首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of 25 mol% incorporation of two anesthetics, 1-octanol and 1-decanol, on a deuterated, saturated phospholipid in 50 wt% aqueous multilamellar dispersions have been studied by 2H-NMR spectroscopy and differential scanning calorimetry (DSC). The phospholipid used is sn-2 substituted '[2H31]-palmitoylphosphatidylcholine' (PC-d31). DSC thermograms demonstrate that PC-d31 has phase behavior qualitatively similar to that of dipalmitoylphosphatidylcholine, with a pretransition at 31 degrees C and a main gel to liquid crystalline transition at 40 degrees C. Analysis of the temperature-dependent 2H-NMR spectra in terms of the first moment, which is extremely sensitive to the phospholipid phase, shows that 1-octanol and 1-decanol depress and broaden the main transition. This is confirmed by DSC, which shows that the pretransition is eliminated by the 1-alkanols. The carbon-deuterium bond order of the phospholipid deuterated acyl chains, in the presence and absence of 1-alkanols, was determined from deuterium quadrupolar splittings. Spectra were analyzed using the depaking technique. A 1-alkanol concentration of 25 mol% had no significant effect on the profile of the carbon-deuterium bond order parameter SCD along the phospholipid acyl chain at 50 degrees C. Thus, it appears that the liquid crystalline phase is able to accommodate large amounts of linear anesthetic molecules without substantial effect on molecular ordering within the membrane bilayer. Preliminary results show that the transverse relaxation rates of the acyl chain segments are significantly decreased by the presence of 1-octanol or 1-decanol.  相似文献   

2.
The influences of 1-octanol and 1-decanol on aqueous multilamellar dispersions of 1-hexadecanoyl(octadecanoyl)-2-[2H31]hexadecanoyl-sn-glycero -3-phosphorylcholine (PC-d31)/cholesterol (3:1) have been examined using 2H-NMR. The gel to liquid crystalline phase transition of the PC-d31/cholesterol dispersion is modulated by the addition of 1-alkanol, which reduces the onset temperature and increases the width of the transition. 1-Octanol has a greater effect on the transition onset and completion temperatures than does 1-decanol, as determined from analysis of the temperature-dependent 2H-NMR spectra. 2H-NMR C-2H bond order parameters as a function of phospholipid acyl chain position at 60 degrees C, where all dispersions are fully liquid crystalline, have been calculated from the depaked spectra. 1-Decanol reduces the phospholipid order by only 2%. This can be attributed to the lower effective cholesterol concentration in the 1-alkanol/PC-d31/cholesterol dispersions. 1-Octanol, however, reduces the phospholipid order by 10% at 60 degrees C. Correlations between the effects of 1-octanol and 1-decanol on phospholipid order parameters and phospholipid/cholesterol phase transitions are discussed.  相似文献   

3.
Deuterium nuclear magnetic resonance (2H-NMR) spectra have been determined for 50 wt% aqueous dispersions of 1-palmitoyl(stearoyl)-2-[2H31]palmitoyl-sn-glycero-3-phosphocho lin e (PC-d31) containing 20 mol% of the isoprenoid compounds phytol or phytanic acid over the temperature range -5-55 degrees C. Concentration effects of the isoprenoid compounds are also reported. First moments (M1) and order parameters were calculated from the spectra. 20 Mol% of either branched chain compound causes an approximate 9% increase in the mean order parameter SCD. Significant effects are seen on the PC-d31 phase behavior. 20 Mol% of either branched chain compound causes the gel to liquid crystalline onset temperature (Ts) to drop to 28 degrees C from 38 degrees C for PC-d31 alone, as seen from the temperature dependent M1 values. The melting range ([Tl--Ts]) is congruent to 1.5 degrees C for PC-d31 and congruent to 11 degrees C for PC-d31 containing 20 mol% of the branched chain compounds. This is in direct contrast to their straight chain analogues, hexadecanol and palmitic acid, which have been shown to elevate the phase transition temperature. The isoprenoid compounds cause significant disruption of the gel phase, forcing nearest neighbor phospholipid chains apart. Transverse relaxation times (T2e, the time constant for decay of the quandrupolar echo) have been determined over the temperature range -5-50 degrees C. Possible explanation for the effect of the isoprenoid compounds on the dynamic structure of phospholipids in the bilayer are proffered.  相似文献   

