during E. coli hemolysin (0.1 hemolytic unit/ml) challenge evoked the generation of large quantities of these products (greater than 100 pmol/1.5 x 10(7) PMN). In parallel, large amounts of 5-hydroxyeicosatetraenoic acid and nonenzymatic LTA4 hydrolysis products appeared. Product release peaked or plateaued 5-10 min after E. coli hemolysin challenge. The presence of exogenous EPA upon E. coli hemolysin challenge resulted in the exclusive generation of LTB5 and metabolites, LTA5 decay products and 5-hydroxyeicosapentaenoic acid. Dose and time dependences corresponded to those with arachidonic acid provision, and the total of EPA-derived products surpassed that of arachidonic acid metabolites in corresponding experiments approximately 2-fold. Increasing the time between free fatty acid provision and E. coli hemolysin challenge resulted in a rapid decline in the generation of arachidonic acid or EPA metabolites. Thus, subhemolytic doses of E. coli hemolysin evoke marked PMN eicosanoid generation that is dependent on exogenous free fatty acid supply, with total amounts approximating those found in calcium ionophore-stimulated neutrophils.  相似文献   

9.
Neutrophils are involved in inflammation through leukotriene (LT) production. The predominant proinflammatory leukotriene released from neutrophils is LTB4, which serves as a biological marker of inflammation. The purpose of this study was to optimize the conditions ex vivo for LTB4 production by neutrophils from horses and dogs, and platelets from chickens. Optimal production of LTB4 was characterized by incubation time (2.5, 5, 10, 15 or 20 min), temperature (25 or 37 degrees C), and calcium ionophore A23187 concentration (0.1, 1, 10 or 20 microM). Incubation longer than 2.5 min did not increase production of LTB4 in chickens or horses; in dogs, incubation for 2.5 and 10 min resulted in the highest concentrations of LTB4 (P相似文献   

10.
Leukotriene B4 (LTB4) is a potent chemoattractant for neutrophils and is thought to play a role in a variety of inflammatory responses in humans. The metabolism of LTB4 in vitro is complex with several competing pathways of biotransformation, but metabolism in vivo, especially for normal human subjects, is poorly understood. As part of a Phase I Clinical Trial of human tolerance to LTB4, four human subjects were injected with 150 nmol/kg LTB4 with one additional subject as placebo control. The urine of the subjects was collected in two separate pools (0-6 and 7-24 h), and aliquots from these urine collections were analyzed using high performance liquid chromatography, UV spectroscopy, and negative ion electrospray ionization tandem mass spectrometry for metabolites of LTB4. In the current investigation, 11 different metabolites of LTB4 were identified in the urine from those subjects injected with LTB4, and none were present in the urine from the placebo-injected subject. The unconjugated LTB4 metabolites found in urine were structurally characterized as 18-carboxy-LTB4, 10,11-dihydro-18-carboxy-LTB4, 20-carboxy-LTB4, and 10,11-dihydro-20-carboxy-LTB4. Several glucuronide-conjugated metabolites of LTB4 were characterized including 17-, 18-, 19-, and 20-hydroxy-LTB4, 10-hydroxy-4,6,12-octadecatrienoic acid, LTB4, and 10,11-dihydro-LTB4. The amount of LTB4 glucuronide (16.7-29.4 pmol/ml) and 20-carboxy-LTB4 (18.9-30.6 pmol/ml) present in the urine of subjects injected with LTB4 was determined using an isotope dilution mass spectrometric assay before and after treatment of the urine samples with beta-glucuronidase. The urinary metabolites of LTB4 identified in this investigation were excreted in low amounts, yet it is possible that one or more of these metabolites could be used to assess LTB4 biosynthesis following activation of the 5-lipoxygenase pathway in vivo.  相似文献   

11.
The synthesis and release of leukotriene B4 (LTB4) from canine polymorphonuclear leukocytes (PMNs) was characterized in terms of incubation time, temperature and effects of calcium ionophore A23187 concentrations. Maximal LTB4 concentrations were determined when canine PMNs were incubated with 10 microM A23187. Increasing LTB4 concentrations were determined through 10 min incubation. The maximal LTB4 concentrations (310 +/- 30 pg LTB4/2.5 x 10(5) cells) determined at 10 min did not change through a 55 min incubation period. Greater LTB4 concentrations were synthesized by canine PMNs at 37 degrees C (268 +/- 12 pg LTB4/2.5 x 10(5) cells) than at 25 degrees C (206 +/- 11 pg LTB4/2.5 x 10(5) cells) or 5 degrees C (59 +/- 3 pg LTB4/2.5 x 10(5) cells). The synthesis of LTB4 in canine PMNs was inhibited by incubation of the cells with either of two known lipoxygenase inhibitors, BWA4C or BW755C. BWA4C inhibited LTB4 synthesis with an approximate IC50 = 0.1 microM, whereas BW755C inhibited LTB4 synthesis with an approximate IC50 = 10 microM. These results indicate canine PMNs have the capability to synthesize large quantities of LTB4 when stimulated with calcium ionophore A23187. Furthermore, the 5-lipoxygenase inhibitors BWA4C, an acetohydroxyamic acid, and BW755C, a phenyl pyrazoline, can readily inhibit LTB4 synthesis in canine PMNs.  相似文献   