4.
We investigated interactions of the lipid raft molecules sphingomyelin (SM) and cholesterol (CHOL) in monolayers and bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycerophosphatidylethanolamine (POPE) or 1-palmitoyl-2-docosahexaenoyl-sn-glycerophosphatidylethanolamine (PDPE) at 35 degrees C. Techniques employed were pressure-area (pi-A) isotherms generated from Langmuir-Blodgett films, solid-state (2)H and (31)P NMR spectroscopies, and differential scanning calorimetry (DSC). Condensation calculated from pi-A isotherms and reduction in the enthalpy of the gel-liquid-crystalline transition in DSC scans showed CHOL has a strong affinity for POPE, comparable to that observed between SM-CHOL. Order parameters derived from (2)H NMR spectra of the perdeuterated sn-1 chain of POPE-d(31) increased by >50% upon addition of equimolar CHOL to POPE-d(31)/SM (1:1 mol) bilayers. Close proximity of CHOL to POPE even in the presence of SM is indicated. Chemical shift anisotropy (Deltasigma(csa)) measured from (1)H-decoupled (31)P NMR spectra also implied intimate lipid mixing in POPE/SM/CHOL (1:1:1 mol). In contrast, pi-A isotherms and corroborating DSC studies of PDPE/SM (1:1 mol) indicate phase separation between SM and PDPE, which was maintained in the presence of CHOL. The cholesterol-associated increase in order of the perdeuterated sn-1 chain of PDPE determined by (2)H NMR was 2-fold less for PDPE-d(31)/SM/CHOL (1:1:1 mol) than POPE-d(31)/SM/CHOL (1:1:1 mol). Our findings support the notion that acyl chain dependent lateral phase separation occurs in the presence of a docosahexaenoic acid (DHA)-containing phospholipid (PDPE), but not an oleic acid-containing phospholipid (POPE). We propose that monounsaturated lipids do not promote formation of stable lipid rafts and that polyunsaturation may be important for raft stability.  相似文献   

5.
The physical properties of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/ergosterol bilayers in the liquid-crystalline phase were determined using deuterium nuclear magnetic resonance (2H NMR) and vesicle extrusion. For the 2H NMR experiments, the sn-1 chain of POPC was perdeuterated, and spectra were taken as a function of ergosterol concentration and temperature. Analysis of the liquid-crystalline spectra provides clear evidence that two types of liquid-crystalline domains, neither of which is a liquid-ordered phase, having distinct average chain conformations coexist in 80:20 and 75:25 POPC/ergosterol membranes over a wide temperature range (from −2 to at least 31°C). Adding ergosterol to a concentration of 25 mol % increases POPC-d31 chain ordering as measured by the NMR spectral first moment M1 and also increases the membrane lysis tension, obtained from vesicle extrusion. Further addition of ergosterol had no effect on either chain order or lysis tension. This behavior is in marked contrast to the effect of cholesterol on POPC membranes: POPC/cholesterol membranes have a linear dependence of chain order on sterol concentration to at least 40 mol %. To investigate further we compared the dependence on sterol structure and concentration of the NMR spectra and lysis tension for several POPC/sterol membranes at 25°C. For all POPC/sterol membranes investigated in this study, we observed a universal linear relation between lysis tension and M1. This suggests that changes in acyl chain ordering directly affect the tensile properties of the membrane.  相似文献   

6.
Docosahexaenoic acid (DHA, 22:6) containing phospholipids have been postulated to be involved in promoting lateral segregation within membranes into cholesterol- (CHOL-) rich and CHOL-poor lipid microdomains. Here we investigated the specific molecular interactions of phospholipid bilayers composed of 1-[(2)H(31)]palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (16:0-22:6PE-d(31)) or 1-[(2)H(31)]palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0-18:1PE-d(31)) with equimolar CHOL using solid-state (2)H NMR spectroscopy and low- and wide-angle X-ray diffraction (XRD). Moment analysis of (2)H NMR spectra obtained as a function of temperature reveals that the main chain melting transition and the lamellar-to-inverted hexagonal (H(II)) phase transition of 16:0-22:6PE-d(31) remain in the presence of equimolar CHOL, whereas addition of equimolar CHOL essentially obliterates the gel-to-liquid crystalline transition of 16:0-18:1PE-d(31). (2)H NMR order parameter measurements show that the addition of equimolar CHOL in the lamellar liquid crystalline phase causes a smaller increase in order for the perdeuterated sn-1 chain by 22% for 16:0-22:6PE-d(31) as opposed to 33% for 16:0-18:1PE-d(31). XRD experiments determined markedly lower solubility of 32 +/- 3 mol % for CHOL in 16:0-22:6PE bilayers in contrast to the value of approximately 51 mol % for 16:0-18:1PE. Our findings provide further evidence that cholesterol has a low affinity for DHA-containing phospholipids and that this reduced affinity may serve as a mechanism for triggering the formation of lipid microdomains such as rafts.  相似文献   

7.
E J Dufourc  I C Smith  J Dufourcq 《Biochemistry》1986,25(21):6448-6455
Solid-state deuterium and phosphorus-31 nuclear magnetic resonance (2H and 31P NMR) studies of deuterium-enriched phosphatidylcholine [( 3',3'-2H2]DPPC, [sn-2-2H31]DPPC) and ditetradecylphosphatidylglycerol (DMPG-diether), as water dispersions, were undertaken to investigate the action of melittin on zwitterionic and negatively charged membrane phospholipids. When the lipid-to-protein ratio (Ri) is greater than or equal to 20, the 2H and 31P NMR spectral features indicate that the system is constituted by large bilayer structures of several thousand angstrom curvature radius, at T greater than Tc (Tc, temperature of "gel-to-liquid crystal" phase transition of pure lipid dispersions). At T approximately Tc, a detailed analysis of the lipid chain ordering shows that melittin induces a slight disordering of the "plateau" positions concomitantly with a substantial ordering of positions near the bilayer center. At T much greater than Tc, an apparent general chain disordering is observed. These findings suggest that melittin is in contact with the acyl chain segments and that its position within the bilayer may depend on the temperature. On a cooling down below Tc, for Ri greater than 20, two-phase spectra are observed, i.e., narrow single resonances superimposed on gel-type phosphorus and deuterium powder patterns. These narrow resonances are characteristic of small structures (vesicles, micelles, ... of a few hundred angstrom curvature radius) undergoing fast isotropic reorientation, which averages to zero both the quadrupolar and chemical shift anisotropy interactions. On an increase of the temperature above Tc, the NMR spectra indicate that the system returns reversibly to large bilayer structures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
2H nuclear magnetic resonance (NMR) of Acholesplasma laidlawii membranes grown on a medium supplemented with perdeuterated palmitic acid shows that at 42°C or above, the membrane lipids are entirely in a fluid state, exhibiting the characteristic ‘plateau’ in the variation of deuterium quadrupolar splitting with chain position. Between 42 and 34°C there is a well-defined gel-to-fluid phase transition encompassing the growth temperature of 37°C, and at lower temperatures the membranes are in a highly ordered gel state. The 2H-NMR spectra of the gel phase membranes are similar to those of multilamellar dispersions of chain perdeuterated dipalmitoyl phosphatidylcholine (Davis, J.H. (1979) Biophys. J. 27, 339) as are the temperature dependences of the spectra and their moments. The incorporation of large amounts of cholesterol into the membrane removes the gel to fluid phase transition. Between 20 and 42°C, the position dependence of the orientational order of the hydrocarbon chains of the membranes is similar to that of the fluid phase of the membranes without cholesterol, i.e., they exhibit the plateau in the deuterium quadrupolar splittings. However, the cholesterol-containing membranes have a higher average order, with the increases in order being greater for positions near the carbonyl group of the acyl chains. Below 20°C the 2H spectra of the membranes containing cholesterol change dramatically in a fashion suggestive of complex motional and/or phase behaviour.  相似文献   