12.
Lipoxygenase metabolism of arachidonic acid was compared between peritoneal macrophages from untreated rats and those from rats on day 7 after intraperitoneal injection of thioglycollate broth (TG). Resident macrophages (M phi) from untreated rats produced mainly LTB4 (303 +/- 25 pmol/5 x 10(6) cells) and 5-HETE (431 +/- 56 pmol/5 x 10(6) cells) when stimulated with 5 micrograms/ml calcium ionophore A23187 for 20 min at 37 degrees C. On the other hand, TG-elicited M phi generated less amounts of lipoxygenase metabolites (157 +/- 10 pmol LTB4 and 319 +/- 19 pmol 5-HETE/5 x 10(6) cells) with the same stimulus. Then, leukotriene productivity was examined by using subcellular fractions of each M phi lysate and an unstable epoxide intermediate, leukotriene A4. LTA4 hydrolase activity was mainly contained in soluble fractions from the both groups of M phi. The cytosol fraction from the resident M phi exhibited the following specific and total activity; 2.2 +/- 0.1 nmol LTB4/mg protein/5 min and 12.2 +/- 0.5 nmol LTB4/5 min per 10(8) cells. On the contrary, the cytosol fraction from the TG-elicited M phi showed 1.9 +/- 0.1 nmol LTB4/mg protein/5 min and 9.6 +/- 0.3 nmol LTB4/5 min per 10(8) cells. The resident M phi, however, generated 0.14 +/- 0.04 nmol O2-/min/4 x 10(5) cells whereas the TG-elicited M phi did 0.49 +/- 0.13 nmol O2-/min/4 x 10(5) cells when stimulated with wheat germ lectin. These results suggest that the TG-elicited macrophages show enhanced superoxide production but generate less lipoxygenase metabolites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Diacytosis of 125I-asialoorosomucoid by rat hepatocytes was studied by preincubating the cells with the labelled ligand at 37 degrees C for 30 min or 18 degrees C for 2 h, washing free of cell surface receptor-bound tracer at 4 degrees C and then reincubating at 37 degrees C. The cells preloaded at 37 degrees C released a maximum of 18% of the total intracellular ligand as undegraded molecules after 1 h of incubation with an apparent first-order rate constant of 0.018 min-1 (t1/2 = 39 min). When the preloaded cells were incubated in the presence of 100 micrograms/ml unlabelled asialoorosomucoid or 5 mM ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, the amount of the released ligand increased to 32 and 37%, respectively, without apparent change in kinetics, indicating that these agents prevented rebinding of the released ligand. In the presence of 5 microM colchicine, 20 microM cytochalasin B, 20 microM chloroquine, 10 mM NH4Cl, 10 microM monensin or 20 microM leupeptin, degradation of the preloaded ligand was inhibited, whereas the release of the ligand was either slightly increased or unchanged. Similar effects of leupeptin, colchicine and asialoorosomucoid were observed with cells preloaded at 18 degrees C. These results indicate that diacytosis of 125I-asialoorosomucoid occurs from a prelysosomal compartment via a route insensitive to inhibition by the inhibitors of ligand degradation.  相似文献   

14.
The metabolism of exogenous leukotriene B4 (LTB4) was investigated in venous blood obtained from normal and asthmatic subjects. Using specific radioimmunoassay (RIA) and reverse-phase high performance liquid chromatography (RP-HPLC) techniques we have demonstrated that LTB4 is relatively stable during a 2 hr incubation period at 37 degrees C in our system in vitro. Nevertheless, chromatographic analysis revealed the presence of two products which had retention times identical to 20-hydroxy LTB4 (20-0H LTB4) and 20-carboxy LTB4 (20-C00H LTB4) in which the dicarboxylic derivative was the main metabolite present after 15 min incubation. The amount of LTB4 and its w-oxidation products observed after a 2 hr incubation period was 73% and 24% respectively. There was no basal release of LTB4 from blood. The appearance of these oxidative products was totally suppressed at 4 degrees C and with incubations performed with either venous plasma or Hartmann's control. No significant difference was observed in substrate metabolism between normal and asthmatic subjects. Our results demonstrate that LTB4 is slowly degraded in human whole blood through a cellular dependent process of w-oxidation which may be an important pathway for regulating the availability of this potent biologically active substance.  相似文献   