9.
2H and 31P NMR techniques were used to study the effects on acyl chain order and lipid organization of the well-characterized pore-forming domain of colicin A (20-kDa thermolytic fragment of colicin A) upon insertion in model membrane systems derived from the Escherichia coli fatty acid auxotrophic strain K 1059, which was grown in the presence of [11,11-2H2]-labeled oleic acid. Addition of the protein to dispersions of the E. coli total lipid extract, in a 1/70 molar ratio of peptide to lipids, resulted in a large pH-dependent decrease in quadrupolar splitting of the 2H NMR spectra. The decrease of the quadrupolar splitting obtained at the various pH values was correlated with the pH dependence of the insertion of the protein in monolayer films using the same E. coli lipid extracts. The pK governing the perturbing effects on the order of the fatty acyl chains was around 5, in agreement with the values of the pH-dependent conformational changes of the pore-forming domain of colicin A required for membrane insertion as reported by van der Goot et al. [(1991) Nature 354, 408-410]. 31P NMR measurements show that the bilayer organization remains intact upon addition of the protein to dispersions of lipid extract. Surprisingly, 31P NMR measurements as a function of temperature indicate that the pore-forming domain of colicin A even stabilizes bilayer lipid structure at pH 4. Both the large effect of the protein on acyl chain order and its bilayer-stabilizing activity are indicative of a surface localization of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The effect of up to 20 mol% incorporation of alpha-tocopherol on acyl chain order and dynamics in liquid crystalline phosphatidylcholine (PC) membranes was studied as a function of acyl chain unsaturation by electron spin resonance (ESR) of 5-, 7-, 12- and 16-doxyl spin labelled stearic acids intercalated into the membrane. Order parameters S in the upper portion of the chain (positions 5 and 7) and correlation times tau C in the lower portion (positions 12 and 16) determined from the ESR spectra indicate that in general alpha-tocopherol restricts acyl chain motion within the membrane. The magnitude of the increases in order appears to be dependent upon phospholipid molecular area, being the greatest (up to 15%) in saturated dimyristoylphosphatidylcholine (14:0-14:0 PC) which possesses a relatively small area per molecule as opposed to much smaller increases (less than 3%) in unsaturated PC membranes of larger molecular area. This behavior is interpreted as incompatible with the hypothesis of Lucy and coworkers (A.T. Diplock and J.A. Lucy (1973) FEBS Lett. 29, 205-210), who proposed that membranes are structurally stabilized by interactions between the phytyl side chain of alpha-tocopherol and the polyunsaturated chains of phospholipids.  相似文献   

11.
The interaction of UO2(2+) with dipalmitoylphosphatidylcholine (DPPC) has been studied as a function of temperature and composition using nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry (DSC), and monolayer studies. Computer simulations of the 31P-NMR powder spectra of DPPC dispersions in the presence of various concentrations of UO2(2+) are consistent with the binding stoichiometry of [UO2(2+)]/[DPPC] = 1:4 at [UO2(2+)]/[DPPC] less than 0.3. This complex undergoes a phase transition to the liquid crystalline phase at T'm = 50 +/- 3 degrees C with a breadth delta T'm = 7 +/- 3 degrees C. This broad transition gradually disappears at higher UO2(2+) concentrations, suggesting the presence of yet another UO2(2+)/DPPC complex (or complexes) whose NMR spectra are indistinguishable from those of the 1:4 UO2(2+)/DPPC species. The temperature-dependent 13C powder spectra of 2(1-13C) DPPC dispersions in the presence of 1.2 mol ratio of UO2(2+) show that this higher order complex (complexes) also undergoes a phase transition to the liquid crystalline state at T'm +/- = 58 +/- 3 degrees C with a breadth delta T"m = 15 +/- 5 degrees C. The NMR spectra indicate that exchange among these various UO2(2+)/DPPC complexes is slow. In addition, computer simulations of the 31P-, 13C-, and 2H-NMR powder spectra show that axial diffusion of the DPPC molecules about their long axes is quenched by addition of UO2(2+) and acyl chain isomerization is the dominant motional mode. The isomerization is best described as two-site hopping of the greater than C-D bond at a rate of approximately 10(6) s-1, a motional mode which is expected for a kink diffusion.  相似文献   