15.
5-oxo-(7E,9E,11Z,14Z)-eicosatetraenoic acid (5-oxo-ETE) has been identified as a non-enzymatic hydrolysis product of leukotriene A(4) (LTA(4)) in addition to 5,12-dihydroxy-(6E,8E,10E, 14Z)-eicosatetraenoic acids (5,12-diHETEs) and 5,6-dihydroxy-(7E,9E, 11Z,14Z)-eicosatetraenoic acids (5,6-diHETEs). The amount of 5-oxo-ETE detected in the mixture of the hydrolysis products of LTA(4) was found to be pH-dependent. After incubation of LTA(4) in aqueous medium, the ratio of 5-oxo-ETE to 5,12-diHETE was 1:6 at pH 7.5, and 1:1 at pH 9.5. 5-Oxo-ETE was isolated from the alkaline hydrolysis products of LTA(4) in order to evaluate its effects on human polymorphonuclear (PMN) leukocytes. 5-Oxo-ETE induced a rapid and dose-dependent mobilization of calcium in PMN leukocytes with an EC(50) of 250 nM, as compared to values of 3.5 nM for leukotriene B(4) (LTB(4)500 nM for 5(S)-hydroxy-(6E,8Z,11Z,14Z)-eicosatetraenoic acid (5-HETE). Pretreatment of the cells with LTB(4) totally abolished the calcium response induced by 5-oxo-ETE. In contrast, the preincubation with 5-oxo-ETE did not affect the calcium mobilization induced by LTB(4). The calcium response induced by 5-oxo-ETE was totally inhibited by the specific LTB(4) receptor antagonist LY223982. These data demonstrate that 5-oxo-ETE can induce calcium mobilization in PMN leukocyte via the LTB(4) receptor in contrast to the closely related analog 5-oxo-(6E,8Z,11Z, 14Z)-eicosatetraenoic acid which is known to activate human neutrophils by a mechanism independent of the receptor for LTB(4).  相似文献   

16.
Peripheral blood neutrophils from patients with allergic rhinitis and from normal subjects were incubated for 5 min at 37 degrees C with 0.15 microM calcium ionophore A23187 in the absence or presence of exogenous arachidonic acid (2.5 to 10 microM). In neutrophils from allergic patients, the leukotriene B4 (LTB4) level was significantly increased by exogenous arachidonic acid in a concentration-dependent manner (16.2 +/- 4.2 and 38.1 +/- 6.8 pmol/5 min per 2 X 10(6) cells in the absence and presence of 10 microM arachidonic acid, respectively; P less than 0.005; n = 8). The LTB4 level in neutrophils from healthy subjects was only 0.97 +/- 0.17 pmol/5 min per 2 x 10(6) cells (n = 5) and was not enhanced by exogenous arachidonate. When cells from allergic patients were challenged in the presence of exogenous [1-14C]arachidonic acid, released LTB4 was radiolabeled and the incorporated radioactivity increased with the labeled arachidonate concentration. Labeled LTB4 was never detectable after incubating neutrophils from normal donors with exogenous labeled arachidonate. When neutrophils were incubated with [1-14C]arachidonate for 1 h, the different lipid pools of the two cell populations were labeled but both types of neutrophils produced unlabeled LTB4 in response to ionophore stimulation. The hydrolysis of choline and ethanolamine phospholipids into diacyl-, alkenylacyl- and alkylacyl-species revealed that solely the alkylacyl-subclass of phosphatidylcholine was unlabeled. We conclude (i) that neutrophils from allergic patients stimulated by low ionophore concentration produce more LTB4 than neutrophils from healthy subjects and incorporate exogenous arachidonate, (ii) that endogenous arachidonate converted to LTB4 by the 5-lipoxygenase pathway may provide only from 1-O-alkyl-2-arachidonoyl-glycero-3-phosphocholine.  相似文献   