12.
The effect of cholesterol on the bilayer phase behavior of heteroacid phosphatidylcholines with one unsaturated fatty acid depends on the nature of the unsaturated chain. Previous differential scanning calorimetry (DSC) studies showed that 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (16:0-18:2 PC) had a broad, weak transition at about -18 degrees C, which was effectively eliminated by less than 15 mol% cholesterol. Phospholipids with greater and lesser degrees of unsaturation displayed stronger phase transitions and less sensitivity to cholesterol. In this work, deuterium nuclear magnetic resonance has been used to examine the phase behavior of 1-perdeuteriopalmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (16:0-18:2 PC-d31) alone, and with 15 mol % cholesterol. The behavior is found to be sensitive to sample thermal history. Moderately fast cooling (1 degree/h) results in a continuous phase change from a fluid to an ordered phase in the pure lipid. Under similar cooling conditions, the sample containing cholesterol displays increased chain order and a continuous phase change with no apparent isothermal transition. However, when these systems are cooled at a reduced rate (0.3 degree/h), the continuous phase change is pre-empted by a sharp transition into a more ordered phase that gives a deuterium spectrum having intensity at a value of the quadrupole-splitting characteristic of a rigid lattice system. In the pure lipid, this transition effectively coincides with the center of the continuous phase change. Addition of 15 mol % cholesterol lowers the temperature of this sharp transition by about 3 degrees C. These observations provide some insights into the behavior of this system seen using differential scanning calorimetry. Results of deuteron transverse relaxation measurements under these conditions are also reported.  相似文献   

13.
DSC and (1H and 31P) NMR measurements are used to investigate the perturbation caused by the keratolytic drug, salicylic acid (SA) on the physicochemical properties of the model membranes. Model membranes (in unilamellar vesicular (ULV) form) in the present studies are prepared with the phospholipids, dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylethanolamine (DPPE), dipalmitoyl phosphatidic acid (DPPA) and mixed lipid DPPC-DPPE (with weight ratio, 2.5:2.2). These lipids have the same acyl (dipalmitoyl) chains but differed in the headgroup. The molar ratio of the drug to lipid (lipid mixture), is in the range 0 to 0.4. The DSC and NMR results suggest that the lipid head groups have a pivotal role in controlling (i) the behavior of the membranes and (ii) their interactions with SA. In the presence of SA, the main phase transition temperature of (a) DPPE membrane decreases, (b) DPPA membrane increases and (c) DPPC and DPPC-DPPE membranes are not significantly changed. The drug increases the transition enthalpy (i.e., acyl chain order) in DPPC, DPPA and DPPC-DPPE membranes. However, the presence of the drug in DPPC membrane formed using water (instead of buffer), shows a decrease in the transition temperature and enthalpy. In all the systems studied, the drug molecules seem to be located in the interfacial region neighboring the glycerol backbone or polar headgroup. However, in DPPC-water system, the drug seems to penetrate the acyl chain region also.  相似文献   

14.
A low molecular weight hydrophobic protein was isolated from porcine lung lavage fluid using silicic acid and Sephadex LH-20 chromatography. The protein migrated with an apparent molecular weight of 5000-6000 on SDS-PAGE under reducing and nonreducing conditions. Gels run under reducing conditions also showed a minor band migrating with a molecular weight of 12,000. Amino acid compositional analysis and sequencing data suggest that this protein preparation contains intact surfactant protein SP-C and about 30% of truncated SP-C (N-terminal leucine absent). The surfactant protein was combined with perdeuterated dimyristoylphosphatidylcholine (DMPC-d54) in multilamellar vesicles. The protein enhanced the rate of adsorption of the lipid at air-water interfaces. The ability of the protein to alter normal lipid organization was examined by using high-sensitivity differential scanning calorimetry (DSC) and 2H nuclear magnetic resonance spectroscopy (2H NMR). The calorimetric measurements indicated that the protein caused a decrease in the temperature maximum (Tm) and a broadening of the phase transition. At a protein concentration of 8% (w/w), the enthalpy change of transition was reduced to 4.4 kcal/mol compared to 6.3 kcal/mol determined for the pure lipid. NMR spectral moment studies indicated that protein had no effect on lipid chain order in the liquid-crystal phase but reduced orientational order in the gel phase. Two-phase coexistence in the presence of protein was observed over a small temperature range below the pure lipid transition temperature. Spin-lattice relaxation times (T1) were not substantially affected by the protein. Transverse relaxation time (T2e) studies suggest that the protein influences slow lipid motions.  相似文献   

15.
We used solid-state NMR techniques to probe the interactions of cholesterol (Chol) with bovine brain sphingomyelin (SM) and for comparison of the interactions of Chol with dipalmitoylphosphatidylcholine (DPPC), which has a similar gel-to-liquid crystalline transition temperature. (1)H-, (31)P-, and (13)C-MASNMR yielded high-resolution spectra from multilamellar dispersions of unlabeled brain SM and Chol for analysis of chemical shifts and linewidths. In addition, (2)H-NMR spectra of oriented lipid membranes with specific deuterium labels gave information about membrane ordering and mobility. Chol disrupted the gel-phase of pure SM and increased acyl chain ordering in the liquid crystalline phase. As inferred from (13)C chemical shifts, the boundaries between the ordered and disordered liquid crystalline phases (L and L) were similar for SM and DPPC. The solubility limit of Chol in SM was ~50 mol %, the same value as previously reported for DPPC membranes. We found no evidence for specific H-bonding between Chol and the amide group of SM. The order parameters of a probe molecule, d31-sn1-DPPC, in SM were slightly higher than in DPPC for all carbons except the terminal groups at 30 mol % but were not significantly different at 5 and 60 mol % Chol. These studies show a general similarity with some subtle differences in the way Chol interacts with DPPC and SM. In the environment of a typical biomembrane, the higher proportion of saturated fatty acyl chains in SM compared to other phospholipids may be the most significant factor influencing interactions with Chol.  相似文献   

16.
C W Lee  J S Waugh  R G Griffin 《Biochemistry》1986,25(13):3737-3742
31P and 2H solid-state NMR studies of dry trehalose (TRE) and 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) mixtures are reported. 31P spectra are consistent with a rigid head group above and below the calorimetric phase transition for both dry DPPC and a dry 2:1 TRE/DPPC mixture. In addition, 2H spectra of DPPC labeled at the 7-position of the sn-2 chain (2[7,7-2H2]DPPC) show exchange-narrowed line shapes with a width of 120 kHz over the temperature range 25-75 degrees C. These line shapes can be simulated with a model involving two-site jumps of the deuteron. In contrast, the 2H NMR spectrum of a dry 2:1 TRE/2[7,7-2H2]DPPC mixture above the phase transition (Tc = 46 degrees C) is narrowed by a factor of approximately 4 to a width of 29 kHz. Simulation of this spectrum requires a model involving four-site jumps of the deuteron and is indicative of highly disordered lipid acyl chains similar to those found in the L alpha-phases of hydrated lipids. Thus, TRE/DPPC mixtures above their transition temperatures exist in a new type of liquid crystalline like phase, which we term a lambda-phase. The observation of the dynamic properties of this new phase indicates the mechanism by which anhydrobiotic organisms maintain the integrity of their membranes upon dehydration.  相似文献   

17.
The interaction of the native Alzheimer's peptide C-terminal fragment Abeta (29-42), and two mutants (G33A and G37A) with neutral lipid bilayers made of POPC and POPE in a 9:1 molar ratio was investigated by solid-state NMR. This fragment and the lipid composition were selected because they represent the minimum requirement for the fusogenic activity of the Alzheimer's peptide. The chemical shifts of alanine methyl isotropic carbon were determined by MAS NMR, and they clearly demonstrated that the major form of the peptide equilibrated in membrane is not in a helical conformation. (2)H NMR, performed with acyl chain deuterated POPC, demonstrated that there is no perturbation of the acyl chain's dynamics and of the lipid phase transition temperature. (2)H NMR, performed with alanine methyl-deuterated peptide demonstrated that the peptide itself has a limited mobility below and above the lipid phase transition temperature (molecular order parameter equal to 0.94). MAS (31)P NMR revealed a specific interaction with POPE polar head as seen by the enhancement of POPE phosphorus nuclei T(2) relaxation. All these results are in favor of a beta-sheet oligomeric association of the peptide at the bilayer interface, preferentially recruiting phosphatidyl ethanolamine polar heads.  相似文献   