17.
A high amount of leukotriene B4 (LTB4) binding protein was observed in the porcine spleen. It was solubilized and partially purified from spleen membrane with 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS). Scatchard analysis indicated the presence of a single class of receptor with Kd and Bmax values of 0.26 nM and 120 fmol/mg protein, respectively. The receptor was specific for LTB4, and Ki values for 20-hydroxy- and 20-carboxy-LTB4, both inactive metabolites of LTB4, were 1.7 nM and over 1,000 nM, respectively. By the addition of 10 microM GTP gamma S, a low affinity binding site appeared with a Kd value of 390 nM. A pretreatment of the receptor-GTP binding protein complex with islet-activating protein (IAP) increased the inhibitory effect of GTP gamma S on LTB4 binding, indicating that the LTB4 receptor is coupled with an IAP-sensitive GTP-binding protein in the porcine spleen.  相似文献   

18.
Both 1,2-diacyl- and 1-O-alkyl-2-acylglycerols are formed during stimulation of human neutrophils (PMN), and both can prime respiratory burst responses for stimulation by the chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP); however, mechanisms of priming are unknown. Arachidonic acid (AA) release through phospholipase A2 activation and metabolism by 5-lipoxygenase are important activities of PMN during inflammation and could be involved in the process of primed stimulation. Therefore, we have examined the ability of diacyl- and alkylacylglycerols to act as priming agents for AA release and metabolism in human neutrophils. After prelabeling PMN phospholipids with [3H]AA, priming was tested by incubating human PMN with the diacylglycerol, 1-oleoyl-2-acetylglycerol (OAG), or its alkylacyl analog, 1-O-delta 9-octadecenyl-2-acetylglycerol (EAG) before stimulating with fMLP. fMLP (1 microM), OAG (20 microM), or EAG (20 microM) individually caused little or no release of labeled AA. However, after priming PMN with the same concentrations of either OAG or EAG, stimulation with 1 microM fMLP caused rapid (peak after 1 min) release of 6-8% of [3H]AA from cellular phospholipids; total release was similar with either diglyceride. Priming cells with OAG also enhanced conversion of released AA to leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic acid (5-HETE) upon subsequent fMLP stimulation, but AA metabolites were not increased in EAG-primed PMN. If fMLP was replaced with the calcium ionophore A23187 (which directly causes release of AA and production of LTB4 and 5-HETE), priming by both diglycerides again enhanced release of [3H]AA, but only OAG priming increased lipoxygenase activity. Indeed, EAG pretreatment markedly reduced LTB4 and 5-HETE production. Thus, both diglycerides prime release of AA from membrane phospholipids but have opposite actions on the subsequent metabolism of AA.  相似文献   

19.
Leukotriene A4 epoxide hydrolase from dog lung, a soluble enzyme catalyzing the hydrolysis of leukotriene A4 (LTA4) to leukotriene B4 (LTB4) was partially purified by anion exchange HPLC. The enzymatic reaction obeys Michaelis- Menten kinetics. The apparent Km ranged between 15 and 25 microM and the enzyme exhibited an optimum activity at pH 7.8. An improved assay for the epoxide hydrolase has been developed using bovine serum albumin and EDTA to increase the conversion of LTA4 to LTB4. This method was used to produce 700 mg of LTB4 from LTA4 methyl ester. The partial by purified enzyme was found to be uncompetitively inhibited by divalent cations. Ca+2, Mn+2, Fe+2, Zn+2 and Cu+2 were found to have inhibitor constants (Ki) of 89 mM, 3.4 mM, 1.1 mM, 0.57 mM, and 28 microM respectively Eicosapentaenoic acid was shown to be a competitive inhibitor of this enzyme with a Ki of 200 microM. From these inhibition studies, it can be theorized that the epoxide hydrolase has at least one hydrophobic and one hydrophilic binding site.  相似文献   

20.
We identified leukotriene B4 (LTB4)/12-hydroxyeicosatetraenoic acid (12-HETE) binding sites in a squamous cell cancer-derived human epidermal cell line. Analysis of the binding data revealed a single class of binding sites with a dissociation constant of 0.16 microM and a Bmax of 3.8 x 10(6) sites per cell. Competitive binding assays with various eicosanoids at 37 degrees C showed nearly equal binding of 12(S)-HETE, 12(R)-HETE and LTB4. 5(S)-HETE and LTB4-analogs bound with lesser affinity. Specific LTB4 binding at 37 degrees C could also be demonstrated in freshly isolated normal human keratinocytes. Since lipoxygenase-derived eicosanoids are thought to play an important role in hyperproliferative and inflammatory skin diseases, the identification of LTB4/12-HETE binding sites in keratinocytes could have implications for the development of new drugs controlling these disease processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号