18.
The miscibility and phase behavior of hydrated binary mixtures of two N-acylethanolamines (NAEs), N-myristoylethanolamine (NMEA), and N-palmitoylethanolamine (NPEA), with the corresponding diacyl phosphatidylethanolamines (PEs), dimyristoylphosphatidylethanolamine (DMPE), and dipalmitoylphosphatidylethanolamine (DPPE), respectively, have been investigated by differential scanning calorimetry (DSC), spin-label electron spin resonance (ESR), and (31)P-NMR spectroscopy. Temperature-composition phase diagrams for both NMEA/DMPE and NPEA/DPPE binary systems were established from high sensitivity DSC. The structures of the phases involved were determined by (31)P-NMR spectroscopy. For both systems, complete miscibility in the fluid and gel phases is indicated by DSC and ESR, up to 35 mol % of NMEA in DMPE and 40 mol % of NPEA in DPPE. At higher contents of the NAEs, extensive solid-fluid phase separation and solid-solid immiscibility occur depending on the temperature. Characterization of the structures of the mixtures formed with (31)P-NMR spectroscopy shows that up to 75 mol % of NAE, both DMPE and DPPE form lamellar structures in the gel phase as well as up to at least 65 degrees C in the fluid phase. ESR spectra of phosphatidylcholine spin labeled at the C-5 position in the sn-2 acyl chain present at a probe concentration of 1 mol % exhibit strong spin-spin broadening in the low-temperature region for both systems, suggesting that the acyl chains pack very tightly and exclude the spin label. However, spectra recorded in the fluid phase do not exhibit any spin-spin broadening and indicate complete miscibility of the two components. The miscibility of NAE and diacyl PE of matched chainlengths is significantly less than that found earlier for NPEA and dipalmitoylphosphatidylcholine, an observation that is consistent with the notion that the NAEs are most likely stored as their precursor lipids (N-acyl PEs) and are generated only when the system is subjected to membrane stress.  相似文献   

19.
K P Datema  K P Pauls  M Bloom 《Biochemistry》1986,25(13):3796-3803
Solid gramicidin A and S and their interaction with DPPC bilayers were examined by 2H NMR as well as 31P NMR and differential scanning calorimetry (DSC). The deuterium spectra arose from deuterons associated with the peptide through chemical exchange in 2H2O. The spectra from both peptides were characterized by a quadrupolar splitting parameter, omega Q/2 pi approximately 150 kHz, and an asymmetry parameter, eta approximately 0.17. An additional 33 kHz, eta = 0 component arising from deuterons on mobile ornithine side chains was present in gramicidin S. In the gel phase of dipalmitoylphosphatidylcholine liposomes the gramicidins gave spectra that had components identical with those obtained from the solids. In the liquid-crystalline phase gramicidin A containing samples gave multicomponent spectra with a maximum quadrupolar splitting value of 133 kHz, eta = 0. A minimum in the T2e was observed, coinciding with the onset of the broadened phase transition measured by DSC and 31P NMR, due to the onset of axial rotation of the peptide in the bilayer. The different powder patterns in the liquid-crystalline spectra from gramicidin A probably arise from different amide sites along the transmembrane channel. The broad component of the 2H NMR spectra from gramicidin S in liposome preparations was not affected by the lipid-phase transition. The T2e was also constant over this temperature range. The results are consistent with a location of gramicidin S at the membrane surface.  相似文献   

20.
Cannabinoid receptors are G-protein-coupled receptors comprised of seven transmembrane helices. We hypothesized that the extended helix of the receptor interacts differently with POPC bilayers due to the differing distribution of charged amino acid residues. To test this, hCB1(T377-E416) and hCB2(K278-H316) peptides were studied with 31P and 2H solid-state NMR spectroscopy by incorporating them into 1-palmitoyl-2-oleoyl-sn-glycerophosphocholine bilayers. Lipid affinities of the 40- and 39-residue peptides were analyzed on the basis of 31P and 2H spectral line shapes, order parameters, and T1 relaxation measurements of the POPC bilayers. Lipid headgroup perturbations were noticed in the 31P NMR spectra in the lipid/peptide mixtures when compared with the pure lipids. 2H order parameters were calculated from the quadrupolar splitting of the de-Paked 2H NMR spectra. At the top of the acyl chain, pure lipids had an average S(CD) approximately = 0.20, whereas S(CD) approximately = 0.16 and S(CD) approximately = 0.18 were found in the presence of hCB1(T377-E416) and hCB2(K278-H316), respectively. S(CD) values decreased in the central part of the acyl chains when compared to the pure POPC lipids, indicating a change in the dynamic properties of the lipid membrane in the presence of the cannabinoid peptides. R(1Z) vs S2(CD) plots exhibited a linear dependency with and without the peptides, with an increase in slope upon addition of the peptides to the POPC, indicating that the dynamics of the lipid bilayer is dominated by fast axially symmetric motion. This study provides insights into the interaction of cannabinoid peptides with the membrane bilayer by investigating the headgroup and acyl chain dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号